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Abstract: Direct and global component separation is an approach to study the light transport that provides a basic
understanding of the property of a scene. The conventional technique for separation relies on multiple images or an
approximation which results in loss of spatial resolution. In this article, we propose a novel single image separation
technique by introducing a linear basis equation with full resolution. We evaluate the data independent Fourier basis
and learning-based PCA basis to locate the better basis representation of direct and global components. We carefully
analyze the importance of high spatial frequency pattern to the effectiveness of our technique. Moreover, we propose
the performance enhancement technique to reduce memory usage and computation time for practical implementa-
tion. The experimental results confirm that our proposed method delivers higher separation accuracy and better image
quality than the previous methods and is applicable to challenging video sequences.
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1. Introduction

The appearance of a scene is a result of light paths traveling
through the scene, ranging from simple direct reflectance to com-
plex light phenomena such as subsurface scattering, interreflec-
tion, and volumetric scattering, all of which are instances of light
transport. The understanding of light transport is beneficial to var-
ious computer vision tasks, such as shape reconstruction and im-
age descattering. The direct and global components are intro-
duced to reduce the complexity of light transport. Direct compo-
nent represents direct reflection between surfaces and observant
observed directly at the point of incidence without any interfer-
ence from other phenomena. Global component is a combina-
tion of complex phenomena such as scattering and interreflection
which occur further away from an observation point. An illustra-
tion of light transport is shown in Fig. 1.

Global components can be separated according to the differ-
ences between lit and unlit pixels under different illumination
patterns by projecting a series of shifted high frequency pat-
terns [18]. Figure 2 (a) shows an image under high frequency
pattern, Fig. 2 (b) and 2 (c) show results of direct and global com-
ponents separation using multiple shifted high frequency pattern.

However, this technique requires multiple images of a scene
under the spatial shifted high frequency pattern and cannot apply
directly to a dynamic scene without motion compensation. While
the single shot technique has been proposed by assuming a simi-
larity between adjacent pixels, this results in loss of spatial reso-
lution and tends to lower the separation quality. Figure 2 (d) and
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Fig. 1 Light transport can be categorized as direct component (red line) and
global component (green line). Examples of the global component
include inter-reflection and subsurface scattering.

Fig. 2 (e) show results from using single-shot technique with pix-
elated upsampling results. Therefore, the challenging objective
of this study is to separate direct and global components using a
single image without sacrificing the spatial resolution.

By leveraging the linear basis representation and the modula-
tion effect of high frequency illumination, we introduce a novel
technique for separating direct and global components from a sin-
gle frame, without loss of spatial resolution (shown in Fig. 2 (f)
and Fig. 2 (g)). Differences between the two bases have been ob-
served and used to design a proper illumination pattern to reduce
the dependency on two sets of bases. We further separate direct
and global components by designing a linear system. The effec-
tiveness of our approach is demonstrated on simulated data, and
real images/videos captured by a standard off-the-shelf camera
and a projector mounted in a coaxial system.

A comprehensive dataset of light transport is not available at
the current time since capturing the whole light transport requires
a huge effort. To train a valid basis, we prepare a simplified light
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Fig. 2 Result of direct and global components separation. (a) show input images with high frequency
illumination. (b) and (c) show ground-truth of direct and global components from multiple images
using the fast separation technique [18]. (d) and (e) show low resolution direct and global compo-
nents from single image using the fast separation technique, while (f) and (g) show full resolution
direct and global components recovered from our technique.

transport dataset consisting of 91 tuples of raw, direct and global
images. It contains varieties of objects, with diverse surface tex-
ture and material, captured in a controlled environment. This
dataset also allows us to analyze properties of direct and global
components, and to find differences between different bases. By
integrating the basis of direct and global components from our
database with our single image separation technique, we achieve
an improvement over other bases without having to take into ac-
count the differences between components.

In summary, our major contributions are that we

e Propose to represent direct and global components based
on linear basis representation for full resolution recovery of
these components;

e Carefully examine dependency of direct and global compo-
nents and show that a high spatial frequency illumination
pattern contributes to resolving the ambiguity and separat-
ing these two components robustly;

e Introduce a new direct and global components dataset, an-
alyze the dependency and the differences between the two
components to improve the separation quality compared to
the use of other bases.

e Propose a performance enhancement method to reduce
memory usage and computation time of our separation pro-
cess.

e Set up a coaxial system by using a standard off-the-shelf
camera and a projector to capture real images of still and
moving scenes, and demonstrate the effectiveness of our sep-
aration method.

