o000 oooooooooDoo
IPSJ SIG Technical Report

20040 DBSO 1340 (1)O (17)

20040 700 13

Ea—AF—<Z AW XML 7 7 & 2 §|#

FH B

FIR g2 L ElE

P F5E

HAIBM (k) HOZEEHERT
T 242-8502 #7311 IR RFN T 48 1623-14 LAB-S77
E-mail: {eb91801,atozawa,kudo,satoshih}@jp.ibm.com

XML XEDZDDAF—<hb, T7EAHERY o —2HOICERATZ LiICko T2 —
AFX—<EBERTD. AROAX—< LFRRY, Ea—AFX—<ZR@3T7 7 BABFTILTH
LZEBECRMEUNEELR. TZEAREEIN TV EERPREIC OV CORSREHREE
HECEBADT, Pa—AF—<Ir/us/S~0RHELERET 5.

View Schemas for XML Access Control

Makoto MURATA, Akihiko TOZAWA, Michiharu KUDO, Satoshi HADA
IBM Tokyo Research Lab.
1623-14 Shimotsuruma, Yamato, Kanagawa 242-8502, JAPAN
E-mail: {eb91801,atozawa,kudo,satoshih}@jp.ibm.com

A view schema is derived from an original schema for XML documents by enforcing an

access control policy statically. Unlike the original schema, the view schema allows only

those elements or attributes which are exposed by the policy. Since the view schema hides

superfluous information about access-denied elements or attributes, it is more programmer-

friendly than the original schema.

1 Introduction

XML [4] has become an active area in database
research. XPath [6] and XQuery [3] from the W3C
have come to be widely recognized as query lan-
guages for XML, and their implementations are ac-
tively in progress. In this paper, we are concerned
with fine-grained (element- and attribute-level) ac-
cess control for XML database systems. We believe
that access control plays an important role in XML
database systems, as it does in relational database
systems. Some early experiences [15, 9, 2] with ac-
cess control for XML documents have been reported

already.
Existing languages (e.g. [15, 9]) for XML ac-
cess control are typically use XPath [6] as a sim-

ple and powerful mechanism for handling an infi-

nite number of paths. For example, to deny ac-
cesses to name elements that are immediately or
non-immediately subordinate to article elements,
it suffices to specify a simple XPath expression
//article//name as part of an access control pol-
icy.

To efficiently determine whether or not an ac-
cess is granted by an XML access control policy,
we have studied static analysis and run-time check-
ing. They are presented in our previous paper
[15] and companion paper, respectively [20]. Run-
time check is performed when a query engine ac-
cesses an element or attribute in an XML database.
Meanwhile, static analysis is performed at compile
time (when a query expression is created rather
than each time it is evaluated). It examines ac-

cess control policies and query expressions as well

0 1230

事務局
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

事務局
2004／7／13

事務局
2004－DBS－134　(I)　(17)

研究会Temp
テキストボックス
－123－

as schemas (if present), but does not examine ac-
tual databases. Run-time checking is required only
when static analysis is unable to grant or deny ac-

cess requests.

In this paper, we attempt to help the database
programmer by view schemas. A view schema is
derived from an original schema by enforcing an
access control policy statically. Unlike the origi-
nal schema, the view schema allows only those ele-
ments or attributes which are exposed by the pol-
icy. Since the view schema hides superfluous infor-
mation about access-denied elements or attributes,
it is more programmer-friendly than the original
schema.

1.1 Related Works

Fine-grained access control for XML documents
has been studied by many researchers [1, 15, 2, 9,
11]. Their access control policies are similar to ours.
They all provide run-time checking of access control

policies.

It was [10] that introduced view-based access con-
trol for XML. Although their work is restricted to
DTDs, it derives view schemas (which they call “se-
curity views”) by eliminating access-denied infor-
mation from schemas. Our view schemas are in-
spired by their work. However, our work is not
restricted to DTDs; it can handle modern schema
languages such as RELAX NG and W3C XML
Schema. Another difference between our work and
[10] is the way acccess control policies are enforced.
[10] uses query rewriting, which is restricted to
XPath queries. Meanwhile, our work relies on run-
time checking and static analysis, which are appli-
cable to any XPath-based query languages includ-
ing XQuery.

2 Preliminaries

In this section, we introduce the basics of XML,
schema languages, XPath, and XQuery.

