Electronic Preprint for Journal of Information Processing Vol.26

Regular Paper

Toward Collaborative Defense Across Organizations

1,a) 1,2,b) 1,2,0)

TAKAYUKI SASAKI KATSUNARI YOSHIOKA Tsuromu MATSUMOTO

Received: February 22, 2018, Accepted: September 7, 2018

Abstract: New attack methods, such as new malware and exploits are released every day. Attack information is es-
sential to improve defense mechanisms. However, we can identify barriers against attack information sharing. One
barrier is that most targeted organizations do not want to disclose the attack and incident information because they
fear negative public relations caused by disclosing incident information. Another barrier is that attack and incident
information include confidential information. To address this problem, we propose a confidentiality-preserving col-
laborative defense architecture that analyzes incident information without disclosing confidential information of the
attacked organizations. To avoid disclosure of confidential information, the key features of the proposed architec-
ture are (1) exchange of trained classifiers, e.g., neural networks, that represent abstract information rather than raw
attack/incident information and (2) classifier aggregation via ensemble learning to build an accurate classifier using
the information of the collaborative organizations. We implement and evaluate an initial prototype of the proposed
architecture. The results indicate that the malware classification accuracy improved from 90.4% to 92.2% by aggre-
gating five organization classifiers. We conclude that the proposed architecture is feasible and demonstrates practical
performance. We expect that the proposed architecture will facilitate an effective and collaborative response to current

attack-defense situations.

Keywords: malware, information sharing

1. Introduction

New attack methods are developed in short cycles to circum-
vent existing defense mechanisms, which makes malware detec-
tion difficult. For example, the availability of the source code
for the Mirai bot (malware that targets IoT devices) has led to
the creation of numerous Mirai variants. Even if malware source
code is unavailable, malware authors often reuse binary code to
reduce development burden. Given a large number of malware
variants, maintaining antivirus signatures to cover all malware
variants is difficult. Moreover, automatic malware creation tools,
such as ZeuS, can generate variants by combining malicious func-
tions. In addition, various automated exploit generation tech-
niques [11], [14], [15] have been proposed to accelerate malware
development.

To construct a strong defense mechanism, collecting attack in-
formation such as on targets and intrusion mechanisms is essen-
tial. With such information, we can develop effective counter-
measures based on attack features to differentiate attack events
from normal events. To construct effective defense mechanisms
that cover all attack vectors, organizations should collect and
share attack information. To facilitate information exchange,
Structured Threat Information eXpression (STIX) [8], which al-
lows organizations to exchange information using a unified for-
mat, has been specified. Moreover, an information exchange pro-

' Graduate School of Environment and Information Sciences, Yokohama

National University, Yokohama, Kanagawa 240-8501, Japan

Institute of Advanced Sciences, Yokohama National University,
Yokohama, Kanagawa 240-8501, Japan

¥ sasaki-takayuki-kx @ynu.jp

Y yoshioka@ynu.jp

9 tsutomu@ynu.jp

© 2018 Information Processing Society of Japan

tocol named TAXII (Trusted Automated eXchange of Indicator
Information) [9] has been proposed.

However organizations may not want to share attack informa-
tion because confidential information could be disclosed. For ex-
ample, a company that provides antivirus products can use mal-
ware executables, infected emails, and attacker activities to im-
prove their products. However, customers may refuse to provide
various attack information (e.g., malware executables, emails
containing malware, and attacker activities in compromised sys-
tems), because such information frequently contains confiden-
tial information such as system architectures and configurations.
Antivirus companies are also reluctant to share attack informa-
tion with other security companies because such information is
used to differentiate their products. However, widespread attacks
can cause significant damage, which has become a critical social
problem; thus, such entities should collaborate to address this is-
sue.

Some organizational approaches to sharing attack informa-
tion without disclosing confidential information have been devel-
oped. For example, the Information Sharing and Analysis Cen-
ter (ISAC) collects information about cyber infrastructure attacks
and provides a mechanism to share the information without re-
vealing confidential information. Note that information shared
among companies, such as antivirus security companies, is gen-
erally protected by nondisclosure agreements. In this paper, we
address technical approaches and examine how security compa-
nies can protect customers without using customer malware in-
formation. Some technical approaches have been developed. For
example, VirusTotal (a free online virus, malware, and URL scan-
ning service) uses more than 40 virus engines to analyze user-
submitted files and websites. VirusTotal also provides samples

Electronic Preprint for Journal of Information Processing Vol.26

of the submitted malware, which encourages information shar-
ing. However, the submitted information is shared with Virus-
Total members, many of whom are antivirus vendors. Thus, if
the submitted information contains confidential information, e.g.,
Microsoft Word documents about company projects, disclosure
of such information would represent a leak. To avoid such risks,
users often only submit the hash values of suspicious files *!. Un-
fortunately, by themselves, hash values are insufficient to con-
struct defense mechanisms. To promote attack information shar-
ing, we propose a collaborative defense architecture that does
not require confidential attack information. The proposed archi-
tecture solves the following research problems, i.e., how to ex-
change attack information without disclosing confidential infor-
mation and how to aggregate information provided by multiple
organizations to develop defense mechanisms based on that in-
formation.

To address these problems, the proposed architecture ex-
changes trained classifiers rather than raw attack information, and
aggregates classifiers via ensemble learning. The proposed archi-
tecture has the following features.

(1) The proposed architecture employs a mechanism that ab-
stracts information, which is then used to train a classifier.
The trained classifier’s parameters are then sent to an analy-
sis organization to aggregate the information. Attack infor-
mation is abstracted from raw information as classifier pa-
rameters; thus, the proposed architecture does not disclose
confidential information of attacks against specific organiza-
tions.

(2) The analysis organization aggregates the classifier via en-
semble learning to cover all attack vectors observed by at-
tacked organizations.

In addition, we propose a metric to measure the degree of in-
formation disclosure caused by exchanging classifier parameters.
The proposed metric is similar to differential privacy which is a
concept used in privacy-preserving data mining. To demonstrate
a practical application of the proposed architecture, we imple-
mented and evaluated an initial prototype using the scikit-learn (a
Python-based machine learning tool) to train and aggregate clas-
sifiers. The results show that classification accuracy improved
from 90.4% to 92.2% by aggregating classifiers from five orga-
nizations. However, compared to a method without confiden-
tiality preservation, the accuracy degrades by 3.3% due to our
confidential-preserving mechanism. In addition we demonstrate
that our initial implementation is practical and scalable.

Our primary contributions are summarized as follows.

e We propose an architecture that shares attack information
without disclosing confidential information. In addition, we
construct an integrated classifier that covers all attack vec-
tors observed by the attacked organizations.

e We propose metrics to measure the degree of information
disclosure caused by exchanging the classifier.

e We implement a prototype and demonstrate that the pro-
posed architecture is feasible and practical.

The remainder of this paper is organized as follows. First, the

*I' VirusTotal offers virus check based on the hash values of executables.

© 2018 Information Processing Society of Japan

problem statement is given in Section 2. In Sections 3 and 4,
we respectively describe core concepts and the proposed archi-
tecture. In Section 5, we propose metrics to measure the degree
of information disclosure caused by exchanging classifiers. We
describe an initial implementation in Section 6 and evaluate its
performance in Section 7. The limitations of the proposed ar-
chitecture are discussed in Section 8, related work is reviewed in
Section 9, and conclusions are given in Section 10.

2. Problem statement

Our goal is to build an analysis platform that can leverage se-
curity information without disclosing confidential information.
Here, we first define information provider and analysis organiza-
tion and we describe realistic situations that require sharing attack
information. Next, we define a trust model between the organiza-
tions. We also identify the requirements of a system that would
allow collaboration between the organizations.

2.1 Roles of organizations and situations

Information provider organizations possess information
about the attacks such as malware executables and their activity
logs, phishing emails, etc. An analysis organization examines
the attack information and develops security measures such as de-
tection and protection mechanisms. In the following, we describe
two realistic situations.

Information sharing between security company and cus-
tomers. Collecting malware information is an important task
for security companies because antivirus signatures are gener-
ated by analyzing malware executables. In addition, malicious IP
addresses for communicating with command and control (C&C)
servers can be identified through dynamic analysis of malware
communication methods. Thus, companies that provide antivirus
products want to use customer information to improve the signa-
tures of their antivirus detection engines. However, some organi-
zations such as government and military organizations refuse to
share attack information because confidential information could
be revealed. Moreover, many security companies sell products
globally and it is unknown whether an organization in one coun-
try can disclose malware information to a security company in
another country. Moreover, communication logs are likely to con-
tain data stolen from the organizations.