The rest of this article is organized as follows. Section 2 pro-
vides literature reviews of direct and global component separa-
tion. Section 3 discusses the ambiguity of direct and global com-
ponents observed in a single image and describes our approach
for robust separation. Section 4 describes the practical implemen-
tation of our technique to reduce memory usage and computation
time. Our experiment setup and results are shown in Section 5.
Finally, conclusions are drawn, and future directions of our re-
search are discussed in Section 6.

2. Related Works

Direct and global component separation was first introduced
using the fast separation technique [18]. Series of shifted high
frequency patterns were used to separate the pixel intensity into
two components by observing differences between the intensity
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of lit and unlit pixels. However, this technique was applicable
only to static scenes. A workaround approach for single image
separation was later introduced by assuming similarity among the
neighboring pixels. Unfortunately, the overall resolution of a re-
sult image was severely reduced, and artifacts were found in the
areas of different materials.

Effort to improve the quality of separation techniques had been
proposed in various studies. Modulation between two 1d signals
was introduced to replace a constant high frequency pattern to
improve accuracy in scenes with high glossiness material [6]. A
multiple projectors based approach had been developed by using
multiplex sinusoid patterns to reduce the number of images to
three [9]. The interreflection from different sources decomposed
from a single image was used to improve the performance of im-
age recoloring [5]. Diffuse structured light generated by placing
the diffuser in front of a projector was used to improve the ef-
ficiency in shadow areas of image[17]. Motion compensation
technique was proposed to improve quality of scenes with tiny
movement such as human body [2]. Global components which
are considered a multi focus of illumination were also used for
scene reconstruction [1]. Extension of microscopy imaging was
also introduced to separate transmitted and scattering apart at mi-
croscale [25].

Researchers also proposed techniques to separate additional
components aside from direct and global. The global compo-
nent could be further divided into near-range and far-range com-
ponents depending on the distance between an incident and the
observed points. Separation of these components is viable by
using a combination of logical coding and patterns with differ-
ent sizes [12], or large series of frequency-varying sinusoid pat-
terns for diffuse scenes [23]. Iterative technique for inverse light
transport was utilized for separating inter-reflection bounces with
different numbers [4]. The depth layer within a translucent ma-
terial was separated by projecting series of different frequency
pattern [29]. Independent component analysis was also applied
to multi-frequency direct components to separate direct compo-
nent, sub-surface scattering and inter-reflection [27]. Tailored
features had been used for specific domains such as face [8], [30],
skin [24], hair [33], fur [32], volumetric fluid [10], translucent ob-
ject[14], [15], glaring [28] and outdoor scene [13].

Specialized equipment had been introduced to separate precise
light transport matrix and their components. A high-speed cam-
era was used to capture temporal dithering between frames of
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Fig. 3 Direct and global components under different illuminations. Under high spatial frequency illumi-
nation (second column), direct component is modulated by an illumination pattern spatially, while
global component keeps constant up to a scaling factor.

DLP projector in real-time separation [16]. A light field cam-
era and projector were utilized to transfer global illumination be-
tween images [7]. Time-of-flight camera was used to capture light
transverse through translucent objects and scenes by picoseconds
and capable of separating the light component by projecting short
pulse of light [31] or phase signal [11]. Photometric mixer device
(PMD) was used to acquire light transport matrix by sampling dif-
ferent temporal frequency of sensor and light source [20]. More-
over, dual-coding between camera pixels modulated by a co-axial
set up of LCD panel and a projector was introduced to acquire
the whole light transport matrix [22]. The energy efficient tech-
nique with digital micromirror device (DMD) was also utilized
to separate direct component, near-range global component and
far-range global component in real time [19], [21].

In this work, we propose a technique to separate direct and
global components from a single image without sacrificing their
spatial resolution, using only a standard off-the-shelf camera and
a projector.
Ref. [26]. Compared with Ref. [26], we have prepared a database
to verify the effectiveness of the basis expression and the effect

A preliminary version of this article appeared in

of illumination patterns on the separation quality. We have also
proposed practical solutions to reduce memory usage and com-
putational time dramatically.