<record patientId="0003">
<diagnosis>
<pathology type="Gastric Cancer">
Well differentiated adeno carcinoma
</pathology>
<comment>This seems correct</comment>
</diagnosis>
<chemotherapy>
<prescription>5-FU 500 mg</prescription>
<comment>Is this sufficient?</comment>
</chemotherapy>
<comment>How was the operation?</comment>
</record>

Fig. 1: An XML document example

2.1 XML

An XML document consists of elements, at-
tributes, and text nodes. We hereafter use £ and
¥4 as a set of element names and that of attribute
names, respectively. To distinguish between the
symbols in these sets, we prepend '@’ to symbols
in 24,

An XML document representing a medical record
This XML document de-
scribes diagnosis and chemotherapy information for

is shown in Figure 1.

a certain patient. For the rest of this paper, we use

this document as a motivating example.

2.2 Schema

A schema is a description of permissible XML
A schema language is a computer
language for writing schemas. DTD, W3C XML
Schema [19], and RELAX NG [7] from OASIS (and

now ISO/IEC) are notable examples of schema lan-

documents.

guages.
We do not use any particular schema language in
this paper, but rather use tree regular grammars [8]
as a formal model of schemas. Murata et al. [18]
have shown that tree regular grammars can model
DTD, W3C XML Schema, and RELAX NG.
A schema is a 5-tuple G = (N,%F 24,5 P),

where:
e N is a finite set of non-terminals,

e YF ig a finite set of element names,

0 1240

研究会Temp
テキストボックス
－124－

e Y4 is a finite set of attribute names,
e S (start set) is a subset of ¥¥ x N,

e P is a set of production rules X — r A, where
X € N, ris a regular expression over ©¥ x N,
and A is a subset of ¥4,

Production rules collectively specify permissible
element structures. We separate non-terminals and
element names, since we want to allow elements of
the same name to have different subordinates de-
pending on where these elements occur. Although
examples in this paper can be captured without
separating non-terminals and element names, W3C
XML Schema and RELAX NG require this separa-
tion. Unlike the definition in [18], we allow pro-
duction rules to have a set of permissible attribute
names’ .

For the sake of simplicity, we do not allow
schemas to specify constraints on text nodes or at-
tribute values. In the case of DTDs, this restriction

amounts to the confusion of #PCDATA and EMPTY.

A schema for our motivating example is Gy =
(Nh ZlEa Ef, Sla Pl)a where

Ni = {Record, Diag, Chem, Com, Patho, Presc},

f = {record,diagnosis, chemotherapy,
comment, pathology, prescription},

v = {QpatientId, Qtype},

S1 = {record][Record]},

Py = {Record — (diagnosis[Diag]",

chemotherapy[Chem]*,

comment[Com]”, record[Record]")

{@QpatientId},
Diag — (pathology[Patho],
comment[Com]") 0,
Chem — (prescription[Presc]”,
comment[Com]*) @,
Com — €), Patho — € {Qtype},
Presc — € 0}.

An equivalent DTD is shown below.

<!ELEMENT record (diagnosisx,
chemotherapy#*,
comment*,record#*)>
<!'ATTLIST record
<!ELEMENT diagnosis (pathology,comment*)>
<!ELEMENT chemotherapy (prescription*,comment*)>
<!ELEMENT comment (#PCDATA) >

<!ELEMENT pathology (#PCDATA) >

<!'ATTLIST pathology type CDATA #REQUIRED>
<!ELEMENT prescription (#PCDATA)>

TRELAX NG provides a more sophisticated mechanism
for handling attributes [14].

patientID CDATA #REQUIRED>

2.3 XPath

XPath is a mechanism for locating certain ele-
ments or attributes in XML documents. XPath is
widely recognized in the industry and is used by
XSLT [5] and XQuery.

XPath uses azes for representing the structural
relationships between nodes. For example, the
above example can be captured by the XPath
expression //p//a, where // is an axis called
Although XPath provides
many axes, we consider only three of them, namely
“descendant-or-self” (//), “child” (/), and “at-

tribute” (@) in this paper. Namespaces and wild-

“descendant-or-self”.

cards are outside the scope of this paper, although

our framework can easily handle them.

2.4 XQuery

XQuery is an XML query language developed
by W3C. The following query lists the pathology-
comment pairs for the Gastric Cancer.