In this case, the analysis organization corresponds to antivirus
vendor, and the information provider organizations correspond to
its customers.

Information sharing among security companies. Security
companies are reluctant to share information because relative to
generating antivirus signatures, such information provides a com-
petitive advantage and sharing information could impact profit
margins. However, security companies must collaborate when
an attack causes serious damage to many systems. For example,
Japanese security companies Internet service providers, and the
government have collaborated in the Cyber Clean Center project
to identify malicious bots [1].

In this case, the analysis organization corresponds to a collab-
orative organization such as ISAC, and the information provider
organizations correspond to security vendors.

Electronic Preprint for Journal of Information Processing Vol.26

2.2 Trust model

Here, we define a trust model between the information provider
and analysis organization. We assume that information provider
organizations do not want to disclose confidential information but
they are motivated to contribute to the analysis organization. For
example, improving a security product benefits both the company
and its customers. Note that we make the following assumptions
relative to this trust model. We assume that information provider
organizations are honest and do not provide false information.
We also assume that the analysis organization is honest and does
not intentionally attempt to obtain an information provider’s con-
fidential information.

We further assume that the communication channels between
the analysis and information providing organizations are en-
crypted using SSL/TLS or other secure protocols. We do not con-
sider information leaks caused by a third party, e.g., an adversary
who steals an organization’s information. In addition, we do not
consider the possibility that there may be malicious insiders in
both organizations.

2.3 Requirements

The overall goal of this study is to provide a system that satis-
fies the following requirements.

Requirement 1. Information provider organizations should be
able to share attack information with an analysis organization
without disclosing confidential information. Confidential infor-
mation could be revealed in the analysis of malware executable,
communications between malware and C&C servers, and mal-
ware activity logs that may contain information about the target
systems. For example, Stuxnet can automate an attack because
the network of a SCADA system for uranium enrichment is iso-
lated from the Internet. To attack such an isolated system, the
automation function would contain an internal structure of the in-
frastructure. Note that different types of confidential information
and these examples are discussed in Section 2.4.

Requirement 2. The analysis organization should be able to
aggregate information provided by information provider organi-
zations and develop a countermeasure based on the aggregated
information. The countermeasure should cover all attack vectors
observed by information provider organizations.

Requirement 3. To reduce attack analysis costs, the system
should perform the above tasks automatically.

2.4 Example of confidential information used for defense
mechanisms
Here, we discuss confidential information used for defense
mechanisms.
2.4.1 Confidential information shared between security
company and customers
Here, we consider malware targeting general victims and mal-
ware targeting a specific organization (e.g., a spear attack). To
improve the likelihood of success, the malware would contain
organization-specific information, such as the following.
e The malware would contain information of the victim or-
ganizations. For example, an author of Stuxnet studied tar-
get systems comprising computers and a SCADA system in-

© 2018 Information Processing Society of Japan

cluding PLC. To attack systems isolated from the Internet,
Stuxnet has an attack automation function based on the ac-
tual system design. Obviously, sharing such malware dis-
closes the targeted system’s information.

e Malware activity logs could include system architecture in-
formation because malware typically scans the infected sys-
tem’s internal network to facilitate lateral movement. The
activity log may also include file names and content, which
could reveal internal organization information. System ad-
ministrators and incident response team members could re-
move confidential information from malware activity logs,
however this requires significant time and effort.

e Infected emails contain organizational information, such as
divisions and teams names. Moreover, they include the re-
cipient’s name and affiliation. Recently, there have been
sophisticated targeted attacks where the attacker exchanged
several emails with the victim to build a relationship of trust.
Once a relationship of trust is established, the attacker sends
an email with malware. In this case, the body of the email
contains information about the victim’s organization.

In the non-spear type attacks, e.g., malware against general
targets, the malware does not contain confidential information.
However, typically, information provider organizations do not
have security experts; thus, they cannot differentiate general mal-
ware attacks and attacks that target a specific organization. Thus,
they cannot determine whether the malware information should
be shared. Therefore, a confidentiality-preserving method is re-
quired for both types of attacks.

2.4.2 Confidential information shared among security com-
panies

In this case, the malware itself is the confidential information.
Antivirus vendors want to improve their products’ detection ra-
tio. Thus, malware information that directly affects the detec-
tion ratio is important. Moreover, most antivirus vendors invest
in malware collection systems. For example, vendors offer on-
line virus submission forms and their antivirus products include
a function to upload suspicious programs [5], [6], [7]. Thus shar-
ing attack/malware information with a competitor would not be
advantageous and could reduce their return on investment.

3. Core concepts

In this section, we propose core concepts considered to sat-
isfy the requirements. For information sharing (Requirement 1),
inspired by privacy protection techniques, we propose a concept
to abstract information to be shared. To aggregate the organiza-
tion’s attack information (Requirement 2), we propose a concept
that leverages ensemble learning techniques.

3.1 Confidentiality-preserving information sharing

We can identify a similar problem in the privacy protection
field, e.g., privacy-preserving data mining. In this case, an orga-
nization is motivated to utilize privacy data to improve services.
However, such information must be protected and not revealed
outside the organization. To ensure privacy protection, the infor-
mation is made anonymous prior to sharing.

K-anonymity [34] ensures that k-persons have the same at-

Electronic Preprint for Journal of Information Processing Vol.26

tribute set; thus, it is not possible to identify a specific person
in the attribute set. Prior to sharing privacy data, the database
owner must anonymize the data to ensure that the k-anonymity
degree is greater than a given threshold.

Differential privacy [17] has been proposed to control privacy
disclosure when querying a database. The concept of differen-
tial privacy is that, if the data are relatively common, the privacy-
degree of the data is low. For example, if an analyst sends a query
to the two independent databases and the results are the same, it
is assumed that the results do not contain privacy information,
otherwise, the database is considered to have disclosed privacy
information.

We can adopt a similar approach to share information between
the information provider and the analysis organizations, wherein
we send the information provider’s malware information to the
analysis organization via an information abstraction process.

Concept 1. Inspired by privacy-preserving techniques, we pro-
pose the following system model.

e The analysis organization sends an analysis template that
corresponds to a query in differential privacy to information
provider organizations.

e Information provider organizations use their attack informa-
tion to train classifiers and return the classifiers to the analy-
sis organization. Here, the analysis results are abstracted as
trained classifiers, thus the results do not contain confidential
information. This analysis step corresponds to anonymiza-
tion (noise addition) in differential privacy and k-anonymity
approaches.

3.2 Collaborative defense mechanism using ensemble learn-
ing

Ensemble learning is a technique to build a classifier from
weak classifiers by aggregating their decisions. Bootstrap aggre-
gation (bagging) employs majority voting of classifiers, each of
which is trained using different dataset. Bagging reduces bias-
variance caused by bias in the training datasets. In a discrete case
(classification case), outputs are calculated based on majority vot-
ing by the classifiers. In a non-discrete case (regression case),
bagging uses the average values of the classifiers as follows.

1
H) = > () (1)

where T is the number of classifiers and /,(x) is the decision of
classifier A;.

The bagging dataset is generated by bootstrap sampling which
selects data randomly from the entire dataset to create sub-
datasets. Note that bootstrap sampling allows overlap between
the sub datasets created from the entire dataset.

Concept 2. Each information provider organization has its
own malware dataset that is part of a global malware dataset.
Therefore, this is similar to bootstrap sampling. Thus, we em-
ploy the bagging technique to combine the output of the classi-
fiers trained in consideration of concept 1.

4. Architecture

Based on the above concepts, we design the proposed archi-
tecture to enable collaborative analysis. Various types of attack

© 2018 Information Processing Society of Japan

Analysis organization

ggregated
Classifier

Fig. 1 Architecture for collaborative malware detection.

Organization .\/C@
Templat
/ rained N /
/ ssifier /\\ N

(6/, i
Malwares

- \
N\ ained /
N\ assifier

\\{ Organization |
i}

Ensemble

learning

analysis have been proposed such as malware analysis, incident
analysis (forensic), and adversary analysis (investigation of at-
tackers). Note that each type of analysis requires different tech-
niques. However, we focus on malware detection in this paper
and we embody the concepts as an architecture by performing
the following steps (Fig. 1).

e The analysis organization sends a non-trained classifier as
a template to the information provider organizations (Sec-
tion 4.1.1).

e FEach information provider organization trains the classifier
and returns the trained classifier to the analysis organization.
Note that the information provider organization provides the
trained classifier rather than raw attack information, which
is essentially confidential information (Sections 4.1.2 and
4.1.3).

e The analysis organization builds a combined classifier from
the classifiers trained by the information provider organiza-
tions (Section 4.1.4).

