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Abstract: In the stream of studies on intuitionistic modal logic, we can find mainly three kinds of natural deduction
systems. For logical aspects, adding axiom schemata is a simple and popular way to construct a system. The Curry-
Howard correspondence, however, gives us a connection between logic and computer science. From the viewpoint
of programming languages, two more important systems, called a dual-context system and a Fitch-style system, have
been proposed. While dual-context systems for S4 are heavily used in the field of staged computation, a dual-context
system for K is also studied more recently. In our previous studies, categorical semantics for Fitch-style modal logic is
proposed and usefulness of levels is noticed. This paper observes an interesting fact that the box modality of the dual-
context system is in fact a left adjoint of that of the Fitch-style system. In order to show the statement, we embed both
the two systems, which are refined with levels, into the adjoint calculus that equips an adjunction a priori. Moreover,
the adjunction is refined with polarity and the adjoint calculus is extended to polarized logic.

Keywords: modal logic, lambda-calculus, adjunction, staged computation

1. Introduction

Natural deduction systems are a kind of deductive systems in
logic. A part of importance of natural deduction systems is a
relationship with programming languages. Such a relationship
is called a Curry-Howard correspondence. It is known that in-
tuitionistic modal logic corresponds to staged computation via
a Curry-Howard correspondence. The natural deduction sys-
tems for intuitionistic modal logic have been studied widely and
mainly three kinds have been proposed. From the logical point
of view, Kripke-style semantics and Hilbert-style systems with
axioms are commonly accepted for variations of intuitionistic
modal logic. However, studies on natural deduction systems and
corresponding calculi for intuitionistic modal logic are diverse:
Gentzen-style, dual-context and Fitch-style are main streams.

A Gentzen-style calculus was first proposed by Bellin et al. [2],
and was later refined by one of the authors [11], [12]. Dual-
context calculi [5], [8] have been developed mainly for intuition-
istic S4 (IS4), because the first dual-context calculus [1] was ded-
icated to intuitionistic linear logic with the exponential modal-
ity. After several studies on S4, a dual-context calculus for intu-
itionistic K (IK) appeared in Ref. [2]. Recently, generalized dual-
context calculi [13] have been provided to accommodate various
modal logic, K, T, K4 and so on. In this paper, our study fo-
cuses on the intuitionistic fragment of the simplest modal logic K
for generality. The third style is Fitch-style [6], [16]. Despite a
long history, computational meaning of Fitch-style natural deduc-
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tion systems is not well established. Since both the dual-context
and Fitch-style have multiple contexts and similar judgments, we
compare them in this study.

It is known that a judgment in the Fitch-style system can be
translated to a judgment in Gentzen-style system, and vice versa.
A survey paper [9] by de Paiva and Ritter might be helpful for
understanding Fitch-style.

Γm−1 ; · · · ; Γ1 ; Γ0 � A in Fitch-style

� �(Γm−1→ · · ·�(Γ1→ �(Γ0→ A))) in Gentzen-style

A proof relevant translation is discussed in our work [19] via the
semantics. A ccc with a normal monoidal endofunctor G is an in-
stance of our semantics of the Fitch-style calculus. The following
is a rough sketch of the semantics of the Fitch-style.

�Γ1 ; Γ0 � M : A� : �Γ1�→ G(�Γ0�→ �A�)

On the other hand, a model for Gentzen-style and dual-context is
believed to be a ccc with a monoidal endofunctor [2], [5], [10],
[12], [13]. If we write F for a model of the dual-context calculus,
semantics of the dual-context is as follows.

�Γ1 ; Γ0 � M : A� : F�Γ1� × �Γ0�→ �A�

If we assume that a common judgment has the same meaning
both in the Fitch-style and in the dual-context, F is expected to
be a left adjoint of G. It is a naive idea of this study. Such an
adjunction is used to give semantics to the Fitch-style calculus by
Clouston [7], though he focuses on the diamond modality rather
than the box modality of the dual-context side.

In this paper, we show an adjunction by embedding both
the Fitch-style and dual-context calculi into the adjoint calcu-
lus [3], [4], which was proposed in order to represent monoidal
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adjunctions. To achieve our aim, we refine the Fitch-style and the
dual-context with levels along the line of our previous work [19].
Due to the assignment of levels, it can be shown that the union
of the 2-level calculi exactly corresponds to the adjoint calculus.
After the 2-level case, we extend the result to multi-level. If we
consider contextual modalities of the Fitch-style, our results in-
duce a decomposition of a contextual S4 modality [18].