3. Direct and Global Component Separation

In this section, we describe our proposed technique to sepa-
rate direct and global components and explore the viability of our
approach.

3.1 Direct and Global Component Model

We define image i at a pixel p under uniform illumination to
consist of direct component iy and global component i, in an
equation as follows:

i(p) = ia(p) + iy(p). ()

We have learned that direct and global components interact dif-
ferently to the projection of illumination with a pattern. Specif-
ically, the direct component is modulated by the light projected
on observation point, while the global component is a combina-
tion of light interaction further away from the observation point
such as interreflection and subsurface scattering. The tangling
complex phenomena among sources of the global component
makes the separation process difficult. Fortunately, according
to Ref. [18], the global component is assumed to be independent
under a high enough spatial frequency illumination. The global
component in the presence of high spatial frequency illumination
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is approximated to k-percent proportional to that under uniform
illumination, where k is the average intensity of an illumination
pattern. The relation between the direct and global components
in high spatial frequency illumination is illustrated in Fig. 3.

[i(p1),

i(p2), -+, i(py)]T, whose corresponding illumination is denoted

We first vectorize the image of N pixels into i =

by I = [I(p1),(p2),--- ,(py)]T. The spatial relationship between
the illumination pattern and the image can be described as:
I(p)d .
i=Lig+ (#)i‘q = Lig + kiy = Lig + 1, 2)
where L = diag(l). iq = [ia(p1),ia(p2), - ,ia(py))" and iy =
lig(P1),ig(p2), - - ,ig(pN)]T represent direct and global compo-
nents under the uniform illumination in vectorized form.

3.2 Variable Reduction using Linear Basis Representation

It is clear that we cannot directly solve iy and fg in Eq.(2)
because the number of unknown variables is double that of the
number of measurements. We suggest the use of linear basis rep-
resentation to reduce the number of unknown variables.

Assuming a smoothness constraint on direct and global compo-
nents over 2D image space, these components can be defined as
linear combination of predefined bases and unknown coeflicients
as follows

ia=Da, i,=Gp, 3

where Dy, and Gy, are the bases for the direct and global com-
ponents. @,y and B, are the coefficient vectors.

From Eq. (2) and Eq. (3), we obtain the relation between image
in high spatial frequency illumination and basis representation as:

i=Lig+i,=LDa+GB=[LD G|[a" F'|. @

in which the number of unknown variables has been reduced to
the number of bases m+n, which are usually less than the number
of image pixels N.

In this article, we introduce two basis representations: Fourier
and principal component analysis (PCA) bases.
Fourier basis has been widely used for image compensation due
to a proven ability to represent general spatially smooth images
and is independent of input data. In this work, we use 2D Fourier
basis to describe direct and global components as baseline basis
which is independent of the data.
Principle Component Analysis (PCA) basis is a statistical
method to find an uncorrelated basis from correlated observa-

tions. PCA basis represents the order of the variance, which
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means that higher order basis is more significant than the lower
order. In this article, we use training data based on specific raw
(image under a uniform illumination), direct and global compo-
nent dataset. Assume that an image in a general environment
is a mixture of direct and global components, the basis of the
general image can be used to represent both direct and global
components. On the other hand, a dataset of the direct and global
component is used to specifically target the domain problem. Fur-
ther discussion about PCA direct and global component basis is
in Section 3.3. The results show that frequencies of Fourier ba-
sis and PCA basis gradually increase in the order. The samples
of Fourier and PCA bases used in our experiment are shown in
Fig. 4.

3.3 PCA Basis of Direct and Global Components

To study differences between direct and global components,
we directly analyze the dependency between direct component,
global component, and raw image in uniform illumination. In
the following subsection, we introduce our light transport dataset
and analyze the relation and dependency between each compo-
nent aiming to improve the quality of separation.
3.3.1 Dataset

Firstly, We create a dataset by collecting light transport com-
ponents using the fast separation technique with multiple im-
ages [18]. The dataset consists of 91 3-tuples of the image, and
each tuple consists of raw (image in an uniform illumination pat-
tern), direct and global images. Our selected objects contain vari-

Fourier basis image

Low Frequency

High Frequency
PCA basis image

Raw

Global

Low Frequency

High Frequency

Fig. 4 Samples of Fourier basis and PCA basis; PCA basis are learned from
three different sources, including raw image (image under uniform
illumination), direct component and global component.

ous material from dense material with low sub-surface scattering
like wood and paper, to material with high sub-surface scattering
like fur, food and rubber. The objects also consist of different
shapes from primitive shapes, i.e. sphere and cylinder, to com-
plex shape with a high amount of inter-reflection. The images
have varying scales from a focused region of the surface to the
whole object. Figure 5 illustrates some examples of our dataset.

