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Abstract: Smart speakers are become popular thanks to the improvements of automatic speech recog-
nition systems. However, the always-on system raises privacy problems. Moreover, we imagine in
the future that the service provider may change the smart speakers to be active that the speakers
will offer user-interested/user-aimed information according to the user conversations without being
firstly evoked, which brings the further privacy concerns. In this study, we address this privacy issue
and discover the feasibility of realizing such active smart speakers. Specifically, we mainly investi-
gated the computation cost of using the state-of-the-art multiplication triples generation protocols to
prepare for three different speech recognition models and give detailed results. The results show that
the DNN model is the most practical secure ASR model at present with existing protocols because
it only needs 6.35 hours for preparing private evaluation in the remaining 17.65 hours of a day.
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1. Introduction
Recently, the development of deep learning has succeeded

to improve the accuracy of automatic speech recognition
(ASR) to be better than human performance [1]. As a re-
sult, smart speakers with speech-based AI assistants such as
Google Home and Amazon Echo are becoming more natu-
ral in communication and thus being so popular that smart
speaker owners spent nearly 2.8 hours per day on average
[2]. But due to the limitation of the hardware and network,
these devices are now playing a passive role that they will
not provide services (or information) until locally detected
the keywords such as "Ok Google" or "Alexa".

On the other hand, considering about the history of the
search engine, we can see a trend that service providers (SP)
may change their smart speakers to become active in which
situation the speakers will offer information that you need,
or they want to advertise according to your speech. That
is, smart speakers will do the full speech recognition all the
day with the help of the server, and provide the informa-
tion to users according to the contents or keywords in the
speech. The keywords can be both set by service providers
for advertising and by users for interests. For example, when
you are discussing your trip to Tokyo with friends, and then
the speaker asks you whether you want to know more about
Tokyo. The speaker will then tell you the weather and the
major tourist attraction if you answered yes. However, no
matter whether the smart speakers send the speech data
to the server for recognition or not, an always-on recording
1 University of Tsukuba
2 JST CREST
3 RIKEN AIP Center

system will cause privacy concerns, such as sending conver-
sations to other users without permission [3]. Furthermore,
it raises more concerns when continuously transmitting au-
dio speech to the server and recognize the full speech. Not
only users do not want to be recorded all over time and
leak to SP but also the SP wants to protect their learning
models.

Secure two-party computation (S2C) is a potential solu-
tion for such a privacy-preserving machine learning process
which allows two players to jointly compute a function on
their secret inputs without leaking anything except the re-
sult. There are many frameworks proposed for neural net-
works [4], [5], [6] and they all evaluate the product of matri-
ces based on additive secret sharing with precomputed mul-
tiplication triplets (MTs) [7]. If pre-processing is allowed,
this method can be very efficient compared with the garbled
circuit or homomorphic encryption since it requires no cryp-
tographic operations at processing time and the MTs can
be generated independently with inputs as pre-processing.
However, we find it still takes a lot of time when used for
large-scale computation. For instance, it takes about 9 sec-
onds to evaluate a 28× 28 image with a simple CNN model,
and nearly 4 seconds are used for generating the MTs [5].

We address the privacy issue and discover the feasibil-
ity of realizing the active smart speakers. Individually, we
consider two scenarios shown in Fig. 1. In both cases, the
speaker will record user conversations all the time and en-
crypt the real-time speech data before sending to the server.
The server will conduct the private speech recognition and
send the encrypted results back to the speaker. At last, the
speaker asks the user whether he wants more information

c⃝ 2018 Information Processing Society of Japan

Computer Security Symposium 2018 
22 - 25 October 2018

－623－



if the speech contains the keywords "Tokyo". We consider
two use-cases of smart speakers that actively recognize user
conversations. In the case A, the server privately recognizes
the whole speech into text; in the case B, the server only
classifies the audio with keywords defined in advance. Since
data can only be decrypted by the local speaker, the server
will not learn anything about the raw speech data as well as
the inference results in both cases.

