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Abstract 
  
     Multidimensional indices are very helpful to improve query performance on multidimensional data including 
relational data in ROLAP systems.  The existing multidimensional indices are directed to "queries with all dimensions" 
(called QAD in this study). That is, the dimensions used in each query are all the dimensions in the whole space. However, 
in many applications, especially in OLAP-related ones, the queries may be only with some (partial) dimensions (not all) of 
the whole space, which is called QPD (Queries with Partial Dimensions) in this study.  This study focuses on range 
queries with partial dimensions (RQPD), which is popular in OLAP applications. If the existing multidimensional indices 
are used in RQPD, the dimensions unused in the query are thought as spanning the whole data ranges, which often lead to 
not-good search performance. In these cases, certainly, we also can construct many indices with all the necessary 
combination of dimensions. However, this is very space/time-consuming since many indices have to be constructed and 
some dimensions may be used many times in different indices,  which  is not always feasible. In this study, we propose 
a novel solution to RQPD problem. With our solution, only one index is necessary to such applications. The performance 
of our solution is discussed in detail and is examined by experiments. 
 
 

1. Introduction 
  
There is increasing requirement for processing 
multidimensional range queries on business data 
usually stored in relational tables. For example, 
Relational On-Line Analytical Processing (ROLAP) 
in data warehouse is required to answer complex and 
various types of range queries on large amount of 
such data. Typical examples include  “Select sum 
(EXTENDEDPRICE* DISCOUNT) From 

LINEITEM Where QUANTITY  ≤  25 and 0.1 ≤  
DISCOUNT ≤  0.3 and 2001-01-01 ≤ SHIPDATE ≤ 
2001-12-31”,  where LINEITEM is a table having 
sixteen attributes used in TPC-H benchmark [1]. In 
this query, three attributes QUANTITY, DISCOUNT, 
and SHIPDATE form the range condition.  In order 
to improve good performance for such 

multidimensional range queries, multidimensional 
indices are helpful [2,3], in which the tuples are 
clustered among the leaf nodes to restrict the nodes to 
be accessed for queries. 

Many index structures have been proposed in the 
last two decades. Examples include R*-tree [4], 
X-tree [5], SR-tree [6], and so on.. Some of them (e.g.,  
R*-tree) have been successfully used in many 
researches on multidimensional data (GIS data, 
multimedia data, etc.) and OLAP data [7].  In this 
study, our proposal is based on the R*-tree, since the 
R*-tree have been used in many researches and is 
regarded as one of successful hierarchical index 
structures. Here, we want to note that many other 
hierarchical indices also can be used in this study. 
    The existing multidimensional indices are 
directed to "queries with all dimensions" (called QAD 
in this study). That is, the dimensions used in each 

 

事務局 
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

事務局 
2004－DBS－134　(I)　(5)

事務局 
2004／7／13

事務局 
－31－



query are all the dimensions in the whole space. 
However, in many applications, especially in 
OLAP-related ones, the queries may be only with 
some (partial) dimensions (not all) of the whole index 
space, which is called QPD (Queries with Partial 
Dimensions) in this study.  This study focuses on 
range queries with partial dimensions (RQPD), which 
is popular in OLAP applications. If the existing 
multidimensional indices are used in RQPDs, the 
dimensions of  the index space that are not used in 
the query are thought as spanning the whole data 
ranges, which often lead to not-good search 
performance. In these cases, certainly, we also can 
construct many indices with all the necessary 
dimension combination for each kind of QPDs. 
However, this is very space/time-consuming since 
many indices have to be constructed and managed, 
and some dimensions may be used many times in 
different indices. Actually, this is not always feasible.  
In Section 3, QAD and QPD will be discussed in 
detail. In this study, we propose a novel solution to 
RQPD issue. With our solution, only one index is 
necessary to such applications. Our proposal and 
related algorithms will be presented in Section 4. Our 
solution is discussed in Section 5 and is examined by 
experiments in Section 6.  Section 7 is current 
conclusion and future work of this study. 
 