Our dataset acquisition system consists of a simple camera and
projector setup. We project high frequency 8 x 8 checker pattern
into a scene shifting by 1 pixel each. Each scene is also captured
with uniform illumination (without a pattern) to obtain a raw im-
age. Each image is directly cropped to eliminate background and
area which is not illuminated to ensure that every pixel contains
accurate separation of both direct and global components.

Later, we extract the PCA basis from our dataset. Each tuple
is segmented directly into 2,000 small chunks of 128 x 128 pix-
els. The location of each chunk is selected randomly but consis-
tently between raw, direct and global components. We separately
compute the basis image for each component to derive individual
basis images.

By doing so, we obtain basis images for raw, direct and global
components. However, further analysis of each set of basis im-
ages is needed to investigate the correlation between each basis
which directly affect the quality of separation.

3.3.2 Correlation between Direct, Global and Raw Image
Bases

To solve Eq. (4), the matrix M = [LD G] has to be invertible,
which means that all columns in M should be independent. This
indicates that if D and G are statistically independent, the equa-
tion is solvable without any requirements for the illuminated pat-
tern L. Unfortunately, as will be shown later, these two bases are
somehow correlated.

Firstly, we analyze the covariance between each pair of ba-
sis image in the tuple. We apply cosine similarity to measure
the similarity between the two basis vectors. Independent pair of
the vectors leads to low similarity. We measure cosine similarity
for three combinations: direct and global, direct and raw, global
and raw. Figure 6 (a) illustrates cosine similarity of the first 64
components and the values of the most similar image. We have
found common trends in each combination of the components,
that is, dominant bases have high similarity. This trend indicates
that dominant bases contain a low-frequency basis regardless of
the type of component. On the other hand, minor bases contain

Y
.n d.7

om

Fig. 5 Example of images in our dataset. Tuples of raw image (image in uniform light), direct component

and global component.
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Fig. 7 The intensity of images in frequency domain while illuminating pattern of different frequencies.
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Fig. 6 Analysis of relationship between PCA basis image. (a) Cosine simi-
larity between the first 64 basis image, Intensity of pixel indicate the
similarity between pair of basis image in respective index: (left) Di-
rect and Global, (Center) Direct and Raw (image in uniform light),
(Right) Global and Raw. (b) Poor separation result is due to the de-
pendency between direct and global bases. (c) The condition number
of direct and global components when the number of bases increases.

high frequency details such as texture, which depends on the type
of component. The results demonstrate the statistical difference
between light transport component (direct and global) and im-
age in uniform illumination and the difference between direct and
global components, and therefore confirm usage of the basis im-
age learned from light transport component over generic image.

Secondly, we investigate dependency of the matrix My, =
[D G]. We conduct an experiment to measure the condition
number of the matrix My, by increasing the number of bases.
The results of this experiment are shown in Fig. 6 (c). We have
found that the condition number becomes greater when the num-
ber of basis images increases, which actually leads to an ill-
conditioned matrix with inaccurate separation result. The separa-
tion result without a high frequency pattern is shown in Fig. 6 (b).

In conclusion, we have found that there is some extent of inde-
pendence between direct and global bases from our dataset. How-
ever, the degree of independence is not enough to separate each
of them.