To be practical, we set our goal as that the smart speaker
can privately recognize speech no less than 2.8 hours in one
day, which means that one-second speech has to be evaluated
with precomputing of 7.6 seconds provided that the compu-
tation at recognition time is sufficiently short. Therefore,
the object of this work, our first step of the practical pri-
vate speech recognition research, is to investigate how long
it takes when we use the state-of-the-art cryptographic pro-
tocols to implement the trained ASR models. Especially,
we measure the generation time of MTs using secure ma-
trix product (SMP) protocol [8] and semi-honest third party
based vector dot product (STP-VDP) protocol [6] respec-
tively when used in the bi-directional recurrent neural net-
work [9], a convolution neural network [10], and a deep neu-
ral network [11].

Related Work First, to our best knowledge, [12] in 2007
is the first to discuss the privacy-preserving speech recogni-
tion. In that work, computation of HMMs is performed by
one proposed secure protocol for computing logsum and sev-
eral existing cryptographic primitives based on homomor-
phic encryption(HE) scheme. Further, these techniques are
then extended to be used in [13] and [14]. Recently, [15]
pointed out that the whole encrypted inputs may be recov-
ered caused by the logsum protocol proposed by [12] and
developed a provably secure HMM and GMM computation.
However, HMM computation for 3 hidden states and 32 ob-
servations (nearly 1 second) in two-party setting costs SP
roughly 10 mins and Client about 2.5 mins offline. This is
far from our target value 7.6 seconds.

Also, these works are all based on traditional speech sys-
tems requiring high-leveled skills to tune the input features
and models. The introduction of recent end-to-end deep
learning models has improved both convenience and per-
formance [1]. As a natural result of the importance of pri-
vacy, there raises a great demand for privacy-preserving deep
learning frameworks.

[4] proposed SecureML framework which uses new
cryptography-friendly activation functions to securely train
the models. They also proposed an OT-based vectorized
MTs and Additive HE (AHE) based method to compute in-
ner products of two additively shared vectors. It costs 4.7

seconds to generate for a 2-layer network with 128 neurons
each layer.

In 2017, [5] proposed MiniONN framework, using approx-
imated activation functions to securely estimate any given
neural network. They used somewhat homomorphic en-
cryption (SwHE) to improve the AHE-based MT genera-
tion method. For the same model as in [4], it only takes

3.58 seconds.
Though these costs are within the target value, the model

is designed for a image rather than an audio, thus it is too
simple to be used for an ASR task. Further, the authors
in [8] proposed a much faster MT generation protocol SMP
using packing techniques and yields 20-108 times faster than
these existing methods [4], [5]. To generate MTs for product
of two [128 × 128] matricies, SMP takes 2.07 seconds while
OT-based method [4] takes 10.5 seconds and SwHE-based
[5] method takes 125 seconds.

The authors of Chameleon framework [6], different with
former two-party-only settings, proposed a way to generate
MTs with the help of a Semi-honest Third Party (STP) and
optimized it to be only involved in the offline phase. With
the participants of the third party, both parties can avoid
performing the heavy operations on ciphertexts, eventually
shortening the generation time of MTs. It costs 1.34 seconds
for generation in the same model with [4], [5].

Therefore, we choose the SMP protocol [8] in the two-
party-only setting and STP-VDP protocol in a third-party-
allowable setting to investigate the feasibility of the practicle
secure ASR tasks.

Contributions In brief, we summarize our contributions
as follows:
• We investigated the feasibility of using the state-of-the-

art cryptographic protocols to implement a practical
speech recognition model and give detailed performance
results.

• We experimented and estimated the generation time
of MTs when to use two state-of-the-art MT genera-
tion protocols in the implementation of existing speech
recognition models[10], [17].

• We explored a deep neural network based keyword spot-
ting system which only needs 7.2× 104 multiplies while
yielding an 84.95% accuracy. We verify that this model
is considered as a practical secure ASR model at present
with existing protocols as it can prepare MTs for 6.35
hours private evaluation in the remaining 17.65 hours.

2. Preliminaries
We first use Table 1 to introduce notations used in this

paper.