Moreover, we extend the adjoint calculus to a polarized cal-
culus, and refine the adjunction of the Fitch-style and the dual-
context. Our polarization is based on the lecture notes by
Pfenning [20] on the call-by-push-value calculus [15]. We also
provide both the call-by-name and call-by-value big-step seman-
tics to the adjoint calculus, and compare the adjoint calculus with
the polarized adjoint calculus.

2. Intuitionistic Modal Logic

In this section, we introduce three kinds of deductive systems
for intuitionistic modal logic. This paper focuses on the box frag-
ment without disjunctions. Conjunctions are not excluded in our
study, but we ignore them except for the last section because of
the syntactic simplicity.

2.1 Gentzen-style
In this paper, the natural deduction of the intuitionistic propo-

sitional logic means the simply typed λ-calculus.

Γ, x : A � x : A
Γ, x : A � M : B
Γ � λx.M : A→ B

Γ � N : A Γ � M : A→ B
Γ � MN : B

This paper follows some conventions about the λ-calculus. Espe-
cially, a context is a set of type declaration of variables, and hence
the exchange rule does not appear explicitly.

The usual β-η-equality is given by the following.

(λx.M)N = M[N/x]

λx.Mx = M if x � FV(M)

As usual, the equality is formally defined on judgments, but we
omit contexts and types through the paper.

Theorems of intuitionistic modal logic IK is usually given by
adding the following rules to the intuitionistic propositional logic.

� A
� �A � �(A→ B)→ �A→ �B

The consequence of the latter rule is often called K. Systems
shown in this paper are equivalent to this logic with respect to
the provability.

Although we can assign terms directly on the above deriva-
tions, it does not look a natural deduction in the usual sense. In
Gentzen-style formulation [2], [11], the two rules for � are com-
bined into a single rule as follows.

Γ � �A (∀A ∈ Γ′) Γ′ � B
Γ � �B

The logical equivalence of this system and IK is not so diffi-
cult. While term assignment enables us to consider computational
meaning, logical harmony between introduction and elimination

is broken in the Gentzen-style system. In some sense, the dual-
context system can be obtained from splitting this rule into intro-
duction and elimination.

Although the equality on proofs of Gentzen-style are impor-
tant in staged computation, connection with this study is rather
weak. So, we do not refer any more in this paper. Whereas the
Gentzen-style calculus naively represents a cartesian closed cat-
egory with a lax monoidal endofunctor, the following Fitch-style
calculus represents an infinitely enriched category [19].

2.2 Fitch-style
In this paper, we use the symbol Δ as a sequence of contexts,

while the symbol Γ denotes a context. To avoid confusion, we
use semicolons as separators between contexts instead of com-
mas. Without loss of generality, we assume that any variable does
not occur in different two contexts of Δ. We write · for the empty
context not the empty sequence of contexts. We may implicitly
omit or add empty contexts in the left-most part of Δ.

The Fitch-style calculus in this study is based on the formula-
tion [17] of IK by one of the authors. In Fitch-style, a judgment
has a form Δ �l M : A, where l is a level ranging over natural
numbers. In this formulation, Δ means a context categorized into
levels. When a judgment Γm−1 ; · · · ; Γ0 �l M : A is derivable, Γi

can be considered a context of the level i+ l. A level corresponds
to a stage in staged computation, and terms of a level l + 1 can
handle codes of the level l.

We can extend the simply typed λ-calculus to categorized con-
texts straightforwardly, just replacing Γ with Δ. The formal def-
inition is included in Fig. 1. The specific rules for the box of
Fitch-style are given as follows.

Δ ; · �l M : A

Δ �l+1 ‘M : �A

Δ �l+1 M : �A
Δ ; Γ �l ,M : A

While the intuitionistic propositional part keeps a level, the box
rules change levels in derivations. Both the rules move the fo-
cus in contexts syntactically, but do almost nothing semantically.
These rules are called necessitation and denecessitation, respec-
tively. Necessitation with the empty context is a well-known
property if we ignore levels.
Remark 1. Levels naturally arises from the semantics, and are
helpful for understanding the staging. However, they are not es-
sential for provability as logic. If we forget levels, another Fitch-
style system for IK can be obtained, which is nothing but a calcu-
lus proposed by Clouston [7]. It can be seen easily that a formula
is provable in the Fitch-style system without levels iff it is prov-
able in our Fitch-style system at some level.