3.4 Independence of Linear Equation with High frequency

Illumination
As described in the previous section, direct and global com-

© 2018 Information Processing Society of Japan

ponents cannot be separated effectively using just a basis image.
The independence of columns in the matrix M = [LD G] is vi-
tal for an invertible capability of a linear system. In this section,
we analyze projected pattern L which modulates just the direct
components from our basis and discuss the importance of select-
ing an appropriate pattern L, to create independent columns of
M.
3.4.1 Use of High Spatial frequency Illumination

The desirable properties of an illumination pattern have to meet
two criteria. Firstly, spatial frequency of an illumination pattern
must be high enough to maintain constant properties of the global
component as described in Section 3.1. Secondly, the illumina-
tion pattern must be capable of differentiating pattern-modulated
bases LD of a direct component and pattern-independence bases
of a global component. In the following subsection, we analyze
the effect of the high spatial frequency checker pattern and sum-
marize our viewpoint in the frequency domain analysis and the
linear algebra analysis.
3.4.2 Frequency Analysis

High spatial frequency illumination is widely used to separate
direct and global components [18] in a spatial domain. However,
the effect in the high frequency domain has not been investigated.

As shown in Fig.7, we use the fast separation method [18] to
separate direct component iz and global component i,. The fre-
quencies of the two components are densely located in low fre-
quency. Similar result is obtained from the image in uniform il-
lumination iy + i,. Frequency-wise direct and global components
are indifferent under uniform illumination and, therefore insep-
arable. However, after we modulate direct component i; with
high spatial frequency pattern L, the frequency of i, is shifted
into high frequency, while the unmodulated global component is
still in the low frequency. It can be concluded that by modu-
lating scene with high spatial frequency illumination, we create
differences in frequencies of the direct and global components.
We also observe that the similarity in frequency between direct
and global components becomes larger (harder to separate) when
lowering the frequency of an illumination pattern (i.e., larger pat-
tern size), and causes the shifted frequency from modulated bases
Li, to be closer to the frequency of unmodulated global bases. In
other words, the quality of separation decreases when using lower
frequency illumination.
3.4.3 Linear Algebra Analysis

‘We measure the independence of our proposed linear system in
terms of condition number. A lower condition number indicates
a higher degree of independence and provide a highly accurate
result. We experiment by creating matrix M with varied size of
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Fig. 8 Analysis on the spatial frequency of an illumination pattern and the
number of basis. (a) and (b) Comparison of RMSE between different
spatial frequency of an illumination pattern when changing the num-
ber of basis. The vertical dotted lines indicate frequency of basis that
equals the frequency of the illumination pattern. (c) Two types of
error: (Top) - Blur due to lack of bases, (Bottom) - Vibration due
to overfitting. (d) Condition number of the linear equation under a
different frequency illumination pattern in logarithm scale; an illu-
mination pattern size varies from 32 x 32 to 1 x 1.

a checker illumination pattern from the 128 x 128 pixels of first
256 of Fourier basis. Figure 8 (d) shows that the condition num-
ber decreases exponentially as the size of a checker illumination
pattern reduces, indicating a well-posed linear system with high
spatial frequency illumination.

In summary, both experiments demonstrate that by applying a
high spatial frequency pattern, our proposed linear system can be
solved, and direct and global components can be differentiated.

3.5 Connection between Optimal Number of Basis and Spa-
tial Frequency of Illumination

Furthermore, we investigate the connection between the basis
representation and the frequency of an illumination pattern. From
Section 3.4, we find that the effectiveness of our linear equation
depends on the frequency of an illumination pattern. In practice,
the projection of a high frequency pattern is constrained by the
specification of equipment. Such limitation creates misalignment
between color channels of a projector and false color artifact due
to the abrupt change in intensity in a high frequency pattern in
the demosaicing process. As a result, it causes lower quality in
the captured image. In this part, we propose a methodology to
find an optimal number of bases in different frequencies of the
illumination pattern, aiming to achieve the highest separation ac-
curacy. We measure Root Mean Square Error (RMSE) on direct
and global components between results from the fast separation
method with multiple images and our proposed method. The in-
put image of our method is simulated by using Eq. (4) from the
actual results. The illumination pattern with checker pattern size
(size of each checker block) varied from 4 x4, 8 x 8, 16 X 16 and

© 2018 Information Processing Society of Japan

32 % 32. 1,400 segments of size 128 X 128 are randomly selected
from the test set and used in this simulation. Each image in the
test set is captured in the same setup to ensure the consistency
of frequency in direct and global components. The analysis is as
follows.