<TreatmentAnalysis>
{
for $r in document ("medical_record")/record
where $r/diagnosis/pathology/@type
= "Gastric Cancer"

return
$r/diagnosis/pathology, $r//comment
}
</TreatmentAnalysis>
3 Access Control for XML

Documents

In this paper, access control for XML documents
means element- and attribute-level access control
for a certain XML instance. Each element and at-
tribute is handled as a unit resource to which access
is controlled by the corresponding access control
policies. In the following sections, we use the term
node-level access control when there is no need to
separate the element-level access control from the

attribute-level access control.

0 1250

研究会Temp
テキストボックス
－125－

3.1 Syntax of Access Control Policy

The access control policy consists of a set of ac-
cess control rules. Each rule consists of an object
(a target node), a subject (a human user or a user
process), an action, and a permission (grant or de-
nial) meaning that the subject is (or is not) allowed
to perform the action on the object. The subject
value is specified using a user ID, a role or a group
name but is not limited to these. For the object
value, we use an XPath expression. The action
value can be either read, update, create, or delete,
but we deal only with the read action in this paper
because the current XQuery does not support other
actions. The following is the syntax of our access

control policy?:

(Subject, +/-Action, Object)

The subject has a prefix indicating the type of the
subject such as role and group. “+” means grant
access and “-” means deny access. In this paper, we
sometimes omit specifying the subject if the subject
is identical with the other rules.

Suppose there are three access control rules for
the document described in Section 2.1:

Role: Doctor
+R, /record
Role: Intern

+R, /record
-R, //comment

Each rule is categorized by the role of the re-
questing subject. The first rule says that “Doctor
can read record elements”. The second rule says
that “Intern can read record elements”. The third
rule says that “Intern cannot read any comment el-
ements” because comment nodes may include confi-
dential information and should be hidden from ac-
cess by Intern. Please refer to Section 3.2 for more

precise semantics.

2The syntax of the policy can be represented in a stan-
dardized way using XACML [12] but we use our syntax for
simplicity.

3.1.1 Using XPath for XML Access Con-

trol

Many reports [15, 9, 2, 11] on the node-level
access control for XML documents use XPath to
locate the target nodes in the XML documents.
XPath provides a sufficient number of ways to refer
to the smallest unit of an XML document structure
such as an element, an attribute, a text node, or a
comment node. Therefore it allows a policy writer
to write a policy in a flexible manner (e.g. grant
access to a certain element but deny access to the
enclosing attributes). In this paper, for simplicity,
we limit target nodes of the policy to only the ele-
ments and attributes. We assume that other nodes
such as text and comment nodes are governed by

the policy associated with the parent element.

3.2 Semantics of Access Control Pol-
icy

Access control policies in general should satisfy
the following requirements: succinctness, least priv-
ilege, and soundness. Succinctness means that the
policy semantics should provide a way to specify a
smaller number of rules rather than to specify rules
on every single node in the document. Least priv-
ilege means that the policy should grant the mini-
mum privilege to the requesting subject. Soundness
means that the policy evaluation must always gen-
erate either a grant or a denial decision in response
to any access request.

To satisfy the above requirements, the semantics
of our access control policies are defined as follows:

1. An access control rule with +R or -R (capital
letter) propagates downward through the XML
document structure. An access control rule
with +r or -r (small letter) does not propa-
gate and just describes the rule on the specified
node.

2. A rule with denial permission for a node over-
rules any rules with grant permission for the
same node.

3. If no rule is associated with a certain node, the

“_n

default denial permission is applied to that

0 1260

研究会Temp
テキストボックス
－126－

<record patientID="0003">
<diagnosis>
<pathology type="Gastric Cancer">
Well differentiated adeno carcinoma
</pathology>
</diagnosis>
<chemotherapy>
<prescription>5-FU 500 mg</prescription>
</chemotherapy>
</record>

Fig. 2: The XML document that Intern can see

node.

Now we informally describe an algorithm to gen-
erate an access decision according to the above def-
initions. First, the algorithm gathers every grant
rule with +r and marks “+” on the target nodes
referred to by the XPath expression. If the node
type is an element, the algorithm marks “+” on im-
mediate children nodes (e.g. a text and comment
nodes) except for the attributes and the elements.
It also marks a “+” on all the descendant nodes if
the action is R. Next, the algorithm gathers the re-

w_»

maining rules (denial rules) and marks on the

w_»

target nodes in the same way. The mark over-

writes the “+” mark if any. Finally, the algorithm

w_»

marks on every node that is not yet marked.
This operation is performed for each subject and
action independently.