The logical equivalence between the Fitch-style system and IK
is not trivial, but logical aspects of Fitch-style have been studied
for a long time. Especially, Borghuis’ work [6] is a monumental
achievement. The axiom K can be derived as follows.

�1 λy. λx. ‘(,y,x) : �(A→ B)→ �A→ �B

If we discuss the logical provability of our calculus formally, we
have to remove levels as mentioned in the above remark.

From a viewpoint of the Curry-Howard correspondence, also
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Fig. 1 Typing rules of Fitch-style calculus.

Fig. 2 Equality of Fitch-style calculus.

the equality should be discussed. Following Lisp, ‘M can be re-
garded as a quasi-quoted code. As you expect, ,M is an unquoted
term. Such an idea can be characterized by the following equa-
tions.

,‘M = M

‘,M = M

One can be referred to Fig. 2 for the full equations. Despite the
simple axiomatization, the Fitch-style calculus is enough rich for
capturing unbounded iteration of categorical enrichment.

There are various notations and naive meaning of quotation
and unquotation in previous studies. In traditional staged com-
putation, boxing and unboxing may be preferable. According to
Clouston [7], operational intuition can be explained as the words,
shutting and opening.

In the last of this subsection, we define a terminology: the m-
level system denotes the subsystem where each level occurring in
a derivation is less than m and the sum of a proof level and the
depth of its context stack is exactly m. Hence, only the levels 0
and 1 occur in the 2-level Fitch-style system. In 2-level systems,
we often call 0-level object-level, and call 1-level meta-level.

2.3 Dual-context
Studies on dual-context systems were motivated by linear logic

in early days. Since the ! modality of linear logic is a kind of S4
modality, dual-context system can be applied to non-linear IS4 [5]
straightforwardly. Although the dual-context formulation of IK is
not trivial, we adopt Kavvos’ calculus [13].

A judgment in the dual-context calculus has two kinds of con-
texts, a modal context and a normal context. The form of judg-
ments are very much like that of Fitch-style, but the derivation
rules are quite different. The � modality of the dual-context sys-
tem is characterized by the following two rules.

· ; Γ′ � M : A
Γ′ ; Γ � metaM : �A
Γ′ ; Γ � N : �A Γ′, x : A ; Γ � M : B
Γ′ ; Γ � let meta x be N in M : B

The first rule seems similar to the necessitation rule of the Fitch-
style in the case that all contexts are empty.

The specific equations are as follows.

let meta x be metaN in M = M[N/x]

let meta x be M in meta x = M

If we consider a reduction system of the β-part, the strong

normalization and confluence theorems have been shown by
Kavvos [13].

We refine this calculus for our aim. First, we assign levels to
judgments. Level assignment is a key idea of this study. Only one
rule changes levels in derivations, and other rules just keep levels.

· ; Γ′ �l+1 M : A

Γ′ ; Γ �l metaM : �A

Levels are just auxiliary and meaningless as logic. If we have
a proof in the dual-context system, appropriate levels can be as-
signed to all judgments occurring in the proof. In this sense, the
level assignment does not restrict the system as logic.

Contrary to the name “dual”, in fact, we can make the num-
ber of contexts unbounded without a heavy modification. We say
that such a generalized system is a multi-context system. In order
to obtain the multi-context system, we replace all Γ′ with Δ in
typing rules.

Δ � M : A
Δ ; Γ � metaM : �A
Δ ; Γ � N : �A Δ, x : A ; Γ � M : B
Δ ; Γ � let meta x be N in M : B

Although shift to multi-context is independent of level assign-
ment, we use the mixed variant mainly. The full definition of
the multi-context calculus with levels is described in Fig. 3 and
Fig. 4.

It is a little surprising that the multi-context system is not
stronger than the dual-context system w.r.t. the provability. A
reason depends on the fact that the following derivations are ad-
missible in the dual-context.