2. Indexing OLAP Data Using R*-tree 
 
Now, we briefly recall how the traditional R*-tree to 
index business data stored in a relational table and 
give some terms. Let T be a relational table with n 

attributes, denoted by T(A1, A2, …, An). Attribute Ai 
(1 ≤ i ≤ n) has domain D(Ai), a set of possible values 
for Ai.. Each tuple t in T is denoted by <a1,a2, …,an>, 
where ai (1 ≤ i ≤ n) is an element of D(Ai). When the 
R*-tree is used in T, some of the attributes are usually 
chosen as index attributes, which are used to build the 
R*-tree. For simplification of description, it is 

supposed without loss of generality that the first k (1 ≤ 
i ≤ n ) attributes of T, <A1,A2, … ,Ak>, are chosen as 
index attributes. Since the R*-tree can only deal with 

numeric data, an order-preserving transformation is 
necessary for each non-numeric index attributes. After 
necessary transformations, the k index attributes form 
an k-dimensional space, called index space, where 
each tuple of T corresponds to one point. It is not 
difficult to find such a mapping function for Boolean 
attributes and date attributes. For Boolean data, 
“True” and “False” can be mapped onto 1 and 0, 
respectively, if “True” > “False” is assumed forcedly. 
This ordering has no practical problems, because the 
predicate of “equality” such as “A = True” or “A = 
False” is the only predicate pattern for the Boolean 
attribute. Although implementation of “date” depends 
on DBMS, typical example of “date” in TPC-H 
benchmark consists of three integers representing year, 
month, and day. A simple function to get a numeric 
value for a “date” is to use the number of days from 
some reference date to this ``date''. In this paper, the 
day of Jan. 1, 1900 is used as the reference day, that is, 
the number of days from Jan. 1, 1900 to Apr. 5, 1998 
is used to represent the date of Apr. 5, 1998.  
Anyway, it is not easy to map an arbitrary character 
string to a unique numeric data. The work [8] 
proposes an efficient approach that maps character 
strings to real numeric values within [0,1], where the 
mapping preserves the lexicographic order. This 
approach is also used in this study to deal with 
attributes of character string. 
 

3. QPD and RQPD 
 
As mentioned above, QPD means such queries that 
used only partial dimensions in the whole index space 
and this study focus on the range QPD (or say RQPD), 
which is very popular in OLAP applications. In 
contrast to QPD, the queries used all the dimensions 
in the index space are called QADs. Fig.1 are 
examples of QAD and QPD. 

In Fig.1, the shaded regions are query range.  
(a) and (b) are range queries like “WHERE a1 < X < 
a2”, where only the attribute X is used in the queries 
and the dimensionalities of the index spaces are two 
and three, respectively. (c) is range query like 
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“WHERE a1 < X < a2 AND c1 < Z < c2”, where two 
dimensions of the whole 3-dimensional index space 
are used in the query. The cases of  (a), (b) and (c) 
are  QPDs since only partial dimensions of the whole 
index space are used in the queries. Certainly, the case 
of (c) is a QAD since all the dimensions of the whole 
index space are used in the query like “WHERE a1 < 
X < a2  AND b1 < Y < b2 AND c1 < Z < c2”. 
Let us see an instance using Table 1, where QPDs are 
necessary. 
 

Table 1. A relational table with 8 attributes. 

A1 A2 A3 A4 A5 A6 A7 A8

        

        

 
Table 1 has 8 attributes A1~A8. And, the practical 

attribute combinations possibly used in queries are  
{{A1},{A2},{A3},{A4},{A5},{A6}, 
{A1,A2},{A2,A4},{A1,A3,A5},{A2,A4,A6}}. Thus, the 
index attributes include A1 ~ A6. 

X 

Y 

X 

Y 

X 

Y 

X 

Y 

(a) (b) 

(c) (d) 

Fig. 1. QPD and QAD 
 

For this example, it is certainly not feasible for 
large databases that one index is built for each 
possible combination of query attributes since so 
many indices need to be constructed and managed, 
and, in these indices, there are many attributes used 
repeatedly. One naïve idea is to build one 
multidimensional index using the six possible index 

attributes of A1 ~ A6. For each practical QPD, e.g., the 
queries using the index attributes of A2 and A4 only, 
the query ranges in the other four index attributes (i.e., 
A1, A3, A5, A6) are thought as the whole data ranges in 
such attributes. 

 
The above examples including Fig.1. and Table 1 

are on query range, on which this study focuses since 
the they are popular in OLAP applications. The range 
QPD is denoted by RQPD in this study. 
 