Here, we discuss two problems, i.e., malware detection to de-
termine if a binary is malware or a normal application and mal-
ware family classification when a malicious executable is given.

Malware detection. This is a two-class classification prob-
lem to determine whether a given executable belongs to a set of
normal/legitimate software or a set of malware. This problem is
formalized as outlier detection that models the normal behavior
of a system and considers anomalies as attacks.

Note that the proposed architecture does not fit this problem
because what constitutes normal behavior differs between orga-
nizations. For example, each organization has its own CRM, web
servers, etc., so normal behavior cannot be defined across dif-
ferent organizations. Therefore, it is expected that a classifier
trained by an organization would mistakenly recognize the nor-
mal behaviors of other organizations as anomalies, thereby caus-
ing false positives. Thus, in this paper we focus on the malware
family classification problem.

Malware family classification. This is a multi-class classi-
fication problem, where a classifier identifies a malware family
from multiple malware families when a malware is given.

Adversaries develop many malware variants for various rea-
sons, e.g., to update functionality, fix bugs, or reuse code from
different malware authors. Malware source code is sometimes
disclosed. For example, the Mirai source code was made open-
source [4], and attackers can use this code to create their own
malware. Moreover, even if the source code is not disclosed, at-
tackers can extract part of an executable and merge the code into
their own malware. Malware family classification helps security
engineers develop countermeasures because an effective protec-

Electronic Preprint for Journal of Information Processing Vol.26

List 1: Sample template

{

"features":[
"pe_imports",
"file_read"

1,

"classifier":{
"name": "SVM",
"kernel": "rbf"

C % u U B oW o —

tion method would be common for variants of a given malware
family.

In the following, we focus on the malware family classification
problem.

4.1 Details of the proposed architecture

Here, we detail the steps of the proposed architecture.
4.1.1 Classifier template distribution

First, the analysis organization distributes a template that spec-
ifies a method to extract features from malware. The template
also specifies a classifier and its pre-defined parameters. The tem-
plate comprises the following:

e A feature extraction template specifies static or dynamic

analysis and its parameters to extract features.

e A classifier template specifies the classifier type. It also
specifies classifier’s parameters. For example, with a neu-
ral network, the classifier template specifies the number of
layers, the number of units in the layers, and the learning
rate.

List 1 shows an example template. It specifies imported li-
braries (pe-import) and files read by the malware (file_read)
as features. The template also specifies a support vector ma-
chine (SVM) as the classifier and a classifier parameter indicating
the use of a Gaussian kernel (rbf).

4.1.2 Feature extraction

Feature extraction is performed based on static and/or dynamic
analysis. The feature extraction logic is predefined and the pro-
gram used to extract features is distributed to the information
provider organization from the analysis organization in advance.

Note that we employ existing feature extraction methods [10]
and do not claim to make any contributions relative to feature ex-
traction. To extract features by static analysis, we leverage the
general features of an executable. For example, we can use statis-
tics of API calls, disassembled order sets, call graphs, control
flows, and executable metadata (file size, ELF/PE header infor-
mation, etc.). For the dynamic analysis, we can also use general
features such as API calls, file accesses, and network access. Ah-
madi et al. have summarized various features [10], and we can
use such features as follows.

There are two types of features generated by static analysis.
One type is byte-code level features that are extracted directly
from the malware. The other type is operation code (op-code)
features which are extracted using a disassembler and have more
semantic meaning compared to byte-code level features

Byte code level features.

e N-gram of binary that counts the number of specific patterns.

© 2018 Information Processing Society of Japan

In a case where N = 1 (i.e., a I-byte monogram), the input is
a vector with 2% dimensions, each of which shows the num-
ber of patterns in the binary.

e File metadata (file size, an address of first executable code,
etc.).

e Image generated from byte code. Ahmadi et al. have pro-
posed a technique to convert a binary executable to a gray-
scale figure which is then used as the input for the image
classification methods.

Op-code level features. Disassemble code (op-code) can also
be used as a classifier features. A previous study [10] introduced
the following features.

e Counts of op-codes (op-code distribution) such as the
number of arithmetic operations and control operations
(cmp&jmp, call, etc.).
promising for malware family classification because mal-

These features are particularly

ware in a family has similar op-code distribution due to code
reuse.

e Counts of system calls (e.g., exec, fork, read, and write
calls). The events of API calls such as libc and libssl can
also be used as input features.

e Call graph and control flow which represent how a program
calls subroutines, functions, and external code. Differ from
op-code counts and system calls, call graphs and control
flows reflect the overall structure of a program because it
is expressed as a graph.

o Constant values and strings used in executables. Malware
often contains unique features, e.g., an encryption key, the
URLs of C&C servers, and command lists that the malware
supports. Moreover, file names and registry keys are hard-
coded as constant strings.

Dynamic analysis. We also use features collected by running

the malware and monitoring the malware’s behavior.

e Access events on local computer resources such as files and
processes (IPC).

e Access events on network resources in HTTP, DNS, and IRC
communications.

In the proposed architecture, there is no limitation relative to
feature extraction, thus we should select the best features. For ex-
ample, the winner of a malware classification challenge [3] used
byte-code counts (2-, 3-, and 4-gram), segment counts, single
byte frequencies, function names, etc.

4.1.3 Training classifier

After extracting features, each information provider organiza-
tion trains a classifier according to the template. The organization
sets up the classifier such as a neural network, SVM, or decision
tree, and also sets learning parameters according to the template.
Here we assume periodic exchange of the classifier at interval 7,
e.g., weekly and monthly. Each organization trains the classifier
using newly captured malware in period 7.

4.14 Classifier aggregation

Once the analysis organization receives trained classifiers from
the information provider organizations, the analysis organiza-
tion combines the classifiers using ensemble learning techniques.
Some ensemble learning techniques calculate the best weights
of the classifiers to minimize error in the combined result by

Electronic Preprint for Journal of Information Processing Vol.26

weighted average. However, to calculate weights, the analysis
organization must possess training data. Therefore, the proposed
architecture performs majority voting and does not employ the
weighted average.

To perform majority voting, malware names must be shared
among organizations. We discuss this issue in the Appendix.

5. Information disclosure metric

Here, we investigate information disclosure caused by ex-
changing trained classifiers. Specifically, we answer the fol-
lowing fundamental questions about the proposed architecture.
How do classifiers disclose information? How can we formalize
and measure the disclosed information caused by exchanging the
classifier? How can we mitigate or reduce information disclosure
by exchanging classifier?

To answer these questions, we categorize the possibilities of
information disclosure into three cases: classifier output, i.e.,
hyperplane in the feature vector space (Section 5.1); classifier
parameters (Section 5.2); and reconstruction of classifier inputs
(Section 5.3). Then, we discuss the above questions relative to
each case.

5.1 Classifier output

As discussed in Section 4, a similar situation can be found in
differential privacy cases. Specifically, a query and its result in
differential privacy respectively correspond to a classifier tem-
plate and a trained classifier in the proposed architecture. Here,
we define a metric based on differential privacy concept. Differ-
ential privacy is described using the following equation.

In(Pr(K(D1) = x) —In(Pr(K(D2) =x) < € 2)

where Pr() denotes a probability density function, and D1 and D2
denote databases whose one entry differs from another database.
K() represents database outputs modified by a privacy protec-
tion mechanism, and x denotes the output of the database. € is
a threshold that specifies the degree of privacy information dis-
closure. Inspired by differential privacy, we propose a metric to
describe the degree of information disclosure by a classifier.

In(C1(x)) — In(C2(x)) < € 3)

Here, x is an input vector of a classifier and C(x) is an output of
a classifier considered as a probability density. Specifically, C1
is a classifier trained by an organization and C2 represents con-
verged classifiers. This equation means that if the trained classi-
fier is similar to another classifier, it is assumed that the classifier
does not contain much confidential information. Of course, the
confidential protection degree (a low threshold is better) and use-
fulness of the classifier (a high threshold is better) form a trade-
off relationship because a useful classifier will necessary contain
unique information.

Note that there are two options if the trained classifier does not
meet the threshold. One is giving up disclosing the classifier, and
the other is adding noise, which is similar to differential privacy
adding Laplace noise. However, this noise introduces false posi-
tives and false negatives, thus we give up disclosing the classifier
over the threshold.

© 2018 Information Processing Society of Japan

Probability Density Classifier A

Feature X

Fig. 2 Differential-privacy like metric.

Feature Y

Feature Y Range
of Training Data

Feature X

Fig.3 L-divercity like metric.