Γ1, A ; Γ0 � B

Γ1 ; �A, Γ0 � B

Due to these admissible derivations, we can reduce contexts
higher than 1 to a 1-level context. Although the two judgments
have the same meaning, the upper is preferable for programmers
in general. Since l-level �A essentially means (l + 1)-level A, we
usually expect A to be extracted from �A. Similarly, in the multi-
context system, we can explicitly regard l-level ��A as (l + 2)-
level A. In this sense, we say that the multi-context calculus is a
refinement of the dual-context calculus. We can remark that only
dual-contexts occur in a typing derivation for any closed term in
the multi-context calculus even if its type includes ��A. Instead,
a morphism from ��A to B in a model has three kinds of syntac-
tic expressions in the multi-context calculus. Since we believe the
multi-context has the whole essence of the dual-context, we inten-
tionally confuse the word “multi-context” with “dual-context”.
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Fig. 3 Typing rules of multi-context calculus.

Fig. 4 Equality of multi-context calculus.

In order to use higher-level contexts more efficiently, we can
consider additional elimination rules. The +2 case is as follows.

Δ ; Γ1 ; Γ0 � ��A Δ, A ; Γ1 ; Γ0 � B
Δ ; Γ1 ; Γ0 � B

Such rules are semantically sound, but not admissible in the cur-
rent multi-context system. The multi-context adjoint calculus
given in the next section admits and justifies these rules.

In later sections, we write � for � of the dual-context and
multi-context systems, while � is used for the Fitch-style. The
notation comes from that the composite �� is the S4 box modal-
ity. If we restrict levels to less than 2, the logic becomes strictly
weaker. We first compare such weakened calculi and later com-
pare the full-level calculi.

3. Calculus with Adjunction

In this section, we reconstruct an additive variant of the ad-

joint calculus [4] via Fitch-style and dual-context systems. Since
a model of the adjoint calculus is a monoidal adjunction between
two cartesian closed categories, we can claim that the pair of the
Fitch-style and the dual-context is an adjunction. In addition, be-
cause the adjoint calculus includes the dual-context IS4 system
as a subcalculus, the IS4 modality decomposes into the two IK
modalities. In the last subsection, we discuss contextual modal-
ities and show that a contextual dual-context IS4 system decom-
poses into the dual-context IK system and the contextual Fitch-
style IK system.

3.1 2-Level Adjunction
An adjoint calculus consists of two worlds. Each type belongs

to a world, and worlds are mutually exclusive. In a typical situ-
ation, one of two worlds is intuitionistic multiplicative exponen-
tial linear logic and the other is intuitionistic logic. This case is
also known as LNL (linear non-linear) logic [3]. The LNL cal-
culus has been provided by Benton to investigate the exponential
modality of linear logic. Benton’s LNL calculus is strongly re-
lated to S4 modal logic naturally from its origin.

In this paper, we shift linear logic to ordinary logic in a usual
manner. There is no technical barrier against changing the struc-
tural rules, syntactically nor semantically. (We still say “linear”
even if the linearity is dropped.) The derivation rules are for-
mally defined in Fig. 5. The adjoint calculus has two kinds of
judgments, Θ ; Γ �0 M : A and Θ �1 M : Φ, where Θ is a con-
text for level 1 variables. We use 0 and 1 for Benton’s original L
and C, respectively. Hence, 0 refers to the linear world, 1 refers to
the classical world. In the figure, A, B are used for 0-level types,

and Φ, Ψ are for 1-level types.
It is remarkable that �A belongs to the world 1 for any A of

the world 0, and conversely, �Φ belongs to the world 0 for any
Φ of the world 1. So, � and � transfer types between the worlds.
Indeed, in categorical semantics, a world corresponds to a carte-
sian closed category, and the interpretations of � and � form a
monoidal adjunction. In Benton’s original paper, the letters F

and G are used for the modalities according to the conventional
manner to describe an adjunction. The equality on judgments can
be derived from this semantics, which is described in Fig. 6.

One can see that Fig. 6 is just the union of Fig. 2 and Fig. 4.
Moreover, Fig. 5 consists of the special cases of Fig. 1 and Fig. 3,
that is, the 2-level Fitch-style system and the 2-level dual-context
system. The following result immediately follows from this ob-
servation.
Theorem 1. The 2-level Fitch-style calculus for IK is a subcalcu-

lus of the adjoint calculus. Also the 2-level dual-context calculus

for IK is another subcalculus of the adjoint calculus. Moreover,

the modality of the dual-context is a left adjoint of the modality of

the Fitch-style in the adjoint calculus.