Firstly, we consider the optimal basis of uniformly distributed
Fourier basis. The relation between separation accuracy and a
number of Fourier basis in different spatial frequency illumina-
tion is shown in Fig. 8 (a) and 8 (b). The result indicates two crit-
ical aspects. The result confirms our hypothesis in Section 3.4
that separation error decreases when the spatial frequency of il-
lumination (smaller pattern size) increases under any number of
basis. We have found that by increasing number of basis, the sep-
aration accuracy improves until the number of basis image passes
through a certain point. The result confirms that the optimal num-
ber of basis exists. Two major properties are discovered at such
optimal point: the number of optimal basis image increases as
the spatial frequency of illumination increases, and the frequency
of basis at optimal number is always lower than the frequency
of spatial frequency of the illumination pattern. In conclusion,
the quality of separation is limited by the spatial frequency of the
illumination.

Secondly, we investigate the sources of error from the experi-
ment. These errors result in two contrasting outcomes, blur and
vibrant artifact, as shown in Fig. 8 (c). Blur occurs when the basis
image is insufficient to represent the source. In contrast, vibrant
artifact occurs when basis with higher frequency than spatial fre-
quency of illumination is used. The noise uniformly occurs in the
block of the checker pattern which indicates the mixing of direct
and global components in the high frequency basis.

Lastly, we compare and evaluate the optimal number of basis
and its robustness by and between the use of Fourier, PCA raw
and PCA direct-global bases (Fig. 9). Basis with a lower number
indicates better representative of the component. From the ex-
periment, we find the similarity of the optimal number for every
basis image. However, error tendency indicates differences in the
robustness of each basis representation. We measure the growth
rate of RMSE after an optimal point and illustrate the result in
the following order from high to low as follows: Fourier basis,
PCA raw basis, and PCA direct-global basis. The direct-global
basis from our dataset has the highest robustness to compensate
errors and provides more stable separation accuracy in the actual
environment where an optimal number of bases is uncertain.

4. Performance Enhancement of the Solving
System

The direct implementation of the proposed method requires a
large memory which is impractical in a current computer sys-
tem. The total size of matrix M is a multiplication of a number of
pixel and a number of the optimal basis. Both factors are linearly
increasing when the image is larger and consume an excessive
amount of memory.

Despite of this compactness and simplicity, a naive implemen-
tation of the proposed linear system for the whole image is im-
practical due to excessive memory usage. The length of each
basis vector equals to the number of the image pixels, and the
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number of optimal basis vector increases depending on the fre-
quency of pattern and the image size (larger image size required
larger number of basis).

The most straightforward approach to solve such memory issue
is to divide an image into small segments and solve each segment
separately. The memory usage will be limited to the size of a
single segment. However, continuity around the transition of two
segments has been left out, which usually creates an artifact line
between the border of the two segments. To reduce this artifact,
we propose the use of the average between overlapped segments
instead of using an exact grid. As a consequence, the computation
time will become substantially longer, as the number of segments
increases.

To reduce computation time, we propose a pre-computation
process. Equation (4) clearly shows that coefficient @ and 8 can
be solved by multiplication of the image i with pseudo-inverse of
the matrix M = [LD G]. The pseudo-inverse matrix M~ de-
pends on light L and does not depend on the scene; thus it can
be precomputed. Moreover, considering checker pattern as the
high frequency pattern, repetitiveness between segments of the
pattern can be used along the image. Such calculation of the in-
verse matrix is done only once in a small segment which reduces
computation time for the whole separation process.

In an actual experiment, the intensity of captured projection
illumination is slightly different from ideal projection due to mis-
alignment in the setup, misalignment between projector color
channels and noise from a camera. Calibration is required to en-
sure similarity of pattern in each segment. We calibrate an exact
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projected illumination for every pixel by capturing a whiteboard
in high frequency illumination. Initial segments are randomly
selected, then brute-force scanned through the calibrated pattern
to find a set of candidate segments containing a similar pattern.
We compute an average pattern from candidate segment to re-
duce noise, then precompute matrix M~'. We apply our separa-
tion technique to every candidate segment and average the results
to compose the full resolution of direct and global components
image. By applying this technique, we substantially reduce the
computation time. This acceleration in turn allows us to increase
the number of segments, which results in better separation qual-
ity. The overall process of our separation technique is shown in
Fig. 10.