4. Our proposal: Array-node R*-tree and 
its Algorithms 
 
4.1 Structure of Our Proposal 
In order to make our novel proposal: array-node 
R*-tree easier to understand, let us briefly recall the 
construction of the original R*-tree. 

R*-tree is a hierarchy of nested multidimensional 
MBRs (Minimum Bounding Rectangles). Each 
non-leaf node of the R*-tree contains an array of 
entries, each of which consists of a pointer and an 
MBR. The pointer refers to one child node of this 
non-leaf node and the MBR is the minimum bounding 
rectangle of the child node refereed to by the pointer. 
Each leaf node of the R*-tree contains an array of 
entries, each of which consists of an object identifier 
and its corresponding point (for point-object 
databases) or its MBR (for extended object databases). 
In  R*-tree, the root node corresponds the whole 
index space and each other node corresponds to one 
sub-space (one rectangle region, i.e., the MBR of all 
the objects in this region) of the space corresponded to 
by its parent node. Note that, each MBR in the R*-tree 
nodes is denoted by two points. One is the vertex with 
the minimum coordinate in each axis and the other is 
the vertex with the maximum coordinate in each axis. 
Hereafter in this paper, no distinction is made between 
R*-tree nodes and their corresponding MBRs in the 
multidimensional index space. The Fig.2 is the   
structures of each non-leaf R*-tree node, (a) non-leaf 
node and (b) MBR. The structure of each leaf node is 
omitted. 
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(a) Structure of each non-leaf node 
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number of entries in each node of our proposal 
increases greatly since the dimensionality of each 
node becomes 1 from d and our proposal also follow 
the principle of “one node one page”. 
Now let us make a comparison between the structure 
of the original R*-tree and that of our proposal. See 
Fig. 4. 
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(a) Original R*-tree (b) Our proposal: Array-node R*-tree 

Fig.4. Our proposal vs. the original R*-tree 
 

Since the nodes in each group organized like an 
array, our proposal is called Array-node R*-tree. 
 
4.2 Algorithms of Array-node R*-tree 
In this section, the insert algorithm, delete algorithm, 
range query algorithm will be discussed. Because the 
insert and delete algorithms are similar as those of the 
R*-tree, their details are not included in this paper. 
 
4.2.1 Insert and delete algorithms 
If the node groups are regarded as supernodes, the 
ChooseInsertGroup algorithm of node group is the 
same with the ChooseInsertNode algorithm of the 
R*-tree. 

The split algorithm is also similar to that of the 
R*-tree. The only different point is that the nodes in 
that node group must be split in the same time. In the 
delete algorithm, all the nodes in the under-flowed 
node group must be deleted in the same time. 
 
4.2.2 Range query algorithm 
The procedure of range query algorithm on 
Array-node R*-tree can be described simply as 
follows. 
 

Algorithm: range query on Array-node R*-tree 

1) Start from root node group 

2) Check each entry in this node group to determine if its 

1)   … …  ptr

22)  … …   ptr

2d)   … …  ptr

 

MBRn 
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MBR intersects with the query range. 

a.  For each entry to check, only the nodes in this node 

group that correspond to the query dimensions are 

necessary to visit. 

b. If some entry does not intersect with the query 

range in some query dimension, then the check of 

this entry stops. That is, the child node group 

corresponding to this entry does not need to visit. 

c. If the current node group is not at the leaf level 

then, for the entries that intersect with the query 

range in all the query dimensions, this algorithm 

is called in recursively. 

If the current node group is at the leaf level, report 

the entries that intersect with the query range in all 

the query dimensions. 

 

 

5. Discussion about Array-node R*-tree 
 
In this section, the Array-node R*-tree is discussed in 
detail by comparing with R*-tree and with 
multi-B-trees. 
 
5.1 Array-node R*-tree vs. R*-tree 
What advantages does the Array-node R*-tree 
actually have over the R*-tree?  To answer this 
question clearly, the following estimation is made 
under the assumption of the multidimensional data 
(tuples in this study) being distributed uniformly in 
the index space. 

The symbols with their descriptions are showed 
in Table 2. 
  