It is well-known that the composite �� is a monoidal comonad.
We write ! for �� following linear logic. The following deriva-
tion about ! is admissible in the adjoint logic.

Θ, x : �A ; Γ �0 ,x : A

Θ ; · �0 M : A

Θ ; Γ �0 meta ‘M : !A

Θ ; Γ �0 N : !A Θ, x : �A ; Γ �0 M : B

Θ ; Γ �0 let meta x be N in M : B

If we rewrite outer contexts replacing x : �A with x : A, we can
get another dual-context system including only �0 . In fact, this
system corresponds to IS4 in the sense of Curry-Howard. When
the 0-level monoidal structure is multiplicative, the calculus is
known as DILL [1]. Therefore, if we start from the dual-context
calculus for IS4, it can decompose into the Fitch-style and the
dual-context, both of which corresponds to IK. We shall revisit
this fact later around contextual modalities.

3.2 Multi-Level Adjunction
We have investigated the 2-level calculi in the previous subsec-

tion. The result is extended to multi-level in this subsection.
For that purpose, we extend the adjoint calculus to multi-level

and multi-contexts. As mentioned before, all the worlds are con-
ceptually disjoint. However, since they can be completely distin-
guishable due to syntactically assigned levels, we use the same
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Fig. 5 Typing rules of 2-level additive adjoint calculus.

Fig. 6 Equality of additive adjoint calculus.

propositional letters in every world. The multi-level adjoint cal-
culus is given in Fig. 6 and Fig. 7.

Of course, if we restrict this calculus to 2-level, we can obtain
the usual adjoint logic in the previous subsection. A categorical
model of this multi-level adjoint calculus is an infinite sequence
of ccc’s and monoidal adjunctions. Such models are a straight-
forward extension of models of the 2-level adjoint calculus. The
main result can be extended to multi-level without any difficulty.
Theorem 2. The Fitch-style calculus for IK is a subcalculus of

the multi-level adjoint calculus. Also the multi-context calculus

for IK is another subcalculus of the multi-level adjoint calculus.

Moreover, for each level, the modality of the dual-context is a left

adjoint of the modality of the Fitch-style in the multi-level adjoint

calculus.

3.3 Contextual Modalities
In Fitch-style formulation, the notion of contextual modal-

ity [18] can be introduced straightforwardly. Roughly speaking,
a contextual modal formula [Γ]A means �(Γ → A). In some
sense, contextual modalities internalize hypothetical judgments:
whereas the ordinary modality asserts the truth of a proposition
under no hypothesis, the contextual modality permits an assertion
under a hypothesis. The following rules characterize the contex-
tual modality of IK in Fitch-style.

Δ ; Γ �l B

Δ �l+1 [Γ]B

Δ ; Γ′ �l A (∀A ∈ Γ) Δ �l+1 [Γ]B

Δ ; Γ′ �l B

In the introduction, we have mentioned a logical correspon-
dence between Fitch-style and Gentzen-style. In fact, such a
translation can be justified in the Fitch-style system itself, and
explains the meaning of contextual modalities.

Γm−1 ; · · · ; Γ1 ; Γ0 �0 A

�m [Γm−1] · · · [Γ1][Γ0]A

A term assignment was proposed by one of the author [17], but
we do not show details here. This Fitch-style contextual system
is equivalent to the ordinary Fitch-style system not only as logic
but also as a calculus. In the categorical semantics, for objects A

and B in a C-enriched category, [A]B means the hom-object in C.

So, from the semantic point of view, the contextual modalities are
more fundamental than the ordinary box modality.

On the other hand, a dual-context system with a contextual
modality is provided by Nanevski et al. [18] for IS4. In their for-
mulation, an additional form A[Γ] is required in 1-level contexts.
We write ![Γ]A for a contextual modal formula in order to distin-
guish the modality from the contextual modality of K.