5. [Experimental Results

In this section, we conducted experiments to assess the qual-
ity of separation and its computational performance. Firstly, we
compared the quality of separation between our novel technique
and the conventional fast separation technique by measuring the
separation error. Then we evaluate the quality of our method on
the performance of the dynamic scene. Secondly, we apply our
proposed enhancement technique to enable the implementation in
a real environment and evaluate its performance.

We set up a real experiment using an off-the-shelf camera
and a projector in a coaxial system. We implemented the pro-
jection center calibration technique [3] to ensure the alignment.
Our coaxial system consisted of 1,920 x 1,080 projector and
1,600 x 1,080 camera. Such alignment is crucial to obtain pixel
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Direct component

Global component

Fig. 11 Samples test image of direct and global components used in our experiment. Each image is
captured by using the multiple image technique to create ground-truth data.

Table 1 Average RMSE between baseline and simulated results from each methods. Our method is sim-
ulated under N X N checker patterns. Fast separation single image method is simulated under

N x 1 horizontal stripe patterns.

Direct component Global component
Method N=4 N=8 N=16 N=32| N=4 N=8 N=16 N=32
Fast separation (Single) [18] 0.1955  0.3282 0.4897 | 0.0976  0.1703  0.1950  0.2242
Our (Fourier basis) 0.0950 0.0967  0.0996  0.1050 | 0.0800 0.0801  0.0808  0.0828
Our (PCA raw basis) 0.0952  0.0965  0.0988  0.1030 | 0.0800 0.0801  0.0805  0.0816
Our (PCA direct-global basis) | 0.0951  0.0962  0.0981  0.1010 | 0.0800 0.0801  0.0802  0.0804

correspondence between camera and projector regardless of the
geometry of the scene.

5.1 Quality of Separation

We conducted two experiments: a simulated experiment to
evaluate the separation accuracy on a perfect projection varied
by spatial frequency of the illumination pattern, and a real ex-
periment to evaluate the quality of our technique in a real envi-
ronment under challenging dynamic scenarios. The results were
discussed in the following subsections.

5.1.1 Simulated images

Firstly, we evaluated the separation accuracy on simulated im-
ages. The ground-truth of the simulation was obtained by us-
ing multiple images method [18]. The example of the test set is
shown in Fig. 11. The input of a single image separation method
was synthesized from ground-truth data assuming that the global
component was constant under a different spatial frequency illu-
mination pattern. Our separation technique and the single image
fast separation were performed on these synthesized data. The
checkerboard pattern was used as an illumination pattern for our
technique varied by pattern size from 4 x 4, 8 X 8, 16 X 16 and
32 % 32 pixels. The number of basis of our method was selected
from the optimal point with the lowest error. As for the single
image variant of the fast separation technique, we used vertical
stripe pattern with pattern width varied from 4, 8, 16 and 32 pix-
els and prompting window of 2 X pattern size + 1 pixels.

The average RMSE of direct and global component separation
was shown in Table 1 and image-wise RMSE comparison was
shown in Fig. 13. From these results, we have observed the fol-
lowing aspects.

Firstly, spatial frequency of an illumination pattern affects sep-
aration quality. In every method, RMSE in a high spatial fre-
quency illumination pattern was always lower than the result of a
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lower frequency. The result confirmed our analysis of condition
number in our linear system.

Secondly, the accuracy of our technique outperforms the single
image fast separation method. With the same pattern frequency,
RMSE of our direct and global components was two times lower
than the single image fast separation technique. The image-wise
plotin Fig. 13 (a) also indicated that our technique provided better
separation quality in most of the test images.

Lastly, in most cases, the accuracy of direct-global basis is bet-
ter than other bases with identical direct and global components.
The improvement indicated that bases separately learned from
real separation were the appropriate representatives of the direct
and global components. This disclosed the statistical differences
between the two components.

5.1.2 Real images

In an actual experiment, we used an 8 x 8 checker illumination
pattern for our technique and multiple images methods, and an
8-pixel width horizontal stripe pattern for single image fast sepa-
ration method. We captured the performance on both a still image
and a video sequence of moving objects. The qualitative compar-
ison of the appearance of the direct and global components from
real images between the two methods was shown in Fig. 14. The
quantitative analysis was discussed as follows.