2.1 Secure Two-Party Setting and Security
Our work focus on secure two-party computation (S2C)

which allows two parties to compute a function without
learning each other’s inputs jointly. This guarantees the
same level of security with running a trusted third party
(TTP) and can against the semi-honest adversary who fol-
lows the protocol specification but tries to learn redundant
information via communication. Precisely, we follow the
standard real-world/ideal-world paradigm [18] that the view
of a semi-honest adversary is indistinguishable in real-world
to that in ideal-world. Also, we assume that either SP or
Client is corrupted but not both of them at the same time.
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A. Private 

Speech to Text

B. Private 

Keyword Spotting

Fig. 1 Two different cases of an active smart speaker processing with the encrypted au-
dio data. In the case A, the server privately recognizes the speech into text while
in the case B, the server detects the keywords privately.

Table 1 Notation table

Notation Meaning
[n] Set of positive integers {0, 1, . . . , n− 1}
v,vi Row vector and its i-th entry

M ,M i,j Matrices and its (i, j) entry
M [i:],M [:j] The i-th row and the j-th column of M

P, P [i] Polynomial P and its i-th coefficient
X Indeterminate of polynomials

e
$← E Uniform random sample e from set E

⟨a⟩0,⟨a⟩1 additive share of a
Ap Ring defined as Zp[X]/(Xm + 1)
p,m A prime number and a 2-power number
⟨u, v, z⟩ A multiplication triple

L Length of the input speech
l Length of a overlapped frame of speech
sl Stride size of a overlapped frame of speech
T Number of speech frames, T = L−l+sl

sl

F Number of features extracted from speech
ℓ The ℓ-th layer in neural network, ℓ ∈ [d]

xℓ Input of the ℓ-th layer, xℓ ∈ Rnℓ
1

W ℓ Weight matrix of the ℓ-th layer, W ℓ ∈ Rnℓ
2×nℓ

1

c Number of lables
K, nk nk kernels in convolution, K ∈ Rnk

t ×nk
f

st, sf Convolution stride size in time and frequency

2.2 Semi-honest Third Party
The Semi-honest Third Party (STP) is introduced in [6] to

efficiently precompute the correlated randomness in the of-
fline stages. STP can be implemented in three ways: 1) use
a trusted hardware 2) use trusted execution environments
3) use a separate computing node. With the help of STP,
both parties can generate their correlated randomness with-
out expensive cryptographic operations and thus reducing
both computation and communication costs.

2.3 Ring-based Homomorphic Encryption
Beside the STP, we also generate MTs by using a ring-

learning with errors [19] of homomorphic encryption (HE)
whose message space is defined by the polynomial ring
Ap := Zp[X]/(Xm + 1) where m is a 2-power number and
p is a prime number.

Let (sk, pk) be a private-public key pair. We write J·K to
denote the encryption function, and Decsk(·) for the decryp-
tion. For elements A,B ∈ Ap, we leverage the following
properties of HE in our construction.
• Additive homomorphism:

Decsk(JAK⊕ JBK) = A+B

Decsk(JAK⊕B) = A+B

• Multiplication with plain polynomials:

Decsk(JAK⊗B) = A×B

Notice that the polynomial computations + and × are done
under the ring Ap. The operators ⊕ and ⊗ respectively
indicate homomorphic addition and homomorphic multipli-
cation. Also, we write ⊖ to denote the homomorphic sub-
traction. RLWE-based HE schemes enable us to encrypt
various messages in one single ciphertext and process paral-
lelly in the SIMD manner. Typically, we use HElib [20], the
most functioning implementation of the symmetric version
of the BGV’s leveled HE scheme [21].

2.4 Additive Secret Shares
In this paper, we assume that a secret value is shared addi-

tively between two parties. That is, when Client(P0) and
SP(P1) privately distribute a value a ∈ Zp into ⟨a⟩0 and
⟨a⟩1 ∈ Zp, then a = ⟨a⟩0 + ⟨a⟩1 mod p where p is a prime
number. Additionally, let ⟨v⟩k, ⟨M⟩k denote the additive
shares of a vector v and a matrix M for k ∈ {0, 1}.