There is another metric in the study of privacy, i.e., L-diversity.
L-diversity expresses the number of attribute candidates when a
person in a group is given. For example, if a person belongs to a
group of North America citizens, the address for the person can
be expected to be in Canada, the U.S.A, or Mexico. An area in-
side a hyperplane in the proposed architecture corresponds to a
group in L-diversity (Fig.3). A small hyperspace means that the
classier was trained using malware with the specific feature val-
ues and a large hyperspace means that there are many possible
feature values in the training data. Therefore we can define the
volume of the hyperspace as an information disclosure degree.
In the example of Fig. 3, classifier A discloses specific malware
features compared to classifier B.

The above metrics work when the feature space is not large. In
Figs. 2 and 3, there are one or two features; thus we can evalu-
ate the differences of the two classifiers for the first metric and
the volume of the hyperplane for the second metric by making
a grid search over the entire feature space. However, for a large
feature space, we cannot perform a grid search due to the large
search space. Note that metrics for a large feature space will be
the focus of future space.

5.2 Classifier parameters

In some types of classifiers, training data can be inferred
from the classifier’s parameters. For example, a decision tree,
which comprises automatically generated if-then rules, can re-
veal training data because the if-then rules represent human-
understandable logic that separate the hyperspace using a thresh-
old of the features. Specifically, we assume the following deci-
sion logic.

If an executable contains the “sales division” string,
then if the potential malware contains “John Smith”,
it is considered malware.

Electronic Preprint for Journal of Information Processing Vol.26

Training
Data
Compare ‘

Reconst
ructed | = - Malware
Data Decision

Fig. 4 Feature reconstruct.

Classifier

This decision tree would disclose that there is an employee
named John Smith in a sales division.

A Bayesian filter would also disclose the training data. A
Bayesian filter is based on a probabilistic distribution of words
in a document and it calculates the total score from each word
score. Therefore, a Bayesian filter would contain specific words
that are confidential. Specifically, a likelihood is calculated using
[T P(w;]S) that means the probability of word w; when document
S is given. This parameter discloses feature w;.

Note that we do not have a clear mitigation method for this
problem. We recommend complex classifiers such as multi layer
neural network rather than classifiers that disclose decision logic
(i.e., decision tree and a Bayesian filter).

5.3 Reconstruct training data from trained classifier
DCGAN [31] has shown that the human face can be regen-
erated/reconstructed from compressed feature vectors, which
means that the classifier (an autoencoder in DCGAN), would be
able to regenerate original training data from the likelihood of a
malware. In addition to the deep neural network, a Bayesian net-
work would infer input from its output in a probabilistic manner.
To measure this type of information disclosure, we define a
metric using the similarity between the training data (original
attack information) and the reconstructed input from the classi-
fier (Fig.4). Similarity can be defined by cosine similarity, edit
distance, and Jaccard distance, and if the similarity is less than
threshold e, the trained classifier is discarded and not disclosed.

6. Implementation

Here, we discuss prototype implementation.

6.1 Feature extraction and classifier training

For the classifier training, we used scikit-learn 1.8 and its SVM
and neural network packages. We wrote a Python script that reads
a template file and loads specified features from a dataset. Then,
the script imports the classifier package specified by the template
and trains the classifier using these features.

6.2 Aggregating trained classifiers

For simple implementation, we employ a majority voting func-
tion to ensemble classifiers. We input the same test data into the
classifiers and selected the label predicted by the greatest number
of classifiers.

7. Evaluation

To evaluate the proposed architecture, we answer the following
research questions.
e [s classification accuracy improved by classifier aggrega-

© 2018 Information Processing Society of Japan

tion? To answer this question, we compared accuracy by
changing the number of classifiers.

e How much does detection performance degrade due to the
confidentiality-preserving approach? To answer this ques-
tion we compared the detection ratios of the proposed
method and a directly trained classifier that does not preserve
malware information.

e [s the proposed method scalable? To answer this question,
we measured the classification processing time by varying
the number of organizations and the sample size.

7.1 Classification accuracy

To evaluate classification accuracy, we used a malware
set [2]*2 that contains 292 APT1 samples, 434 Locker Samples,
and 2,014 Zeus samples. We evaluated classification accuracy by
varying the number of information provider organizations. Here,
we assumed five information provider organizations, where each
organization had 1/5 of the total number of malware samples in
the training samples. The samples were shuffled randomly and di-
vided into five groups for five organizations. Then, we evaluated
the performance of one classifier corresponding to one organiza-
tion, an aggregated three classifiers corresponding to a collabo-
ration of three organizations, and an aggregated five classifiers
corresponding to a collaboration of five organizations. We also
evaluated a classifier trained using the full dataset without con-
fidentiality preservation, which corresponds to a situation where
the analysis organization collects raw malware information and
trains the classifier using those data.

For feature extraction, we used the pe_imoprt feature, which
identifies the dynamic link libraries imported by a malware. We
selected well-used libraries in the dataset and converted the fea-
ture into a vector using one-hot encoding. Here, we selected li-
braries used more than 20 times and the number of libraries (i.e.,
the length of the feature vector) was 5,439.

With the above dataset, we evaluated the accuracy using the
SVM and neural network provided by scikit-learn library. For the
SVM, we used the svm.SVC class. Note that an SVM with an
RBF kernel only has two parameters, i.e., penalty parameter C
and kernel coefficient y; therefore, we performed a grid search
to find the best parameters. For the penalty parameter C, we
searched 1, 10, 100, and 1,000, and for the kernel coefficient y,
we searched 0.1, 0.01, 0.001, and 0.0001. We selected penalty pa-
rameter C = 100 and kernel coefficient y = 0.01, which produce
the best accuracy. For the neural network, we used the MLPClas-
sifier class. A neural network involves many parameters, such
as the number of layers, the neuron size of each layer, and the
penalty; thus, a grid search is impractical. Therefore, we used
the default parameter values of the MLPClassifier class. To help
the convergence, we set the maximum number of iterations to
100,000.

Tables 1 and 2 respectively show the confusion matrix of
the SVM and neural network. Here, we measured 10 times
and calculated the average. For each measurement we reshuf-
fled the samples by changing the random seed and created five

*2 This dataset also contains Locker and other malware, but we use top 3

families in the dataset for simple evaluation.

Electronic Preprint for Journal of Information Processing Vol.26

Table 1 Confusion matrix (SVM).

(a) Confusion matrix of full data set
(Accuracy=0.955)

(b) Confusion matrix of 1 organization classifier
(Accuracy=0.904)

Aptl | Crypto | Zeus Aptl | Crypto | Zeus

Aptl 137.1 35 6 Aptl 123.4 3.4 19.8
Crypto 2.3 182.3 29.2 Crypto 4.0 127.6 82.2
Zeus 2.0 16.5 939.1 Zeus 2.8 14.4 940.4

(c) Confusion matrix of aggregated 3 organization classifiers
(Accuracy=0.916)

Aptl Crypto | Zeus

Aptl 127.3 2.5 16.8
Crypto 5.0 131.9 76.9
Zeus 0.6 8.5 948.5

(d) Confusion matrix of aggregated 5 organization classifiers
(Accuracy=0.922)

Aptl Crypto | Zeus

Aptl 127.2 33 16.1
Crypto 34 142.7 67.7
Zeus 0.6 11.9 945.1

Table 2 Confusion matrix (Neural network).

(a) Confusion matrix of full data set
(Accuracy=0.958)

(b) Confusion matrix of 1 organization classifier
(Accuracy=0.915)

Aptl Crypto | Zeus Aptl Crypto | Zeus

Aptl 138.2 2.4 6.0 Aptl 127.4 2.9 16.3

Crypto 1.5 179.0 333 Crypto 5.1 136.0 721
Zeus 1.7 10.6 945.3 Zeus 2.6 11.9 943.1

(c) Confusion matrix of aggregated 3 organization classifiers
(Accuracy=0.927)

Aptl Crypto | Zeus
Aptl 129.7 2.3 14.6
Crypto 6.0 144.4 63.4
Zeus 0.7 8.8 948.1

groups. In Tables 1 and 2, each row shows the classifier deci-
sions and each column shows the ground truth provided by the
dataset. Therefore, diagonal elements represent the number of
correct classifications and non-diagonal elements represent incor-

rect classifications. We also show accuracy which is calculated as

TrueClassifications
TrueClassificatons+FalseClassifications *

The results demonstrate that classification accuracy is im-
proved when information from multiple information provider or-
ganizations is used. Thus, our collaborative mechanism with en-
semble learning improves the accuracy. For example, as shown
in Table 1, the classifiers accuracy was 0.904, 0.916, and 0.922
when using the data of one, three, and five organizations, re-
spectively. However, the classification accuracy of the classifier
trained using the full dataset without confidentiality preservation
was 0.955, which is better than that of the aggregated classi-
fiers. This difference in accuracy is a drawback caused by our
confidentiality-preserving techniques. Nonetheless, we conclude
that the proposed architecture works and provides better classifi-
cation capability to the analysis organization.