Θ, B[Γ] ; Γ′ �0 A (∀A ∈ Γ)

Θ, B[Γ] ; Γ′ �0 B

Θ ; Γ �0 M : A

Θ ; Γ′ �0 ![Γ]A

Θ ; Γ′ �0 ![Γ]A Θ, A[Γ] ; Γ′ �0 B

Θ ; Γ′ �0 B

Other trivial 0-level rules are omitted. Since computational mean-
ing of this S4 calculus is not trivial, keywords true and valid
are assigned to various parts in the original paper [18]. We recon-
struct it simply with an adjunction.

If we are reminded of the construction of the dual-context IS4
system from the adjoint calculus, we can see that the contextual
IS4 modality decomposes into the ordinary IK modality and the
contextual IK modality. More formally, the following statement
holds.
Theorem 3. When we read ![Γ]A and A[Γ] as �[Γ]A and [Γ]A
respectively, all the typing rules of the contextual dual-context

IS4 system are admissible in the 2-level contextual adjoint calcu-

lus, which consists of the contextual Fitch-style IK system and the

ordinary dual-context IK system.

Proof. The first rule is derived from the contextual unquotation
rule of the Fitch-style.

Θ, [Γ]B ; Γ′ �0 A (∀A ∈ Γ) Θ, [Γ]B �1 [Γ]B

Θ, [Γ]B ; Γ′ �0 B

The second and third rules can be derived in the same manner as
the non-contextual case. �

4. Polarity and Adjunction

We have seen that modalities in dual-context and Fitch-style
systems are regarded as left and right adjoints. Then, one ques-
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Fig. 7 Typing rules of multi-level additive adjoint calculus.

tion naturally arises: is it possible to explain the difference be-
tween those two modalities especially from the syntactic point of
view? An answer to this question is found in operational seman-
tics.

4.1 Polarized Adjoint Calculus
Looking at the typing rules of 2-level adjoint calculus, one sees

that the terms for � have a similarity with projections or tupling
and those for � have that with terms performing pattern match-
ing, such as case of sum types. In fact, such syntactic distinction
can be clearly formalized using the notion of polarity. In a polar-
ized type theory, types are classified into two categories, positive

types and negative types. Negative types include arrow types and
product types. Terms assigned to elimination rules of negative
types are likely to be rather “direct”, for example, πM and MN.
Positive types including sum types, on the other hand, are given
apparently “indirect” terms, such as case M of {i.xi.Ni}. Op-
erational behaviors of eliminations of positive types are typically
understood as deconstruction of terms with pattern matching.

One non-trivial phenomenon is that products belong to both
categories. This is because there are two equivalent definitions
for elimination of product types, one in favor of construction (a,b)
and the other deconstruction (c).

Γ � M : A × B (a)
Γ � πLM : A

Γ � M : A × B (b)
Γ � πRM : B

Γ � M : A × B Γ, x : A, y : B � N : C
(c)

Γ � let (x, y) be M in N : C

It is therefore usual to add two different types that behave like
products, defining the negative one with (a,b) and the positive
one with (c). Polarities of types can also be understood from the
denotational perspective: negative types are interpreted as right
adjoints and positive types are as left adjoints. This perspective
also gives another explanation of why products may be both neg-
ative and positive.

The notion of polarity can be then clearly applied to adjoint
calculus. As presented in Table 1, we can find an evident similar-
ity between the differences of positive/negative types and dual-
context/Fitch-style modalities, both from the syntactic and se-
mantic viewpoints. Motivated by this observation, we attempt to
polarize the adjoint calculus and indeed characterize dual-context
modality as positive types and Fitch-style modality as negative
types.

Polarization is investigated in many papers. Among them, we
base our theory on Levy’s call-by-push-value [15]. Levy’s in-
sight is that positive types can be thought of values and nega-
tive types computations. In the call-by-push-value calculus, any
terms are strictly classified as either values or computations fol-
lowing the idea of polarities, which leads us to a refinement of

Table 1 Polarities and modalities.
Positive Negative

Denotations Left adjoints Right adjoints
Terms let (x, y) be M in N πi M

Dual-context Fitch-style
Denotations Left adjoints Right adjoints
Terms let meta x be M in N ,M

traditional functional languages that subsumes call-by-name and
call-by-value. Our attempt to polarize the adjoint calculus can be
then considered as a multi-stage extension of the call-by-push-
value calculus. In this sense, the calculus we introduce here may
be called either polarized adjoint calculus or staged call-by-push-

value, though we prefer the first here.
The typing rules of polarized adjoint calculus are presented

in Fig. 8. Our syntax is taken not from Levy’s but from Pfen-
ning’s [20]. Judgments are any of the following forms.