For example, the access control policy in Sec-
tion 3.1 is interpreted as follows: The first rule
marks the entire tree with “+” and therefore Doc-
tor is allowed to read every node (including at-
tributes and text nodes) equal to or below any
record element. The second and third rules are
policies for Intern. The second rule marks the en-
tire tree with “+” as the first rule does and the third
rule marks comment elements and subordinate text
nodes with “-”, which overwrites + marks. Thus,
three comment elements and text nodes are deter-
The XML document

that Intern can see is shown in Figure 2.

mined as “access denied”.

A rule that uses +R or -R can be converted
to the rule with +r or -r. For example,
(Sbj,+R,/a) is semantically equivalent to a set

of three rules: (Sbj,+r,/a), (Sbj,+r,/a//*) and

(Sbj ,+r,/a//@*). Thus, +R and -R are techni-
cally syntactic sugar, but enable a more succinct

representation of the policy specification.

3.2.1 Denial downward consistency

We require that access control policies satisfy
denial downward consistency, which is specific to
XML access control. Although view schemas can
be constructed even when this requirement is not
satsified, we feel that it ensures simpicity and con-
sistency of access control policies.

Denial downward consistency requires that when-
ever a policy denies an access to an element, it must
also deny the access to its subordinate elements and
attributes. In other words, whenever access to a
node is allowed, access to all the ancestor elements
must be allowed as well. We impose this require-
ment since we believe that elements or attributes
isolated from their ancestor elements are meaning-
less. For example, if an element or attribute spec-
ifies a relative URI, its interpretation depends on
the attribute xml:base [16] specified in the ances-
tor elements. Another advantage of denial down-
ward consistency is that it makes implementation

of runtime policy evaluations easier.

4 View Schemas

Recall that a schema defines the set of permis-
sible XML documents in terms of elements, at-
tributes, and their structural relationships. When
access control is present, however, the elements or
attributes permitted by the schemas are not always
accessible to the database programmer. In other
words, the exposed documents are different from
the documents permitted by the schema. Such a
schema is not only confusing but may also allow
malicious programmers to guess hidden information
[10].

To overcome this problem, we derive a wview
schema from an input schema. A view schema is
equivalent to the input schema except that it does
not allow those elements and attributes which are
hidden by the policy.

01270

研究会Temp
テキストボックス
－127－

4.1 Automata and XPath expres-

sions

In preparation, we introduce automata and show
how we capture XPath expressions by using au-
tomata.

A non-deterministic finite state automaton
(NFA) M is a tuple (Q,Q, Q™ Qfin,§), where Q
is an alphabet, @ is a finite set of states, Q™" (a
subset of Q) is a set of initial states, Q" (a subset
of Q) is a set of final states, and ¢ is a transition
function from @ x Q to the power set of) [13]. The
set of strings accepted by M is denoted L(M).

Recall that we have allowed only three axes of
XPath (see Section 2.3).

us to capture XPath expressions with automata.

This restriction allows

As long as an XPath expression contains no pred-
icates, we can easily construct an automaton from
it. We first create a regular expression by replacing
“/” and “//” with “” and “ (Z#)*.” respectively,
where “.” denotes the concatenation of two regular
sets, and then create an automaton from this regu-
lar expression. The constructed automaton accepts
a path if and only if it matches the XPath expres-
sion.

When an XPath expression r contains predicates,
we cannot capture its semantics exactly by using an
automaton. However, we can still approximate r
by constructing an over-estimation ¥ and an under-
estimation r and then construct automata for them.
To construct 7, we assume that predicates are al-
ways satisfied. Meanwhile, to construct r, we as-
sume that the predicates occurring in r are never
satisfied. See our previous paper [15] for further

details of over- and under-estimation.

4.2 Creating control au-

tomata

access

An access control policy consists of rules, each
of which applies to some roles. For each role, we
create an access control automaton. This automa-
ton captures the set of those paths to elements or
attributes which are exposed by the access control

policy.