In the above evaluation, we assumed three and five organiza-
tions and three malware families. Relative to the number of or-
ganizations, larger numbers are better for accuracy. However, the
evaluation results demonstrate that the proposed approach is ef-
fective even with three organizations. Relative to the number of
malware families, it is expected that classification accuracy dete-
riorates as the number of malware families becomes larger. This
is a general problem with machine learning-based classification
and will serve as a focus for future work.

7.2 Scalability
To evaluate the scalability of the proposed architecture, we

© 2018 Information Processing Society of Japan

(d) Confusion matrix of aggregated 5 organization classifiers
(Accuracy=0.929)

Aptl | Crypto | Zeus

Aptl 128.9 2.7 15.0
Crypto 4.2 147.5 62.1
Zeus 0.9 9.1 947.6

— @& 1organization —&—3 organizations

--8--5 organizations —e—Full data -

T = N
o u o

Processing Time (Sec)

w

1500
Sample Size

Fig.5 Processing time.

measured the processing time of classification at the analysis or-
ganization.

In this evaluation, we examined cases with one, three, and five
organizations, as well as a case without confidentiality preserva-
tion. In these four cases, we varied the sample size from 100
to 1,300 and measured the processing time. Here, we used a
VirtualBox VM with 4 GB memory and two assigned CPUs (i5-
6360U, 2.00 GHz). We also used Ubuntu 16.04 and the SVM
classifier provided by scikit-learn 1.8. We measured processing
10 ten times and calculated the average.

Figure 5 shows the results. The processing times of all cases
are proportional to the number of samples to be classified. The
processing time is also proportional to the number of organiza-
tions. The reason for this in the case of one organization is that
only a classifier is used, however in the multiple-organization
case, multiple classifiers must be used. Using the full data with-
out confidentiality preservation, there is only a single classifier,
however the processing time is longer than that of the single orga-

Electronic Preprint for Journal of Information Processing

4 T T
SVM —+—
3.5 - Neural Network k!
e 3 b
2
5 25 4
2
a
c 2 [~ 7
8
g 151 B
s
£ 1r -
0.5 W
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Ratio of non-overlapped data

Fig. 6 Information disclosure degree.

nization case, which also uses a single classifier. Here, we expect
that the hyperplane of the classifier becomes complex. In other
words, the number of support vectors becomes large compared to
the single organization case due to the difference in dataset size.

The above results demonstrate that the processing time is pro-
portional to sample size and the number of organizations. To
reduce processing time, we can adopt a multi-processing strat-
egy because the classifications of each sample are independent
of each other. Therefore, we conclude that the proposed archi-
tecture is scalable and works even if sample size or number of
organizations is large.

In the above evaluation, we assumed the sample sizes of each
organization were equal, however in real-world situations, there
are differences in such sample sizes. We expect that the impact of
such deviations would be small because processing only requires
a few dozen seconds in the above evaluation. Even if the sample
size were to increase by two orders of magnitude, the classifica-
tion processing of all malware would finish in one hour.

7.3 Information leakage metric

Next, we evaluated the information disclosure caused by clas-
sifier exchange. Figure 6 shows the information disclosure de-
grees calculated based on differential privacy-like metric (Eq. (3);
Section 5.1). We calculated the degree of information disclosure
using the following equation.

2xex Zier | In(C1i(x)) — In(C2;(w)) |
[X7

“

Here, X is the test dataset and / represents the classes (APT1,
Crypto, and Zeus). We evaluated the exchanges of the SVM and
neural network by changing the training dataset. In Fig. 6, the
x-axis of shows the overlap of the training dataset (O means two
classifiers were trained using the same data; 1 means the clas-
sifiers were trained using a completely different dataset). The
results show that a dataset with unique data results in a greater
degree of information disclosure.

Here, the meaning of the disclosure degree value remains a
problem. For example, what does “0.5” disclosure mean? De-
veloping a method to determine a proper information disclosure
threshold will be the focus of future work.

8. Discussion

8.1 Applicability to other attack information
In the previous section, we focused on the malware classifica-

© 2018 Information Processing Society of Japan

Vol.26

tion using malware features, however attack information is not
limited to such malware features. Therefore, here, we discuss the
applicability of the proposed architecture to other types of attack
information. The proposed architecture shares classifiers; thus,
theoretically, it can be applied to a defense mechanism using the
classifiers. We identify the following use cases that the proposed
architecture can be applied to.

Phishing email detection. Classifiers are also used to deter-
mine phishing emails [18], [38]. In this case, the attack infor-
mation is the content of the body of an email, such as links and
words. We can aggregate classifiers that learn phishing emails
received by each organization.

Malicious HTTP request detection. Methods to distinguish
normal and application layer attacks have been proposed previ-
ously [25], [29]. These methods use SVM classifiers to learn the
features of HTTP Get requests, such as keywords in the requests,
which correspond to attack information. By aggregating classi-
fiers, organizations can efficiently differentiate between malicious
and legitimate requests.

Insider threat detection. Attacks can come from internal
sources, such as malicious employees. Mayhew et al. proposed
a method to detect insider threats using machine learning [26].
They use email exchanges and HTTP requests as features, which
correspond to attack information, and these features can contain
an organization’s confidential information. The proposed archi-
tecture contributes to sharing such information without disclosing
raw information.

8.2 Exchanging classifier vs exchanging input features of
classifiers

Features extracted from attack data are abstracted and do not
contain the original data, however, features sometimes can dis-
close part of the original data. For example, if the feature is a
string in the malware binary, it may contain target information
about hosts/servers. Moreover, some classifiers such as Bayesian
network must disclose the original data, e.g., the words in an
email that carries a malware. Therefore, we exchange classifiers
rather than input features.

8.3 Packed and evasive malware

There are some techniques to block malware analysis: mal-
ware packing and evasion techniques. Such techniques disturb
achievement of Requirement 3 (automatic analysis) defined in
Section 2.3.

Malware packing is an obfuscation technique that encodes a
malware executable to avoid detection by antivirus scan engines.
Specifically, packed malware is encoded, and at the beginning of
malware execution, the unpack routine decodes the malware ex-
ecutable and invokes the malware body. There are many types
of packers such as UPX, NsPack, and ASpack, which make au-
tomated unpacking difficult. However, we can use existing au-
tomated unpacking techniques [33] to address this issue. Even if
automated unpacking is unavailable, we can employ a dynamic
analysis that does not require unpacking. In this case, the infor-
mation provider organization only sends a classifier trained using
dynamic analysis features.

Electronic Preprint for Journal of Information Processing Vol.26

Evasive malware is also a problem relative to automated fea-
ture extraction. To evade malware analysis, recent malware in-
cludes a sandbox detection function and the malware terminates
if it detects a sandbox [24], [36], [39]. For example, the malware
checks various hardware features such as NIC devices which are
often emulated. To handle this type of malware, we can use bare-
metal analysis [22] which does not require a sandbox. Another
solution is nEther [30]. To achieve high transparency, nEther pro-
vides out-of-the-guest malware analysis using hardware virtual-
ization.

8.4 Anonymity of information provider organization

The proposed architecture does not disclose attack informa-
tion, however it reveals who joins a collaboration. Some orga-
nizations do not want to disclose the source of the attack infor-
mation in addition to the attack information itself. To satisfy this
requirement, the proposed architecture could employ anonymiza-
tion mechanisms to remove linkability between the organization
and attack data to ensure pseudonymity. We can use existing
techniques [23] to achieve this. However this topic is beyond the
scope of this paper.

8.5 Confidentiality vs Usefulness

In privacy protection, the privacy and usefulness of data form
a trade-off relationship. A strong differential privacy protection
threshold makes the database outputs the same. We can find
the same trade-off in our confidentiality-preserving mechanism.
For example, when all information provider organizations require
strong confidentiality thresholds, all trained classifiers become
the same.

Obviously, the best value for this threshold depends on the re-
lationship between the information providing and analysis orga-
nizations. For example, between a security vendor and its cus-
tomers, the threshold can be loosely based on a loose agreement.
On the other hand, between security companies in a competitive
relationship, the threshold should be strict.

In the future, to determine the best confidential-preserving
threshold value, we will investigate actual use cases involving
the proposed architecture in order to propose best practices for
various situations.