We can perform the addition of two secret shares of x and
y without communication. To be specific, Pk holds ⟨x⟩k,
⟨y⟩k ∈ Zp and the addition can be realized as Pk locally
conducts the ⟨x⟩k+ ⟨y⟩k mod p. However, it is required one
round of communication to multiply two secret values.
Multiplication Triples To conduct the multiplication,
both parties need to have shares of Beaver’s Multiplication
Triples (MT) [7], which refers to a triple ⟨⟨u⟩k, ⟨v⟩k, ⟨z⟩k⟩
such that z = ⟨z⟩0 + ⟨z⟩1 = uv = (⟨u⟩0 + ⟨u⟩1)(⟨v⟩0 +
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⟨v⟩1) mod p. It is worthy to mention that the generation of
MT is independent on the private inputs from two parties
and thus can be prepared during the offline precomputation
stage. In the online stage, two parties perform the multipli-
cation of x and y with using the triple. The computation
process is simple. Pk computes ⟨e⟩k = ⟨x⟩k − ⟨u⟩k and
⟨f⟩k = ⟨y⟩k − ⟨v⟩k. Then they exchange their shares of
⟨e⟩k, ⟨f⟩k to reconstruct e, f . Lastly, Pk computes ⟨xy⟩k =

f × ⟨x⟩k + e× ⟨y⟩k + ⟨z⟩k + k × e× f .
Typically, we generate MTs following the HE-based Se-

cure Matrix Product (SMP) protocol [8] in this work. The
authors of SMP use the double-packing technique con-
sist of Forward-backward encoding [22] and the Chinese-
Remainder-Theorem packing [23] to efficiently encode mes-
sages, and it allows to batch several inner products with
only one single homomorphic multiplication, which acceler-
ates the generation of MTs. However, both two parties still
have to conduct heavy cryptographic operations, which can
be avoided by introducing an STP as [6]. We refer readers
to [6], [8] for more details.

3. Fundamental Deep Learning Func-
tionalities

Many different models, such as simple deep neural net-
works [11], [17], [24] only consists of fully connected layers,
convolutional neural networks [10], [25] and more compli-
cated models like RNNs [9], can be applied to the task of
speech recognition. Though there is a variety of models,
they share some similar fundamental functionalities. We in-
troduce these foundations as summarized in the Table 2.

In a d-layer nueral network, we denote the input and
the weight matrix in the ℓ-th layer as x(ℓ) ∈ Rnℓ

1 and
W ℓ ∈ Rnℓ

2×nℓ
1 , where ℓ ∈ [d]. Especially, we denote the

input of the network as x(0).

Table 2 Basic functionalities of different layers

Layer Functionality
FC FC(W ℓ,x(ℓ)) = W ℓx(ℓ)

Conv
Conv(Kℓ,T ℓ)i′,j′ =∑nk

t −1
i=0

∑nk
f−1

j=0 Kℓ
i,j · T ℓ

i′st+i,j′sf+j

BiR BiR(W ℓ,x(ℓ)) = g(W ℓx(ℓ) +W rx(ℓ))
ReLU ReLU(x) = max(0, x)

3.1 Linear Functions
Fully Connected Among all the models, the most fun-

damental and commonly used layer is the fully connected
layer, which connects every node that consists of the previ-
ous layer to every node in the present layer. We can evaluate
the ℓ-th fully connected layer by conducting a matrix to vec-
tor production in formula

FC(W ℓ,x(ℓ)) = W ℓx(ℓ) (1)

yielding NFC = nℓ
1n

ℓ
2 multiplications.

Convolution Next, we introduce the convolutional layer,

which conducts a convolution operation taking advantage of
the two-dimensional inputs such as images and speech sig-
nals. If the ℓ-th layer is the convolutional layer, then we
denote the input as T ℓ ∈ Rnℓ

t×nℓ
f . There is a multiplication

window called kernel, denoted as K ∈ Rnk
t ×nk

f , and there
can be nk kernels in the layer. The kernel is stridden by
(st, sf ) on the input matrix to compute the output where
st, sf are referred to as convolution stride size in time and
frequency respectively. We write such convolution operation
as:

Conv(T ℓ,Kℓ)i′,j′ =

nk
t −1∑
i=0

nk
f−1∑
j=0

Kℓ
i,j · T ℓ

i′st+i,j′sf+j (2)

yielding Nconv =
(nk

t n
k
f )(n

ℓ
t−nk

t +st)(n
ℓ
f−nk

f+sf )

stsf
multiplica-

tions each kernel and NConv = nkNconv multiplications in
total.