In preparation, we replace +R and -R rules with
+r and -r rules, respectively (see Section 3.2).
Let rq,...,mn be the XPath expressions occurring
rl be the

Ty

in the grant rules (+r), and let r{,.
XPath expressions occurring in the denial rules
(-r). For simplicity, we assume that none of
(This re-

striction can be lifted by using under-estimation

Tly ey Py Ty ooy T contain predicates.

for 71, ...,mm and over-estimation for r{,...,r!.)
Recall that we interpret the policy according to
MT ac-

cepts those paths which are allowed by one of

the “denial-takes-precedence” principle.
T1,...,Tm but are denied by any of r/,....,r! . For-

mally,

LMY) = (LM[r]) U U L(Mlrm]))

\ (LM U UL(M[r,])

where ¥ = XP UX4 and “\” denotes the set differ-
ence. We can construct MT by applying Boolean
operations to M|[r1], ..., M[ry], M[ri], ..., M[r.].
We demonstrate this construction for the access
control policy in Section 3.1. For the role Intern,
this policy contains a grant rule and a denial rule,
both of which propagate downward. The grant rule
contains an XPath /record, while the denial rule

contains an XPath //comment. Thus,

LMY = {record} (xE)*. (EA U{eh\

(XE)*- {comment}- (ZF)* (B4 U {e})

4.3 Constructing view schemas

The key idea for constructing view queries is to
simulate the execution of the access control au-
tomaton as well as the derivation of the schema?®.
This is done by using (non-terminal, state) pairs
as “non-terminals”, where non-terminals are taken
from the schema and states are borrowed from the
access control automaton. The key observation is
that a “non-terminal” comprising a non-final state
is used only for deriving access-denied elements or
attributes. A view schema can then be obtained by

deleting such non-terminals.

3This approach is a special case of the schema transfor-
mation shown by the first author in [17]

0 1280

研究会Temp
テキストボックス
－128－

Formally, the view schema GT is defined as fol-
lows. Let the access control automaton MT be
a deterministic automaton (X4 U X% Q, q,6, Qr)
where ¢o € @, Qr C @, and ¢ is a function from
Q x (ZAUXE) to Q. We first construct the product

of G and M7T as below:

1. The set of non-terminals is the cross product
of the non-terminal set N of G and the state
set Q of MT.

2. The underlying alphabets (namely, ¥ and
¥4) for elements and attributes are borrowed
from G, but terminals not appearing in any
production rules or start sets are deleted.

3. The start set is constructed from S as well as
qo and 0; for every e[z] in S, we introduce
el(x,d(qo, e))], where 6(qo, e) simulates the ex-
ecution of M from ¢ via e.

4. The set of production rules is constructed from
P as well as §. For every production rule

z — r A of G and every state ¢ in MT, a

Its left-hand

side is (z, ¢) and its right-hand side is obtained

production rule is introduced.

by replacing each e[z'] in r with e[(z', §(q, €))],
which simulates the execution of MT from ¢
via e.

5. Element or attribute names not appearing in

any production rules are removed.

To create a view schema from this product,
we only have to make the access-denied elements
and attributes invisible. That is, we remove non-
terminals containing non-final states, remove at-
tributes leading M' to non-final states, and replace
e[(x1,q1)] on the right-hand side with an empty se-
quence where ¢; is a non-final state.

To summarize, a view schema is

G" = (N X Q, (EE),= (ZA)laslz-Pl)a

where:
Sl = {6[($,q)] ‘ 6[2?] € Saq = 6(q076)7
q € QF})
P = {(z,q 5 ¢! (r) A |z —>r A€ P,
q € QF:

A'={a€ Ald(g.a) € Qr},

{e € ©F | e occurrs in S’ or P'},

{a € % |a occurrs in P'}.

where ¢? is a homomorphism from (XF x N)* to
(ZF x N x Q)* defined as

S = { el 6@e)] (6la.e) €Qr)
€ (otherwise)

Note that our view schemas hide elements as well
as their subordinate elements and attributes. This
is because we believe in the denial downward consis-
tency. However, should we drop denial downward
consistency, we can still make view schemas by re-
naming access-denied elements (as in [10]) rather

than by deleting them.

4.4 Example

A view schema for our motivating example is
Gl = (Nla EIE; 214, Sl:-Pl)a where

N; = {Record;, Diagi, Chem;, Pathoi, Presc; },

uF = {record,diagnosis, chemotherapy,
pathology, prescription},

¥4 = {Q@patientId, @type},

S1 = {record[Record]},

Py = {Record; — (diagnosis[Diagi]",

chemotherapy[Chem,],
record[Record;]")
{@QpatientId},
Diag, — (pathology[Patho:]") 0,
Chem; — (prescription[Presci]”) 0,
Patho; — € {@Qtype}, Presci — € 0}.

Note that comment elements do not exist in this
view schema, since our access control policy (shown

in Section 3) has a denial rule (-R, //comment).