8.6 Confidentiality of trained classifier

There is an argument about whether the trained classifier itself
is in fact confidential. Our answer is “no” because the proposed
architecture measures the degree of information disclosure and
shares the classifier only if the degree of disclosure is below a
certain threshold.

8.7 Application to VirusTotal model

Here, we discuss application of the proposed architecture to a
VirusTotal information sharing model.

VirusTotal provides two services; One is a virus scan service,
where users upload suspicious files to VirusTotal, which then
scans the files using and more than 40 virus scan engines. Note
that this service is free and accessible by anyone. The other
service is information sharing for antivirus vendors and security

© 2018 Information Processing Society of Japan

companies. The VirusTotal “About” page states “Files and URLs
sent to VirusTotal will be shared with antivirus vendors and secu-
rity companies so as to help them in improving their services and
products.”

Currently, VirusTotal users do not seem overly concerned
about confidential information in the uploaded files or do not
know that the uploaded files are shared even though informa-
tion sharing is identified on the VirusTotal submission page. Sur-
vey studies about VirusTotal [13], [27] have reported many doc-
uments are used as decoys, which may contain confidential in-
formation about the target organizations. It was reported that the
decoy documents contain data related to the business of the target
organizations that can be used to attract the document recipient.

We do not expect the VirusTotal model to continue being used
in the future due to document confidentiality concerns. In fact,
some organizations do not allow employees to use VirusTotal,
therefore, we must investigate other information sharing models.

In the VirusTotal information sharing model, the proposed
architecture can be deployed between VirusTotal and its cus-
tomers. In this context, VirusTotal corresponds to the information
provider organization and the customers correspond to the analy-
sis organizations. In this model, users upload confidential infor-
mation to VirusTotal; however VirusTotal does not disclose the
confidential information to their customers because it provides
the classifiers to its customers. The customers can aggregate their
classifier and the classifier given by VirusTotal to achieve better
classification.

Here, a limitation is that VirusTotal customers receive a clas-
sifier; thus, they cannot conduct detailed analysis using malware
binaries, which reduces customer motivation to use VirusTotal.
Note that the VirusTotal case is a single example. The proposed
architecture can also be applied to the models described in Sec-
tion 2.1

8.8 Attack against the proposed architecture

Here, we discuss attacks against the proposed architecture.
8.8.1 DoS against the analysis organization

An attacker may perform DoS attack against an interface to ex-
change classifiers. Here, the interface is only used by information
provider organizations; thus, IP filtering should be performed to
prevent DoS attacks against the interface.
8.8.2 Spoofing and falsification of classifier template

An attacker pretending to be a legitimate organization submits
fake classifiers to disturb legitimate analysis. Moreover, if the
attacker can falsify the communication path between the infor-
mation providing and analysis organizations, they can modify the
submitted classifier. Furthermore, the attacker can modify a clas-
sifier template such that the analysis organization cannot aggre-
gate classifiers. To mitigate the above risks, the communication
protocol must support both authentication and encryption (e.g.,
TLS and SSH).
8.8.3 Crafted malware

Information provider organizations train classifiers based on
the template specifying features. If an attacker knows this tem-
plate, they can generate crafted malware with the same feature. In
this case, the classifier cannot distinguish such malware because

Electronic Preprint for Journal of Information Processing Vol.26

the extracted features are the same.

To mitigate these risks, the classifier template should not be
disclosed since this would allow the attacker to know the features
used to train the classifier.

8.9 Malicious organization

In Section 2.2, we assumed that the information provider and
analysis organizations were benign. In contrast, in this situation,
here we assume that one of these entities is malicious.

If an information provider organization is malicious, the orga-
nization would send a fake classifier to the analysis organization.
As a result, the detection performance of an aggregated classi-
fier would be reduced due to the fake classifier. Here, a solution
is to increase the number of information provider organizations
to reduce the effect of the fake classier by the dominant normal
classifiers.

If an analysis organization is malicious, it can attempt to pro-
vide crafted classifier templates to the information provider orga-
nization. For example, a malicious analysis organization sends
many templates, each of which discloses information below the
disclosure threshold; however by aggregating the disclosed infor-
mation, the malicious analysis organization would obtain infor-
mation beyond that constrained by the threshold. This attack can
be detected by the information provider organization by monitor-
ing the classifier templates.

9. Related work

9.1 Malware detection and classification using machine
learning

Many studies have examined detecting and classifying mal-
ware. To cluster malware, FIRMA [32] executes unlabeled mal-
ware and captures traffic such as HTTP, IRC, and SMTP, from/to
the malware. Then FIRMA performs clustering on the traffic. In
the HTTP case, FIRMA uses the URL path, URL parameters, and
HTTP header as features for clustering. Then, FIRMA generates
a signature by extracting high coverage and low false-positive to-
kens from the clusters. DeepSign[16] leverages deep learning
for malware classification. Specifically, a deep belief network,
which is a deep unsupervised network, generates general behav-
ior of malware. DeepSign compresses 20,000 input features to
30 features using an eight-layer network. Then, it outputs a set
of the 30 features as a malware signature. Hassen and Chan pro-
posed a graph-based malware detection method [21] that extracts
a function call graph from an executable and converts the graph
to an input vector by representing the existence of links between
functions. Ahmadi et al. reported features for malware classifica-
tion [10]. They leveraged hex-dump-based and op-code features.
In addition, they analyzed the importance of features based on
“mean decrease impurity” and demonstrated that section infor-
mation and data define (constant values) have greater influence.
They also reported that most of the winners of the malware classi-
fication challenge used the XGBoost technique to aggregate clas-
sifiers trained using different features. Our key idea is informa-
tion sharing by classifier exchange and aggregation; therefore we
can introduce the above techniques to improve the accuracy of
the proposed architecture.

© 2018 Information Processing Society of Japan

Relative to evasive malware (Section 8.3), evasion techniques
and countermeasures have been proposed. Vidas et al. presented
evasion techniques to detect Android sandboxes [36]. They clas-
sified the techniques into four categories: (1) behavior differ-
ences (e.g., differences of API and network behaviors), (2) per-
formance differences (e.g., CPU and graphic performance), (3)
hardware (e.g., CPU type and peripherals), and (4) differences in
software components (e.g., vendor specific software). To detect
evasive malware that detects a sandbox and changes its behav-
ior, BareCloud [22] runs malware in four different environments,
i.e., bare-metal environments: Anubis, which is a QEMU-based
analysis framework, Ether, which uses the Xen hypervisor, and
the Cuckoo sandbox, which uses VirtualBox. BareCloud calcu-
lates the similarity between analysis and bare-metal environments
by comparing system and network activities. Malware with low
similarity is assumed to be evasive malware. The proposed ar-
chitecture and these previous studies form a complementary rela-
tionship, and the proposed architecture can introduce these ideas
to classify evasive malware.

9.2 Cybersecurity information sharing

Several studies have explored information sharing of cyberse-
curity information. Bhatia et al. analyzed privacy risk in cyberse-
curity data sharing [12]. They estimated willingness to share by
administering a survey to security professionals. Their analysis
results show that privacy-sensitive data and potentially confiden-
tial data have low willingness to share. Specifically, password,
username, key-logging data, e-mails, chat history, video or im-
age files, browser history, web sites visited, contact information,
and keyword searches are listed as low willingness data. More-
over, temporary files, application session data, memory data, reg-
istry information, packet data, and sensor data are ranked after the
above privacy-sensitive data, and these data appear to potentially
contain confidential information of the organizations.

Fisk et al. also discussed privacy principles [19] relative to the
least disclosure, qualitative evaluation, and forward progress con-
cepts. For least disclosure, they proposed moderated queries that
can limit trust or query issuers by restricting the query type. In
addition, they proposed a rate limit for queries to control informa-
tion disclosure. Murdoch et al. discussed anonymity and trust in
cybersecurity collaborations [28], and they proposed a reputation
system to balance the trade-off between anonymity (anonymous
information provider) and trust in the information.

Serrano et al. discussed the design of a cybersecurity data shar-
ing system [35] that focused on four problems: policy and le-
gal issues, ontological issues, information sharing across com-
munities, and uncertainty management. Wagner et al. proposed
the Malware Information Sharing Platform (MISP) [37], in which
they defined a data exchange model comprising events, attributes,
and tags. The MISP also supports sharing levels such as orga-
nization only and community only. In addition, Microsoft has
issued a report about a framework for cybersecurity information
sharing [20]. They investigated the basic elements of information
sharing such as the actors, type of information, model and ex-
change method of the information. Moreover, they recommend
a design with privacy protection to respect privacy and civil lib-

Electronic Preprint for Journal of Information Processing Vol.26

erties. Structured Threat Information Expression (STIX) [8] is
a language for exchanging threat information. STIX comprises
eight information fields: campaigns, threat actors, TTPs (Tactics,
Techniques, and Procedures), indicators, observables, incidents,
courses of action, and exploit targets. Each field has its own struc-
ture and is linked to each other. For example, a campaign can be
linked to actors and incidents. In addition, TAXII [9] is a frame-
work to exchange threat information, e.g., information written in
STIX.