Bi-directional Recurrent A bi-directional recurrent
layer is used in [9], including a set of forward recurrence and
a set of backward recurrence. Except the ℓ-th weight matrix
W ℓ, there also exists one forward weight matrix W f

r and
one backward weight matrix W b

r has the same size as W ℓ.
This layer is usually used in the model for speech process-
ing. Denote the length of the raw speech input to be L and
we write each time-sliced input as x

(0)
t where t ∈ [L]. Then

the ℓ-th layer’s input become x
(ℓ)
t and the BiR(W ℓ,x

(ℓ)
t )

operation can be written as

BiRf (x
(ℓ)
t ) = g(W ℓx

(ℓ)
t +W f

rx
(ℓ)
t−1), (3)

BiRb(x
(ℓ)
t ) = g(W ℓx

(ℓ)
t +W b

rx
(ℓ)
t+1), (4)

where g() represents some activation function. In the for-
ward recurrence, x

(ℓ)
t should be computed from t = 0 to

t = L − 1, and should be computed from t = L − 1 to
t = 0 in the backward recurrence. Eventually, it totally
computes 2Lnℓ

1n
ℓ
2 multiplications. For the convenice, we

simplify BiR(x(ℓ)
t ) to be BiR(x(ℓ)) = g(W ℓx(ℓ) +W rx

(ℓ)).
We can learn from Table 2 that not only different models

share some common functionalities but also the linear func-
tionalities have similar operations. That is, all of them can
be computed by matrix-vector products except a few non-
linear operations, which requires MTs for multiplications.
Hence, we can calculate the fully connected layer, convo-
lution layer and bi-directional recurrent layer in the secure
domain if we have precomputed a sufficiently large number
of MTs.

3.2 Activation Functions
Rectified Linear Unit A rectified Linear unit (ReLU)

is usually applied after the fully connected layer, taking the
positive part of its input.

ReLU(x) = max(0, x)

where x is a real value. It can be trivial to implement
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ReLU(x) in our secure two-party settings by using ABY li-
brary[26] as follows:

ReLU(x) = compare(x, 0) · x, (5)

where compare(x, 0) = 1 if x ≥ 0 else 0. The operations
we need, i.e., +,−,× and compare (CMP) are already sup-
ported by the ABY library.

Softmax The softmax function is usually used in the out-
put layer, calculating the probabilities of each target class
over all possible target classes. Typically, assuming that we
have k classes, the softmax takes the input x ∈ Rk and
outputs a real vector x̃ ∈ Rk where x̃i = exi/

∑
j e

xj for
i ∈ [k]. Considering that the softmax is applied only in the
output layer and what can be inferred from x̃ is the same
as what can be inferred from x, we argue that there is no
necessity to implement the softmax in the domain of secure
computation. As a result, the softmax function is evaluated
as the post process with the plaintext of the output in this
work.

4. Automatic Speech Recognition

The automatic speech recognition (ASR) is a process that
converts a speech signal into a sequence of words. Thanks to
the big data and the development of deep learning, the per-
formance of ASR has been significantly improved [9], [27].
We consider two types of ASR tasks that can be used in the
smart speakers: Speech to text task and keyword spotting
task. Both of them can recognize contents contained in the
speech while the difference between them is that a speech
to text task has the ability to recognize the full speech into
text, but a keyword spotting task can only detect the key-
words in the speech.

We will present the process of both tasks as well as specific
existing models designed for them in short.

4.1 Feature Extraction
Before we conduct the speech recognition task, we have

to first preprocess the data, i.e., extract features from the
raw audio signal. The most common technique is the Mel-
frequency cepstral coefficients (MFCC) as it is known to be
effective and robust under various conditions [28].

Fig. 2(a) shows a one-second speech signal processing
when uttering "cat". We set the total length of the sig-
nal to be L and each overlapping frames’ length to be l

with a stride s. This gives us T = L−l+s
s frames in total.