Table 2. Symbols and description 

Symbols Description 

S Size of the whole index space 

Sq Size of the extended query range♣ 

Mr 
Maximum number of entries in each 
leaf node of R*-tree 

Ma 
Maximum number of entries in each 
leaf node of Array-node R*-tree 

C Total number of indexed data 

Nl 
Number of leaf nodes in the case of 
R*-tree being used 

Ng 
Number of leaf node groups in the 
case of Array-node R*-tree being used

d Number of dimensions used in query 

n 

Number of dimensions in the whole 
index space 
i.e., number of index attributes in this 
study 

                                                  
♣ The extended query range means the range after extended 
by spanning the ranges of the unused dimensions to the 
whole data ranges. 

 
In the case of the R*-tree being used to index this 

database, the number of leaf nodes intersecting the 
query range, Rl, can be given by 

l
q

l N
S
S

R ×= . 

If the Array-node R*-tree is used to this case, the 
number of leaf node groups intersecting with the 
query range, ARg, can be given by 

g
q

g N
S
S

AR ×= . 

In the case of the Array-node R*-tree, because 
the inserting algorithm of the Array-node R*-tree is 
the same with that of the R*-tree and the number of 
objects in every leaf group is the same with that of 
objects in every leaf node, we can say 

a

r

l

g

M
M

N
N

≈ . 

Since the number of dimensions of each R*-tree 
leaf node is n, while that of each Array-node R*-tree 
node is only 1, and the node size is the same between 
the R*-tree and the Array-node R*-tree (one page), 
we can say 

nM
M

a

r 1
≈ . 

In the same time, we know that the number of 
dimensions used in the query is d. Thus, in each node 
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group that we have to access, at most d nodes are 
necessary to visit. Thus, in the case of the Array-node 
R*-tree, the maximum number of the leaf nodes that 
we are necessary to visit, ARl, can be given by 

dARAR gl ×= . 

Considering the above equations , we can say 

lll
q

l RR
n
ddN

nS
S

AR ≤×=×××≈
1

. 

The meaning of Equation (6) is that, for the range 
QPDs, the number of accessed leaf nodes of the 
Array-node R*-tree is less than that of the R*-tree. 
More important, the less the number of dimensions 
used in queries is, the bigger the advantage of the 
Array-node R*-tree, which is also verified by the 
experimental results presented in Section 7. 
 
5.2  Array-node R*-tree vs. multi-B-trees 
The readers may ask “how about several B-trees (or 
say multi-B-trees) are used in the case of QPD instead 
of the Array-node R*-tree?”. Certainly, several 
B-trees can also be used in QPDs instead of one 
Array-node R*-tree. That is, we can construct one 
B-tree (or its variant) using the projection of the 
objects (tuples) on each index dimension. Totally, n 
B-trees are necessary for n-dimensional index space. 
When one QPD are executed, the corresponding 
B-trees are used individually, and the final result can 
be given by merging the respective query results. Let 
us see the details. 
 

 
 
 
 
 
 
 
 

 
Fig. 5. The case of multi-B-tree 

 

Taking the following case as an example, we can 
understand the advantages of our proposal (i.e., 
Array-node R*-tree). Assume that two dimensions, d1 
and d2, are used in some query.  See Fig. 5. For this 
case, two B-trees are necessary, called d1-B-tree and 
d2-B-tree, individually. 

At first, the query on d1-B-tree is executed with 
the query range “a<d1<b” and the result is the set of 
result1. In this query, all the nodes intersecting with 
Query range in d1-B-tree (see Fig. 5) have to be 
accessed and all the objects located in Query range in 
d1-B-tree are reported. In the same way, the query on 
d2-B-tree is executed with the query range “d<d2<c” 
and all the nodes intersecting with Query range in 
d2-B-tree have to be visited. The query result is 
result2. After that, the final result of this QPD, result, 
with d1 and d2 is given by 
 

21 resultresultresult I= . 
 

The disadvantage of the above method is that the 
two B-trees are queried independently. That is, the 
two queries are respectively executed on the two 
B-trees, where no mutual reference is possible. Many 
unnecessary investigations are executed and many 
unnecessary objects are reported. For example, the 
final result of the QPD with d1 and d2 is only 10 
objects, but several hundreds of objects may be 
reported by each B-tree. This is obviously a problem. 
Some other demerits of the multi-B-tree include that 
the management of many B-trees and the final 
merging both need extra  cost. If the Array-node R* - 
tree is used in the cases of QPDs, the above problems 
all disappear. Index space in d1 and d2

The main advantage of the Array-node R*-tree 
over multi B-trees is that only one index is needed and 
many unnecessary investigation can be avoided. The 
secret is just “mutual reference”. Let us see the 
details. 