Θ ; Γ+ �0 M : A+

Θ ; Γ+ �0 V : A−

Θ �1 P : Ψ

In this section, we distinguish meta-level and object-level by no-
tations for readability. Meta-level variables, terms, and types
are denoted by α, β, · · · , P,Q, · · · , and Φ,Ψ, · · · . In addition,
M,N, · · · and V,W, · · · are used for object-level terms according
as polarities. We may write A−0 + A−1 for

∑
i∈{0,1} A−i and 0 for∑

i∈∅ A−i .
Shift operators ˆ and ´ change the polarities of object-level

terms. The ingredients required for this polarization include the
followings:
• We only polarize the object-level, because we consider the

interaction of staging and effectful computation is of special
interests.

• The premise M of quotation ‘M should be negative, as quo-
tation must be performable regardless of the effects involved
in the object-level term.

• �-ed types are positive, since they have pattern-matching
syntax.

By these arguments, the composite �� sends negative terms to
positive terms. Interestingly, this behavior coincides with the lin-
ear exponential modality ! in polarized linear logic [14]. Since !
is a special kind of the S4 modality, this result justifies our polar-
ization.

For the polarized adjoint calculus, we give the operational big-
step semantics in Fig. 9 instead of the equality. Here, M denotes
a closed object-level computation (i.e., a term of a negative type)
and T denotes a terminal computation, which is defined as fol-
lows.
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Fig. 8 Typing rules of polarized adjoint calculus.

Fig. 9 Big-step semantics of polarized adjoint calculus.

T � valV | {i.Mi}i∈I | λx.M

Note that, because of subject reduction, any computation does not
reduce to a value. →∗β in the premise of ,P ⇓ T denotes the reflex-
ive transitive closure of β-reductions for meta-level abstractions.
The intention behind this definition is that we are only interested
in object-level computations and all meta-level β-redexes are rea-
sonably assumed to be reduced beforehand.

4.2 From Adjoint Calculus to Polarized Adjoint Calculus
We show that polarized adjoint calculus indeed works as a

subsuming language, in the sense that we can faithfully embed
(additive) adjoint calculus into polarized adjoint calculus without
breaking observational equivalence in effectful settings. To do
this, we first define the call-by-name semantics of adjoint calcu-
lus by Fig. 10. Following Levy, bool and sum types are added to
the adjoint calculus here. The typing rules of bool/sum types are
omitted because they are routine. Similarly to the polarized one,
we assumed meta-level reductions should operate before object-
level evaluations start.

To show that a language is a refinement of another language,

it is natural to construct a translation from the source language
to the target language. However, it is argued by Levy that
a term translation function from call-by-name to call-by-push-
value does not behave very well. Instead, we introduce a rela-

tion on terms from the call-by-name adjoint calculus to the polar-
ized adjoint calculus (Fig. 11). The translation is extended also to
meta-level terms, because we have to treat terms involving meta-
level terms, i.e., ,P. Meta-level terms are translated in the obvious
way. If we define the translation on object-level types properly,
M �→n M′ and Θ ; Γ � M : A imply Θ̃− ; ´Γ̃− � M′ : Ã−.

˜A→ B
−
� ´Ã− → B̃−

∑̃
Ai
−
� ˆ(
∑ ´Ãi

−
)

b̃ool
−
� ˆ(1 + 1)

Our translation is justified by the following propositions. Note
that we need to shift polarities for preservation of substitutions.
Proposition 4. If M �→n M′ and N �→n N′ then M[N/x] �→n
M′[thunkN′/x].
Lemma 5. If P →β Q with respect to meta-level arrows and

P �→n P′, then there exists Q′ such that P′ →β Q′ with respect to
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Fig. 10 Big-step semantics of call-by-name adjoint calculus.

Fig. 11 Relation between cbn adjoint calculus and polarized adjoint calculus.

meta-level arrows and Q �→n Q′.
Proposition 6. �→n is a bisimulation:

( 1 ) If M ⇓ V and M �→n M′, then there exists T such that

M′ ⇓ T and V �→n T.