The original speech signal is in an extremely high dimension
that is hard to deal with. To compress the dimension, we
then extract F features from each frame, generating a fea-
ture map of size T × F for the entire speech signal shown
in the Fig. 2(b). In this work, we also take MFCCs as the
speech features. The raw speech signal in the time domain
is eventually translated into a set of spectral coefficients in
the frequency domain, which is much lower in dimension and
can be handled much easier.

Even though a larger feature map will result in a better
performance as more features of the speech signal will be

taken into account, a considerably large input will increase
the multiplications and raise the generation time of MTs in
the end.

4.2 End-to-end Speech-to-Text
A speech-to-text system aims at recognizing the audio sig-

nal and change the audio into its corresponding text. It can
be applied to many situations such as speech translation,
caption generation and voice operations of IoT home appli-
ances. Especially, recent smart speakers can understand the
users’ commands by voice and response to the commands.

Fig. 2(A) shows a process of speech to text task where
the input is MFCC features extracted from an audio signal
and output the text. We concentrate on the DeepSpeech [9]
model which uses BiRNN as the recognition model.

Bi-directional Recurrent Neural Network The
BiRNN model, a state-of-the-art ASR model, is introduced
in the DeepSpeech [9], yielding a 16% word error rate over
Hub5’00 dataset. We use the trained model implemented by
[29] for our estimation. The raw input, a nearly one-second
audio signal, is extracted into a [19×26] feature map, which
is flattened to a vector and fed as the input of the network.
Output is a probability sequence of labels including 26 char-
acters, space, apostrophe and blank. This BiRNN model is
composed of 5 layers of hidden units. The first three and the
fifth layers are fully connected layers followed by a clipped
rectified-linear activation function in each layer. The fourth
layer is a bi-directional recurrent layer including one set with
forward recurrence and one set with backward recurrence.
The output layer is the standard softmax function.

4.3 Keyword Spotting
Keyword Spotting (KWS) is a task that aims at isolating

and detecting predefined keywords in a speech signal, which
can be regarded as a special case of speech recognition. It
is a core technology in the interaction between speech based
AI system and users by evoking the device with voice espe-
cially for devices with limited computing resources such as
smartphones and smart speakers. As long as the keywords
are detected, the device will be activated and provide fur-
ther interaction with users with the help of powerful servers.
For good user experience, KWS is preferred to be highly ac-
curate and low latency in detecting the words, which makes
it necessary for KWS to be always-on and react in real-time.

As shown in Fig. 2(B), the KWS can be viewed as a clas-
sification problem over the audio signal. We mainly inves-
tigated convolution neural network (CNN) and deep neu-
ral network (DNN) models to be the classifier of KWS. For
both models of KWS, 40 MFCC features are extracted from
speech frames of length l = 40[ms] with stride sl = 20[ms].
This setting leads to the input feature map as 49× 40 from
a one-second audio. In the final of the network, a vector of
probabilities of 12 predefined keywords is outputted.

Convolution Neural Network CNNs [30] become pop-
ular in the filed of acoustic modeling because of the perfor-
mance improments over the DNNs [10] and less complex
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Fig. 2 Image of two different ASR tasks with the same audio input uttering "cat": (A)
shows the process of a Speech-to-Text task where the output should be the text
"cat"; (B) indicates the process of a Keyword Spotting task where the outputs is
a vector consists of probabilities on each label.

than the RNNs. The trained model cnn-one-fstride4 we
use is proposed in [10] and implemented in [17]. The trained
model yields about 84.6% test accuracy over the Google
speech commands dataset [31].
cnn-one-fstride4 is referred to this name as it only

strides the kernel in frequency by skf = 4. It has 186 kernels
of size [49×8] in all. Such a setting let the network be more
sensitive to the frequency than the time. Next to the con-
volution layer is two fully connected layers and the output
layer.

Deep Neural Network DNN is a standard feed-forward
neural network model consists of d fully-connected layers of
h hidden units. The ℓ-th hidden layer holds a weight ma-
trix W ℓ, and an activation function follows each hidden
layer. In detail, the flattened frequency-time feature matrix
x0 ∈ RTF is fed as input. The first d−1 layers are followed
by the ReLU function and the last output layer employs the
softmax as the activation function, giving the probabilities
of c = 12 predefined keywords.