Unfortunately, these frameworks do not consider information
exchange without disclosing confidential information. We be-
lieve that the proposed architecture improves the above frame-
works by providing confidentiality-preserving capabilities.

10. Conclusion

Confidential information is a barrier to information sharing
across organizations. To address this problem, we propose a
confidentiality-preserving collaborative defense architecture that
analyzes the incident information without disclosing confidential
information. The key features of the proposed architecture are the
exchange of trained classifiers, e.g., neural networks, rather than
raw attack/incident information and classifier aggregation using
ensemble learning techniques. We implement an initial prototype
and demonstrated that classification accuracy is improved 1.8%
Although

there are remaining issues, e.g., information disclosure metrics,

by aggregating the classifiers of five organizations.

we believe that the proposed architecture will improve collabora-
tive malware analysis across organizations.

Acknowledgments A part of this work was funded by the
Web-based Attack Response with Practical and
Deployable Research Initiative project, supported by the Na-

WarpDrive:

tional Institute of Information and Communications Technology
(NICT).

References

[11 Cyber Clean Center, The Cyber Clean Center project (online), avail-
able from (https://www.telecom-isac.jp/ccc/en_index.html) (accessed
2017-08-10).

[2] Marco Ramilli, Malware Training Sets: A machine learning dataset
for everyone (online), available from ¢http://marcoramilli.blogspot.it/
2016/12/malware-training-sets-machine-learning.html) (accessed
2018-02-10).

[3] Kaggle, Microsoft Malware Winners’ Interview: Ist place, “NO to
overfitting!” (online), available from ¢http://blog.kaggle.com/2015/
05/26/microsoft-malware-winners-interview- 1 st-place-no-to-
overfitting/) (accessed 2017-05-24).

[4] Mirai BotNet (online), available from (https://github.com/jgamblin/
Mirai-Source-Code) (accessed 2017-05-25).

[5] McAfee, Submit a Virus or Malware Sample (online), available from
(https://www.mcafee.com/ca/threat-center/resources/how-to-submit-
sample.aspx) (accessed 2017-05-24).

[6] Symantec, Submit Virus Samples (online), available from
(https://www.symantec.com/security-center/submit-virus-samples)
(accessed 2017-05-24).

[71 TrendMicro, Submitting suspicious or undetected virus for file anal-
ysis to Technical Support using Threat Query Assessment (online),
available from (https://success.trendmicro.com/solution/1031392-
submitting-suspicious-or-undetected-virus-for-file-analysis-to-
technical-support-using-threat-query) (accessed 2017-05-24).

[8] STIX Version 2.0. Part 1: STIX Core Concepts (2017).

[9] TAXII Version 2.0, Working Draft 01 (2017).

[10] Ahmadi, M., Ulyanov, D., Semenov, S., Trofimov, M. and Giacinto,
G.: Novel Feature Extraction, Selection and Fusion for Effective Mal-
ware Family Classification, Proc. 6th ACM Conference on Data and
Application Security and Privacy, CODASPY ’16 (2016).

© 2018 Information Processing Society of Japan

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Avgerinos, T., Cha, S.K., Rebert, A., Schwartz, E.J., Woo, M. and
Brumley, D.: Automatic Exploit Generation, Comm. ACM, Vol.57,
No.2, pp.74-84 (2014).

Bhatia, J., Breaux, T.D., Friedberg, L., Hibshi, H. and Smullen, D.:
Privacy Risk in Cybersecurity Data Sharing, Proc. 2016 ACM on
Workshop on Information Sharing and Collaborative Security, WISCS
’16 (2016).

Blond, S.L., Gilbert, C., Upadhyay, U., Gomez-Rodriguez, M. and
Choffnes, D.R.: A Broad View of the Ecosystem of Socially Engi-
neered Exploit Documents, 24th Annual Network and Distributed Sys-
tem Security Symposium, NDSS (2017).

Brumley, D., Poosankam, P., Song, D. and Zheng, J.: Automatic
Patch-Based Exploit Generation is Possible: Techniques and Impli-
cations, Proc. 2008 IEEE Symposium on Security and Privacy (2008).
Cha, S.K., Avgerinos, T., Rebert, A. and Brumley, D.: Unleashing
Mayhem on Binary Code, 2012 IEEE Symposium on Security and Pri-
vacy (2012).

David, O.E. and Netanyahu, N.S.: DeepSign: Deep learning for auto-
matic malware signature generation and classification, 2015 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp.1-8 (2015).
Dwork, C.: Differential privacy: A survey of results, International
Conference on Theory and Applications of Models of Computation,
Springer, pp.1-19 (2008).

Fette, I., Sadeh, N. and Tomasic, A.: Learning to Detect Phishing
Emails, Proc. 16th International Conference on World Wide Web,
WWW °07, pp.649-656 (2007).

Fisk, G., Ardi, C., Pickett, N., Heidemann, J., Fisk, M. and
Papadopoulos, C.: Privacy Principles for Sharing Cyber Security Data,
2015 IEEE Security and Privacy Workshops (2015).

Goodwin, C., Nicholas, J.P., Bryant, J., Ciglic, K., Kleiner, A.,
Kautterer, C., Massagli, A., Mckay, A., Mckitrick, P., Neutze, J., et al.:
A framework for cybersecurity information sharing and risk reduction,
Technical Report, Microsoft Corporation (2015).

Hassen, M. and Chan, P.K.: Scalable Function Call Graph-based Mal-
ware Classification, Proc. 7th ACM on Conference on Data and Ap-
plication Security and Privacy, CODASPY ’17 (2017).

Kirat, D., Vigna, G. and Kruegel, C.: BareCloud: Bare-metal
Analysis-based Evasive Malware Detection, 23rd USENIX Security
Symposium (USENIX Security 14), pp.287-301 (2014).

Kobsa, A. and Schreck, J.: Privacy Through Pseudonymity in User-
adaptive Systems, ACM Trans. Internet Technol., Vol.3, No.2, pp.149—
183 (2003).

Lindorfer, M., Kolbitsch, C. and Milani Comparetti, P.: Detecting
Environment-sensitive Malware, Proc. 14th International Conference
on Recent Advances in Intrusion Detection, RAID’11 (2011).
Makiou, A., Begriche, Y. and Serhrouchni, A.: Improving Web Ap-
plication Firewalls to detect advanced SQL injection attacks, 2014
10th International Conference on Information Assurance and Security
(2014).

Mayhew, M., Atighetchi, M., Adler, A. and Greenstadt, R.: Use of
machine learning in big data analytics for insider threat detection,
MILCOM 2015 - 2015 IEEE Military Communications Conference
(2015).

Morishima, S.: Analyzing Targeted Email Attacks with Decoy Docu-
ment Collection System, SCIS (2017).

Murdoch, S. and Leaver, N.: Anonymity vs. Trust in Cyber-Security
Collaboration, Proc. 2nd ACM Workshop on Information Sharing and
Collaborative Security, WISCS ’15 (2015).

Ni, T, Gu, X., Wang, H. and Li, Y.: Real-time Detection of
Application-layer DDoS Attack Using Time Series Analysis, J. Con-
trol Sci. Eng., Vol.2013, p.4:4 (online), DOL: 10.1155/2013/821315
(2013).

Pék, G., Bencsath, B. and Buttyan, L.: nEther: In-guest Detection of
Out-of-the-guest Malware Analyzers, Proc. 9th European Workshop
on System Security, EUROSEC 11 (2011).

Radford, A., Metz, L. and Chintala, S.: Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Net-
works, CoRR, Vol.abs/1511.06434 (2015) (online), available from
(http://arxiv.org/abs/1511.06434).

Rafique, M.Z. and Caballero, J.: FIRMA: Malware Clustering and
Network Signature Generation with Mixed Network Behaviors, Proc.
16th International Symposium on Research in Attacks, Intrusions, and
Defenses - Volume 8145, RAID 2013 (2013).

Royal, P., Halpin, M., Dagon, D., Edmonds, R. and Lee, W.: PolyUn-
pack: Automating the Hidden-Code Extraction of Unpack-Executing
Malware, 2006 22nd Annual Computer Security Applications Confer-
ence (ACSAC’06), pp.289-300 (2006).