5 Concluding Remarks

We presented a formal construction of view
schemas from input schemas and access control
policies. We plan to implement this construction
using modern schema languages. We believe that
the construction is not difficult when we use RE-
LAX NG, but it becomes much harder when we
use XML Schema. Another challenge is to gener-

ate comprehensible schemas.

0 1290

研究会Temp
テキストボックス
－129－

References

1]

8]

[10]

[11]

[12]

[13]

E. Bertino, S. Castano, E. Ferrari, and M. Mesiti.
Controlled access and dissemination of XML docu-
ments. In The 2nd Workshop on Web Information
and Data Management, pp. 22-27. ACM, Novem-
ber 1999.

E. Bertino, S. Castano, E. Ferrari, and M. Mesiti.
Author-X: a Java-based system for XML data pro-
tection. In 1/th IFIP Workshop on Database Secu-
rity, Vol. 201 of IFIP Conference Proceedings, pp.
15-26. Kluwer, 2001.

S. Boag, D. Chamberlin, M. F. Fernandez, D. Flo-
rescu, J. Robie, and J. Siméon. XQuery 1.0:
An XML query language. W3C working draft 12
November 2003. http://www.w3.org/TR/xquery/,
November 2003.

T. Bray, J. Paoli, C. M. Sperberg-McQueen,
E. Maler, and F. Yergeau. Extensible Markup Lan-
guage (XML) 1.0. W3C Recommendation. http:
//wuw.w3.org/TR/REC-xml, Feburary 2004.

J. Clark. XML Transformations (XSLT) ver-
sion 1.0. W3C Recommendation, November 1999.
http://www.w3.org/TR/xslt.

J. Clark and S. DeRose. @~ XML Path Lan-
guage (XPath) version 1.0. W3C Recommenda-
tion. http://www.w3.org/TR/xpath, Nov 1999.

J. Clark and M. Murata. RELAX NG specifica-
tion. OASIS Committee Specification, December
2001. http://www.oasis-open.org/committees/
relax-ng/spec-20011203.html.

H. Comon, M. Dauchet, R. Gilleron, F. Jacque-
mard, D. Lugiez, S. Tison, and M. Tom-
masi. Tree automata techniques and applications.
Available at http://www.grappa.univ-1ille3.
fr/tata, 1997. release October, 1st 2002.

E. Damiani, S. D. C. di Vimercati, S. Paraboschi,
and P. Samarati. Securing XML documents. In
Proceedings of the 7Tth International Conference
on Eztending Database Technology (EDBT), Vol.
1777 of Lecture Notes in Computer Science, pp.
121-135, Konstanz, 2000. Springer.

W. Fan, C. Y. Chan, and M. N. Garofalakis. Se-
cure XML querying with security views. In Pro-
ceedings of the 23rd SIGMOD International Con-
ference on Management of Data, to appear. ACM,
2004.

A. Gabillon and E. Bruno. Regulating access to
XML documents. In Proceedings of the 15th IFIP
WG 11.8 Working Conference on Database Secu-
rity, pp. 299-314, July 2001.

S. Godik and T. Moses (Eds). Extensible access
control markup language (XACML) version 1.0.
OASIS Standard http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=xacml, Feb.
2003.

J. E. Hopcroft and J. D. Ullman. Introduction to
Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.

0 1300

[14]

[15]

[16]

[17]

[18]

[19]

[20]

H. Hosoya and M. Murata. Validation and boolean
operations for attribute-element constraints. In
Programming Languages Technologies for XML
(PLAN-X), October 2002.

M. Kudo and S. Hada. XML document security
based on provisional authorization. In Proceedings
of the 7th Conference on Computer and Communi-
cations Security, pp. 87-96. ACM, November 2000.

J. Marsh. XML Base. W3C Recommendation,
June 2001. http://www.w3.0org/TR/2001/REC-
xmlbase-20010627/.

M. Murata. Extended path expressions for XML.
In Proceedings of the 20th Symposium on Princi-
ples of database systems, pp. 126—137, Santa Bar-
bara, May 2001.

M. Murata, D. Lee, and M. Mani. Taxonomy of
XML schema languages using formal language the-
ory. In Eztreme Markup Languages, August 2001.

H. S. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn. XML Schema part 1: Struc-
tures. W3C Recommendation, May 2001.
http://www.w3.org/TR/xmlschema-1/.

B, L R"RAF—7NZHW- XML 7 27 & 24|
. BEOTF—F2_—2RU—27 v ay7 (DBWS), July
2004.

研究会Temp
テキストボックス
－130－