In a n-dimensional Array-node R*-tree, every 
node group consists of n one-dimensional nodes 
corresponding to n dimensions of the index space. 
Most importantly, every node group corresponds to 

d 

c 

b a 

d2 
Query range in d1-B-tree  

Query range in d2-B-tree

Query range 

d1 
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one group of objects distributed in some subspace 
(one MBR) of the whole index space. Thus, the node 
groups also can be called “supernodes”. The main 
features of the Array- node R*-tree include the 
following two points. One is that, in each node group, 
only the nodes of the query dimensions are necessary 
to visit. The other is “mutual reference”. When 
visiting one node group, each entry is checked in all 
the query dimensions. Only the children whose MBRs 
actually intersect with the query range in all the query 
dimensions are followed. On the contrary, in the case 
of multi-B-tree, only information in one dimension is 
used to determine the children to follow and many 
indices are necessary. 

 

6. Experiments 
 
Using the following two datasets, 6D-Uniform200000 
and 6D-Zipf200000, the behaviors of Array-node 
R*-tree are examined and comparison with the 
original R*-tree is made. 
 
6D-Uniform200000   200,000 uniformly distributed 
6-dimensional floating data. From the view of OLAP 
data, the dataset is a table of 200,000 tuples with 6 
index attributes and the attribute values are uniformly 
distributed in every attribute.  
6D-Zipf200000  200,000 6-dimensional floating data 
with zipf distribution. From the view of OLAP data, 
the dataset is a table of 200,000 tuples with 6 index 
attributes and the attribute values in every attribute are 
zipf distributed. 

The number of query dimensions, or say, the 
number of the dimensions used in queries is from 1 to 
6, i.e., from the minimum number to the maximum 
number. The pagesize of our system is 4096 bytes and 
all the tests are repeated 100 with the query ranges of 
different locations. The state of  the Array-node 
R*-tree and the number of node accesses of each 
range query are examined and is reported in this 
section. And, they are compared with the original 
R*-tree. 

Due to the limitation of pages, only the 

experimental result using 6D-Zip200000 dataset is 
included in this paper. The result using 
6D-Uniform200000 dataset is similar. 

The appearances of the R*-tree and the 
Array-node R*-tree built with 6D-Uniform200000 
dataset are shown in Table 2. 
 

Table 2. Appearances of indices 

Items R*-tree 
Array-node 
R*-tree 

M 39 203 

m 17 91 

Height 4 3 

Total number 
of nodes 

7331 8424 

Memory usage 70.7% 70.32% 

 

Note that, the numbers of M and m in Table 2 
means the upper bound and the lower bound, 
respectively, on the number of the entries in 
each node for R*-tree. And, for the Array-node 
R*-tree, they mean the upper bound and the 
lower bound, respectively, on the number of the 
entries in each node group. 

The queries with different range size and with 
different query dimensions are tested and given in 
Figs. 6~11. In these figures, the x-axis: query range 
side length means the side length of the query range in 
each dimension. OR*-tree refers to the original 
R*-tree and AR*-tree means the Array-node R*-tree. 
 
 

0

2000

4000

6000

8000

10000

12000

14000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Query range side length

N
od

e 
ac

ce
ss

es

O R*-tree A R*-tree

 
 
Fig.6. The number of query dimensions=1 
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Fig.7. The number of query dimensions=2 
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Fig.8. The number of query dimensions=3 
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Fig.9. The number of query dimensions=4 
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Fig.10. The number of query dimensions=5 
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Fig.11. The number of query dimensions=6 
 

7. Conclusion 
 
This study focuses on the queries with partial 
dimensions (QPD in this study), which is very popular 
in many applications, especially in OLAP ones. If the 
traditional methods are used in the case of QPD, there 
are some problems and performance is not good. This 
study proposed a novel solution to the issue of QPD, 
called Array-node R*-tree, which is discussed in 
detail and is examined by experiments. 
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