歩容データのDTW 距離に基づく個人識別における 複数部位のフュージョン手法

森 駿文1 菊池 浩明2

概要:カメラを用いて個人を識別・追跡し,防犯や商用に活用する動きが進んでいる.これまでに歩き方 から特徴を抽出する種々な歩容識別手法が提案される中,我々は Microsoft 社の Kinect から得られる 3 次 元の時系列データに DTW を適用する個人識別手法を提案してきた.この手法では複数の特徴量を組み合 わせる際,各特徴量の大きさを考慮することなく単純にユークリッド距離を用いて統合していたために, 特徴量の数を増やしても精度を向上できないでいた.そこで,本研究では各特徴量の統計量や分布に基づ いた統合手法を検討する.識別結果による投票,重み付け平均などの 6 つの統合手法を提案し,145 名の 被験者を用いて評価した精度を行った.主要な結果は,EER と標準偏差を用いた結合手法が EER を最小 化すること,特徴量の最適統合数は 5 ること,被験者数は最低 45 名必要であることなどである..

キーワード: Kinect, 生体認証, DTW, 歩容

1. はじめに

近年,カメラやセンサなどを用いて個人の特徴を抽出す ることで識別・追跡し,マーケティングや防犯などに活用 する試みが始まってきている.中でも,歩容は生活者の取 得の抵抗感も少なく,歩行の動線を抽出するような応用に は十分な精度があり向いている.その方法には様々なもの があり,未だ研究途上である.たとえば,大塚ら [1] は,深 度センサにより得られる情報は個人情報にはならないとし たうえで人流推定実験を行った.また,Muaaz ら [5] は, スマートフォンの加速度センサのデータに対し DTW を用 いる認証を提案している.一方,我々は,深度センサによ り得られる歩容の情報から個人識別をする研究を行ってき た [2][3].

[2] では,身体の2箇所の関節間の距離を特徴量として 個人を識別した.例えば,左右の手の間の距離はその人の 手の振り方の特徴を表しており,個体差が生じることを応 用ている.10人の被験者を用いた実験により,両足間距離 の統計量からなる4次元のベクトルを特徴量とすることが EER(等価エラー率)の観点で最適であることを示した.し かし,最適の時でさえ0.25の誤差率であった.誤差の主な 原因としては次があった.

- 左右の手間の距離は変動が大きく、同一人物でも歩く 毎に変化する。
- 関節間距離などの統計量は本質的に静的であり、身体 や手足長が類似の被験者を識別不能である。

そこで [3] では, 深度センサを用いて得られる歩行中の関 節の3次元座標に, 音声認識などでよく使われる Dynamic Time Warping(DTW)[4] を適用することで歩容識別を行 う手法を提案した.本手法は, 深度センサによって得られ た関節の座標の時系列データについて, 各関節ごとにテン プレートとの DTW を計算し, DTW 距離から成る多次元 ベクトルのユークリッド距離を用いて識別を行う.31名の 被験者を用いた実験により, EER が良い順に関節を5つ 統合した際に EER が 0.03 となることを明らかにした.

しかし, [3] の手法では,複数の関節の特徴量が与えられ たとき,各関節の DTW 距離を等しく扱い,単純に同じ重 みの要素の多次元ベクトルを用いて統合していた.それゆ え,それぞれの関節ごとに変動の大きさが異なっているた め,変動の激しい部位が全体の精度を支配してしまう点が 問題であった.例えば,腰 (HipLeft/Right)の振り方には 特徴的な要素があるにもかかわらず,その DTW 距離の平 均は約 0.8(m/歩)であり,これは腕 (HandTipLeft/Right) の 3.7(m/歩)の約 1/4,足 (FootLeft/Right)の 4.0(m/歩) の約 1/5 の大きさしかなく,識別にはほとんど効いていな かった.そのため,異なる関節を組み合わせても,5 個ま

¹ 明治大学大学院先端数理科学研究科 Graduate School of Advanced Mathematical Sciences, Meiji University

² 明治大学総合数理学部 School of Interdisciplinary Mathematical Science, Meiji University

表1 先行研究との違い

	Muaaz[5]	森 [2]	森 [3]	本研究
特徴数	1	1-36	1-24	1-24
センサ	内側	外側	外側	外側
観測期間	0	\triangle	\triangle	Δ
テンプレート数	複数	単数	単数	単数, 複数
対象者の協力	要	不要	不要	不要
比較手法	DTW	統計量	DTW	DTW
統合手法	投票	ユークリ	リッド距離	複数
被験者数	35 名	10 名	31 名	145 名
EER	0.13	0.25	0.060	0.048

でしか精度 (EER) を向上させることが出来ないでいた.