We use the trained model implemented in [17], which is
a 4-layer DNN with 144 units every layer. We denote this
model as dnn-mf40. The test accuracy is about 84.3%.

5. Evaluations
We can see from the former studies [4], [5] that the pre-

computing time for a neural network is much longer than
the online evaluation time. Hence, in this work, we con-
duct the comparisons mainly on the generation time of MTs
between three different models mentioned in the former sec-
tion using two distinct MT generation protocols. To be more
precise, we measured and estimated the end-to-end comput-
ing time when running the SMP protocol [8] and the STP
based Vector Dot Product STP-VDP protocol [6] at each
layer, respectively.

We experimented the SMP protocol in C++ and compiled
with gcc-6.3 on Ubuntu 14.04. We use HElib [20] where the
parameters m = 4096 and p = 70913 were used to provide

128 slots just as in [8] and provide at least 80-bit security
level. We ran experiments on two machines (Xeon E5-2640
v3@2.60 GHz CUP, 32 GB RAM, GeForce GTX 1080 × 1
and Quadro K2200 × 1) within a LAN with less than 0.1
ms ping delay.

5.1 Comparison Results
The comparison results of two protocols applying to Deep-

speech [9], cnn-one-fstride4 [10] and dnn-mf40 [17] along
with the architectures of models are given in Table 3, Ta-
ble 4 and Table 5 respectively.

We can find in Table 3 that all the weight matrices in the
Deepspeech model are larger than those of the CNN and the
DNN models, which indicates that the speech-to-text task
is much more complicated than the keyword spotting task.
Also, the BiRNN layer computing with time series forward
and backward leads enormous multiplications and increases
computation costs. This result is so time-consuming that it
costs at least 77 minutes to precompute the MTs. Our eval-
uation shows that even a whole day (24 hours) is used for
preparing MTs, only about 18 seconds can be evaluated pri-
vately through the Deepspeech model as confirmed by our
results shown in Table 3.

On the other hand, the number of multiplications is re-
duced 99.97%-99.99% when changing from a speech-to-text
task to a keyword spotting task. As the Table 4 indicates,
both methods cost most of the time for the convolutional
operation. Notably, the SMP protocol costs 60 times more
than the STP-VDP protocol in the convolution layer. The
reason for this is because that the SMP protocol has to run
nk = 186 times for each kernel while STP-VDP protocol can
send the random seeds in advance. Besides, 2.96 seconds is
within the required 7.6 seconds while the SMP is still far
from it.

Though the accuracy of DNN is a little worse than the
CNN model, it only needs 2.76 seconds using SMP and 0.14

seconds using STP-VDP to generate MTs due to the small
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size of the model. Both of the methods can fulfill the require-
ment of time as well as having an acceptable test accuracy.
Hence, we can conclude that considering our goal of using
the private privacy-preserving smart speakers at least 2.8
hours one day, the DNN model is the most practical solu-
tion among the others.

Table 3 BiRNN (Deepspech) model for Speech-to-Text task
and the comparison of MTs generataion time between
running SMP [8] and estimating from [6]. We averaged
the performance of SMP from 50 runs and estimated
the performance of STP-VDP by calculating the num-
ber of multiplications per layer.

Layer Weight Size Time [s]
by SMP

Time [s]
by STP-VDP

FC [2048× 494] 5.25 1.77
FC [2048× 2048] 15.34 7.34
FC [4096× 2048] 31.10 14.67
BiR [8192× 6144]× 2× 26 9571.74 4577.56
FC [2048× 4096] 29.52 14.67
FC [27× 2048] 0.80 0.10

In total 2.6× 109 Mults 9653.65 4616.11

Table 4 cnn-one-fstride4 model for keyword spotting task
and the comparison of MTs generataion time between
running SMP [8] and estimating from [6].

Layer Weight Size Time [s]
by SMP

Time [s]
by STP-VDP

Conv(kernel) [8× 98]
count = 1674 122.76 2.55

FC [128× 1674] 0.84 0.91
FC [128× 128] 0.65 0.07
FC [12× 128] 0.63 0.01

In total 767872 Mults 124.88 3.54

Table 5 DNN model for keyword spotting task and the compar-
ison of MTs generataion time between running SMP [8]
and estimating from [6].