( 2 ) If M′ ⇓ T and M �→n M′, then there exists V such that

M ⇓ V and V �→n T.

Proof. For ( 1 ), similarly to Levy’s proof, perform induction
primarily on M ⇓ V and secondarily on M �→n M′. The main
difference with the original proof is the case of ,P. For that case,
use the previous lemma and the fact that any closed term P of the
� type is normalizable to a term of the form ‘M. ( 2 ) is shown by
induction on M′ ⇓ T and the lemma. �

This proposition is straightforwardly extended to various ef-
fectful settings such as non-terminating computation and com-
putation with outputs. Then the proposition enables us to show
that observational equivalence, or more generally observational
inequality, is reflected by the translation relation in the following
sense:

if M′ � N′ then M � N for any M �→n M′ and N �→n N′.

In order to prove observational inequality, we need to show that
for any context C[·] of some base type C[M] ⇓ V implies
C[N] ⇓ V . Because the translation relation �→n is a bisimu-
lation, any M ⇓ V in adjoint calculus is sent to and pulled back
from polarized adjoint calculus. Finally it suffices to check that
for any terminal computation T , any value V such that V �→n T

is uniquely determined, and this is easy.

C′[M′] ⇓ T

��

C[M] ⇓ V��

?

��
C′[N′] ⇓ T �� C[N] ⇓ V ′

We also show that the call-by-value adjoint calculus is simi-
larly translated into polarized adjoint calculus. Again, we follow
the arguments by Levy discussed in Ref. [15]. The big-step se-
mantics for the call-by-value is obtained by replacing the rules
for the call-by-name with the followings.

M ⇓ λx. L N ⇓ W L[W/x] ⇓ V
MN ⇓ V

M ⇓ W
ιiM ⇓ ιiW

Also, we define a translation using not functions but relations to
let it preserve substitutions. Unlike the call-by-name translation,
for call-by-value translation, we are required to make a distinction
between values and computations on treating terms. The transla-
tion is thus comprised of two relations �→v and �→val (Fig. 12).

Again, we define the translation on types for call-by-value as
follows.

˜A→ B
+
� ´(Ã+→ ˆB̃+)

∑̃
Ai
+
�
∑

Ãi
+

b̃ool
+
� 1 + 1

Then, M �→v M′ and Θ ; Γ � M : A imply Θ̃+ ; Γ̃+ � M′ : ˆÃ+.
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Fig. 12 Relations between cbv adjoint calculus and polarized adjoint calculus.

We then claim a result analogous to the one for call-by-name.
The proof is a straightforward extension in Ref. [15]. The defi-
nition of safe terms should be extended to include, for example,
all meta-terms consisting only of object-terms in the form of ‘S
where S is safe.
Proposition 7. �→v and �→val satisfy the following

bisimulation-like condition.

( 1 ) If M ⇓ V and M �→v M′, then there exists V ′ such that

M′ ⇓ valV ′ and V �→val V ′.
( 2 ) If M′ ⇓ valV ′ and M �→v M′, then there exists V such

that M ⇓ V and V �→val V ′.

5. Concluding Remarks

For intuitionistic normal modal logic, kinds of deductive sys-
tems have been proposed. In this paper, we focuses on two natural
deduction systems, the Fitch-style system and the dual-context
system. Fitch-style and dual-context have been developed sep-
arately, and any direct relationship was not known. This paper
provides a clear connection between Fitch-style and dual-context:
the box of the dual-context is a left adjoint of the box of the
Fitch-style. Since any monoidal adjunction derives a monoidal
comonad, the composite of those two modalities becomes a S4
modality. As a corollary of our results, we can obtain decompo-
sition of Nanevski et al.’s contextual S4 modality.

Moreover, we have shown that polarity makes the distinction
between the two modalities clearer. Our result claims that the
Fitch-style box accepts a negative type and the dual-context box
creates a positive type in the polarized adjoint calculus. This re-
sult is compatible with the fact that the linear exponential sends
a negative formula to a positive formula in polarized linear logic.
The underlying idea on the polarized adjoint calculus is the com-
parison of a monoidal adjunction with a Freyd category, which is

a model of the call-by-push-value calculus.
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