Firstly, we compared the separation result on a still object using
our proposed method and a single image fast separation method.
Moreover, its separation accuracy was found to outperform the
conventional single image method, by for example, observing the
transition between objects in the area of the mouth and eyes of
the doll in Fig. 14 (b).

Secondly, we compared the separation result on moving ob-
jects using our proposed method in a single frame and the multi-
ple images fast separation method. The result on the image of a
human hand as shown Fig. 14 (c) illustrated a smooth result from
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Fig. 13 Experimental evaluation on simulated images.
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Fig. 14 Experimental result comparison between the fast separation method (multiple images or single
image) and our method (Fourier, PCA raw, PCA direct-global basis).

our method while an artifact border around fingertips caused by
jiggling of hand was found in the conventional multiple images
method. Such result confirmed the capability of our proposed
method in handling scene with a moving object.

Thirdly, we evaluated the effect of various bases. The separa-
tion results from our direct-global bases showed less noise than
other bases with no prior knowledge of direct and global compo-
nents. This result is consistent with the calculated RMSE in our
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simulation.

Lastly, we performed our technique on the video sequences
which demonstrated the capability of single frame separation and
its compatibility with a fully dynamic scene. The comparison re-
sults in a video sequence between our method and fast separation
are shown in Fig. 15.
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Fig. 12 Performance enhancement of our separation technique without sac-
rificing the quality of separation. (a) Comparison of computation
time with/without enhancement. (b) Comparison of separation re-
sults with/without performance enhancement.

Table 2 Computation time (sec) between implementation of our method
with/without performance enhancement technique with different
basis numbers N.

Step N=4 N=64 N=256
Precalculation 12.1182 12.3634 14.1599
Separation 0.8572 0.9143 1.9609
With enhancement 12.9755 13.2777 16.1207
Without enhancement 5.1041 195.3822 1491.5955

5.2 Performance Enhancement

We evaluated the quality and performance of our enhancement
technique under two critical criteria: the acceleration of com-
putation time and the stability of separation quality. We evalu-
ated the computation time on 400 x 400 images from the previ-
ous experiment. Our separation system was implemented by us-
ing Matlab R2018a on Ubuntu 14.04LTS with an Intel Xeon(R)
CPU ES5-1650 v4 @ 3.60 GHz. To improve computation time,
we performed matrix-matrix multiplication to compute multiple
segments simultaneously.

We measured computation time including the precomputation
time for the entire process proposed in Section 4. Figure 12 (a)
illustrates that the overhead of the precomputation process was
quickly compensated when the number of bases increased. The
results in Table 2 also confirmed that our performance enhance-
ment technique was significantly advantageous. Noted that re-
duction in computation time from performance enhancement
technique is substantial for larger image with an increased num-
ber of segments.

Moreover, Fig. 12 (b) showed that by applying performance en-
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hancement technique to the approximate pattern, we obtained al-
most identical separation result. Such result was predictable due
to the similarity of the exact pattern for each segment. Noted that
if the pattern was distorted due to the geometry of an object, it
indicated the misalignment between camera and projector system
and caused failure in our system.

6. Conclusion

In this article, we propose a novel technique for direct and
global components separation from a single image with full spa-
tial resolution. We introduce a simple linear basis model and
a light transport dataset to learn the PCA basis representation.
We explore the dependency between basis images and illustrate
how the high spatial frequency illumination pattern contributes
to solving the ambiguity between these bases as well as solving
the linear solution. We also suggest a performance enhancement
technique to reduce computer memory usage and computation
time to a practical level in the real environment.

Our system requires the use of only a coaxial standard off-the-
shelf camera and a projector. The study shows that our data-
driven bases are better in representing direct and global compo-
nents. The experiment on both simulated and real images con-
firm that our method delivers better separation quality and creates
lower error compared to other approaches. Moreover, our method
was proven capable of accurately separating scene with moving
objects.

A limitation on our technique is the noise sensitivity. In our
model, a perfect model of both direct and global component has
been assumed without the representation of the noise term. The
input image with excessive noise results in high RMSE in both
direct and global components.

In this study, we have assumed coaxial alignment between a
camera and a projector in the system, which would require much
time and trouble for system alignment and calibration. We are
exploring the possibility of using data-driven basis representation
for accurate separation in a real environment with no prior knowl-
edge of the correspondence between the camera and the projec-
tion pattern.
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