Layer Weight Size Time [s]
by SMP

Time [s]
by STP-VDP

FC [144× 250] 0.69 0.15
FC [144× 144] 0.67 0.09
FC [144× 144] 0.67 0.09
FC [12× 144] 0.63 0.01

In total 79200 Mults 2.76 0.34

5.2 Exploration of DNN
We further explored the DNN models such as changing the

parameters in the feature extraction phase to seek a smaller
size model with better accuracy. We trained the DNN model
with the TensorFlow [32] using the Google speech commands
dataset [31], which includes 65K audio samples of a length
of one-second each. We chose ten keywords *1 along with
"silence" and "unknown" 12 labels in total. We also tuned
the parameters in the preprocessing phase to reduce the size
of the feature map while keeping the basic architecture as

*1 "Yes", "No", "Up", "Down", "Left", "Right", "On", "Off",
"Stop", "Go"

in [17].
The speech is sliced with l = 120[ms] and a stride length

of sl = 55[ms], and this brings T = L−l+sl

sl
= 17 frames.

Each frame has 12 features and turnouts the input size be-
ing T ×F = 17×12, the key to the decrement of multiplies.
In summary, the trained DNN composed of d = 4 layers and
each layer is the same size as Table 5 except that the size
of the first layer is 144 × 204. The active functions of the
first three layers are ReLU, and the last layer is softmax. We
denote this model as dnn-mf12.

Experiment results in Table 6 shows that our dnn-mf12

achieved a test accuracy of 84.95%, which is better than
cnn-one-fstride4. Also, it reduces around 8% multiplies
compared with [17].

We measured the end-to-end time and communication
cost of running SMP and estimated the time and communi-
cation cost using data in [6]. The result is summarized in
6. Since the size changed slightly, the generation times are
almost the same as the dnn-mf40. Though the STP-VDP
is faster than SMP, thanks to the packing techniques, SMP
costs 3 times less than the STP-VDP in communication.

6. Conclution and Future Work
In this work, we investigated the feasibility of a practi-

cal privacy-preserving speech recognition system under the
secure two-party computation setting. In detail, we exper-
imentally measured the generation time of multiplication
triples by SMP protocol and compared with the estimation
time using STP-VDP protocol applied to three different ex-
isting ASR models. We find that STP-VDP protocol can
make MTs more efficient than SMP protocol and the DNN
model is the most realistic model to be implemented in the
secure domain.

Next, we tune the parameters such as the length of framed
audio, number of features, and train the DNN models in
cleartext. We obtain a better model than [17] which yields
about 84.95% test accuracy and only requires 72K multi-
plications. It only takes 0.33-2.76 seconds and 276.1-798.6
KB communication costs to prepare the secure evaluation
of one-second audio at pre-processing phase, which means
that MTs for 6.35 hours private evaluation can be generated
with the remaining time of the day (17.65 hours).

Due to the enormous number of parameters, only the
most basic DNN model which ignores the local temporal
and spectral correlation in the input speech features[17] can
be practically used with the state-of-the-art cryptographic
protocols. Even the CNN takes too long time during the
precomputing phase, not to mention the time series model
such as BiRNN model. The CNN model costs most of the
time in the convolution layer blaming to the number of ker-
nels nk. The number of times that protocols have to be
run will grow with the nk. On the other side, the BiRNN
model is significantly large in the size of the weight matrices
and the bi-direction layer is necessary to be computed on a
time series. These are the two primary reasons causing high
latency.
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Table 6 Comparing generation time and communication cost of SMP [8] and STP-VDP
[6] applying to our trained dnn-mf12.

Weight Size Time [s] Communication [KB]
by SMP by STP-VDP by SMP by STP-VDP

[144× 204] 0.69 0.14 118.3 323.4
[144× 144] 0.67 0.09 75.5 228.1
[144× 144] 0.67 0.09 75.5 228.1
[12× 144] 0.63 0.01 6.8 19.0

72576 Mults 2.76 0.33 276.1 798.6

Thereby, our next step is to consider more efficient pro-
tocols for faster generating MTs especially for the use of
convolution and bi-directional layers.
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