Samarati, P. and Sweeney, L.: Protecting privacy when disclosing in-
formation: K-anonymity and its enforcement through generalization
and suppression, Technical Report, SRI International (1998).
Serrano, O., Dandurand, L. and Brown, S.: On the Design of a Cyber

Electronic Preprint for Journal of Information Processing Vol.26

Security Data Sharing System, Proc. 2014 ACM Workshop on Infor-
mation Sharing & Collaborative Security, WISCS ’14 (2014).

[36] Vidas, T. and Christin, N.: Evading Android Runtime Analysis via
Sandbox Detection, Proc. 9th ACM Symposium on Information, Com-
puter and Communications Security, ASIA CCS "14 (2014).

[37] Wagner, C., Dulaunoy, A., Wagener, G. and Iklody, A.: MISP: The
Design and Implementation of a Collaborative Threat Intelligence
Sharing Platform, Proc. 2016 ACM on Workshop on Information Shar-
ing and Collaborative Security, WISCS 16 (2016).

[38] Yasin, A. and Abuhasan, A.: An intelligent classification model for
phishing email detection, CoRR, Vol.abs/1608.02196 (2016) (online),
available from (http://arxiv.org/abs/1608.02196).

[39] Yokoyama, A., Ishii, K., Tanabe, R., Papa, Y., Yoshioka, K.,
Matsumoto, T., Kasama, T., Inoue, D., Brengel, M., Backes, M. and
Rossow, C.: Sandprint: Fingerprinting malware sandboxes to provide
intelligence for sandbox evasion, Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), Vol.9854 LNCS, pp.165-187, Springer
Verlag (2016).

Appendix

A.1 Malware family classification (Malware
naming issue)

Here, we extend the proposed architecture to classify malware
when malware names are not shared among information provider
organizations. A key problem is how the analysis organization
performs clustering/grouping of the trained classifier because ma-
jority voting is performed based on the malware name informa-
tion. For example, assuming one information provider organi-
zation names a malware A and another organization names the
same malware «, the analysis organization cannot sum the vot-
ing because the analysis organization does not know malware A
and malware « are the same. To associate malware names across
information provider organizations, we identify two possible ap-
proaches.

Approach 1. Each information provider organization analy-
ses the malware family and sends the trained classifier with its
malware family tag in a unified manner to the organizations. The
analysis organization groups the trained classifiers based on the
tags. Then, for each grouped classifier, the analysis organization
aggregates the classifiers into a single classifier.

Approach 2.
must determine a family for each malware. If the information

In the previous approach, each organization

provider organizations are security companies, that would be
possible (Section 2.4.2). However, information provider orga-
nizations are non-security companies (Section 2.4.1); thus, mal-
ware family identification is impractical due to a lack of security
knowledge. To address this case, the analysis organization could
perform clustering of the trained classifiers. Then the analysis or-
ganization can combine the classifiers into clusters, each of which
corresponds to a malware family.

A.1.1 Clustering of trained classifier

Here, we further investigate the second approach, which clus-
ters classifiers. Here, classifier clustering can be performed based
on classifier parameters such as the weight values of the neural
network and SVM.
A.1.1.1 Hyperplane based clustering

A classifier separates a feature space by a hyperplane, and a hy-
perspace enclosed by the hyperplane represents a malware family.

© 2018 Information Processing Society of Japan

Classifier A

Classifier a
- i
’
[evstrs }|

Hyperplane

Ensemble | | clagsifier A/a
Learning

Classifier a

el Clustering

\ /
\. Y Classifier B

o Ensemble
Learning [| Classifier A/b

Classifier b

Fig. A-1 Clustering classifier based on hyperplane.

Classlﬁer A

Classifier A

Ensemble | | cjacsifier AZa
Learning

Classifier a

" Parameters

Classifier a
Parameters

C\assnﬂer B

Clustering

Classifier B

Ensemble
Learning [| Classifier A/b

iy

Classifier b

Parame(evs

Classifier b
Paramete

Fig. A-2 Clustering classifier based on trained parameters.

Table A-1 Similarities between malware classes.

Aptl | Crypto | Zeus
Aptl 0.47 1.08 2.19
Crypto 1.05 0.53 1.32
Zeus 1.99 1.54 0.36

Thus, it is assumed that classifiers trained using the same mal-
ware family have similar hyperspaces. Therefore we can cluster
the classifier using the similarity of the hyperspace. Figure A-1
shows clustering using similarities among hyperspaces. The sim-
ilarity of two classifiers is calculated using Jaccard distance as
follows.

|AN B

|AU B

J(A,B) = (A.1)

Here, A and B represent the decisions of classifiers A and B, re-
spectively. |A N B| denotes the number of equal decisions from
the sample and |A U B| denotes the number of samples. Classi-
fiers with a similarity score greater than a threshold are assumed
to handle the same malware family.

If the classifier output is probability, we can use the proposed
information disclosure metric (Eq. (4)) as the similarity between
classifiers. Table A-1 shows a preliminary evaluation of the sim-
ilarity between classifiers of two organizations. Here, we use the
malware samples used in Section 7 as test data.

As can be seen, the similarity scores between two classifiers
trained using the same malware family (diagonal elements) have
low scores. On the other hand, scores between two classifiers
trained using a different malware family (non-diagonal elements)
are high compared to the diagonal elements. Therefore, the anal-
ysis organization can infer associations among classifiers using
the scores even if the malware names are not shared.

A.1.1.2 Parameter based clustering

Another classifier clustering approach is parameter based clus-
tering. Here, it is also assumed that classifiers trained using
the same malware family have similar internal parameters, e.g.,
weight values of the SVM and neural networks.

To perform clustering, parameters are extracted from each clas-
sifier. Then, similarity is calculated over the parameter values.
For simplicity, we use Euclidean distance and perform clustering
based on this distance. We define this distance as follows.

Electronic Preprint for Journal of Information Processing Vol.26

D(A, B) = /Z a + b (A2)

Here, a; and b; denote the i-th parameter of classifiers A and B, re-
spectively. Note that each information provider organization uses
the same type of classifier specified by the classifier template;

thus, the structures of the classifiers are the same and compara-
ble.

Takayuki Sasaki received his M.S. de-
gree in Physics from the University of
Tokyo in 2006. He worked as a visit-
ing researcher at ETH Ziirich from 2015
to 2016. He is currently a principal re-
searcher at NEC Security Research Lab-
oratories. He is also a Ph.D. student at

Yokohama National University. His main
research interests include security architecture for cloud comput-
ing, SDN, and IoT.

Katsunari Yoshioka received his B.E.,
M.E. and Ph.D. degrees in Computer En-
gineering from Yokohama National Uni-
versity in 2000, 2002, and 2005, respec-
tively. From 2005 to 2007, he was a Re-
searcher at the National Institute of Infor-

A mation and Communications Technology,

Japan. Currently, he is an Associate Pro-
fessor at the Graduate School of Environment and Information
Sciences, Yokohama National University. His research interest
covers wide range of information security, including malware
analysis, network monitoring, intrusion detection, etc. He was
awarded 2007 Prizes for Science and Technology by The Com-
mendation for Science and Technology by the Minister of Educa-
tion, Culture, Science and Technology.

© 2018 Information Processing Society of Japan

Tsutomu Matsumoto is a professor of
Faculty of Environment and Information
Sciences, Yokohama National University
and directing the Research Unit for Infor-
mation and Physical Security at the Insti-
tute of Advanced Sciences. He received
Doctor of Engineering from the Univer-
sity of Tokyo in 1986. Starting from Cryp-
tography in the early 80’s, he has opened up the field of se-
curity measuring for logical and physical security mechanisms.
Currently he is interested in research and education of Embed-
ded Security Systems such as [oT Devices, Network Appliances,
Mobile Terminals, In-vehicle Networks, Biometrics, Artifact-
metrics, and Instrumentation Security. He is serving as the chair
of the IEICE Technical Committee on Hardware Security, the
Japanese National Body for ISO/TC68 (Financial Services), and
the Cryptography Research and Evaluation Committees (CRYP-
TREC) and as an associate member of the Science Council of
Japan (SCJ). He was a director of the International Associa-
tion for Cryptologic Research (IACR) and the chair of the IE-
ICE Technical Committee on Information Security. He received
the IEICE Achievement Award, the DoCoMo Mobile Science
Award, the Culture of Information Security Award, the MEXT
Prize for Science and Technology, and the Fuji Sankei Business
Eye Award.