そこで、本研究では、各関節の分布や統計量を考慮し、 歩容識別に適した特徴量のフュージョン(統合)手法を探求 する.本稿では、次の結合手法を評価する.

- (1) 関節ごとの重み付けベクトルのユークリッド距離
 - (a) 一様な重み([3] の手法)
 - (b) DTW 距離の標準偏差 (SD) を用いた重み
 - (c) EER を用いた重み
- (2) 全関節 DTW 距離の投票([5] の手法の変種)
- (3) DTW 距離のマハラノビス距離

ここで、我々の興味は次の通りである.

- どの統合手法が精度を高めるか.
- いくつの関節を統合するのが最適であるか.どの関節 が識別に適しているか.
- 歩容の多様性はどれくらいか.何人の被験者で評価すれば十分であるか.

これらの質問に答えるために,145名の被験者の歩容デー タを測定し,識別精度を求める実験を行う.

以上の先行研究との比較を表 1 に整理する. [3] では n = 31のときの最適値を 0.036 と報告しているが,本実験 O n = 145で再評価したところ 0.060 であった.

2. 関連研究

2.1 DTW[4]

DTW(Dynamic Time Warping) は, 音声識別などに使 用されるパターンマッチングの手法で,長さの異なる 2 つの時系列データの距離を与える. 一部のデータが 損失していても,時間軸を収縮させてデータの類似距 離を算出する.長さ $n_p \neq n_q$ の 2 つの時系列データ $P = (p_1, p_2, ..., p_{n_p}), Q = (q_1, q_2, ..., q_{n_q})$ の DTW 距 離 d(P,Q)は $d(P,Q) = f(n_P, n_Q)$ と定義する. ここで, f(i, j) は次の様に再帰的に定める.

$$f(i,j) = ||p_i - q_j|| + \min(f(i,j-1), f(i-1,j),$$
$$f(i-1,j-1)),$$
$$f(0,0) = 0, f(i,0) = f(0,j) = \infty.$$

2.2 加速度センサを用いた歩容認証なりすまし実験

Muaaz ら [5] は、スマートフォンの加速度センサを用い た個人認証手法を提案している.本手法ではポケットに入 れた Android 端末の加速度情報を特徴量としており、歩行 1 サイクル分を1 つのテンプレートし、テンプレートを複 数登録する.認証時はそれぞれのテンプレートとの DTW 距離を計算し、50%以上のテンプレートとの DTW 距離が 閾値以下であれば本人と判定している.本手法では、対象 者がセンサを所持する必要があるためセンサ数が限られ、 また、対象者の協力が不可欠である.スマートフォンなど のセンサはポケットなどに装着することを仮定するため、 手の振り方や足の運び方などの特徴を見ることができない.

本研究の特徴的な点は,通常の他人受入率に相当する誤り を,意図せず他人と識別されてしまう zero-effort attack と 位置づけ,更に,歩行者の動きを見て真似る minimal-effort attack を導入したところにある.

本実験に基づき,指紋や虹彩など他の生体認証と比べて, 時系列データを用いる歩容による認証は,意図的ななりす ましに対して頑強であることが示された.

3. 提案手法

3.1 採取データの整形と関節ごとの DTW 距離の計算

深度センサによって取得した関節の3次元時系列データ を,DTWに適用しやすい形に変換するため,[3]の3章の 手法を行う.

ここでは概要を述べる.はじめに、ローパスフィルター を用いてピークを判定することにより、歩行の1サイクル分 を抽出する.次に、身体の中心付近の安定している関節を 原点とした相対座標を計算する.関節 ℓ の時刻 t の絶対座 標を $a_{\ell}(t)$ 、中心の関節の絶対座標を $a_{c}(t)$ とすると、相対座 標 r は $r_{\ell}(t) = a_{\ell}(t) - a_{c}(t)$ と定める.最後に DTW 距離を 求める.今回は3次元データなので1つの関節につき xyz 座標の3軸が存在するため、MD-DTW(Multi-Dimensional Dynamic Time Warping)[6]を用いる.相対座標 $r_{\ell}(t)$ の 時系列データが与えられたとき、テンプレートの時系列 データとの DTW 距離を d_{ℓ} とする. c 個の関節についての DTW 距離 $d_{\ell_{1}}, \ldots, d_{\ell_{c}}$ があるとき、次の各手法によって統 合する.

3.2 特徴量の統合

各関節の DTW 距離を統合することで精度の向上が期待 できるが,最適な統合手法は自明ではない.そこで本研究 では以下の 6 つの特徴量統合手法を比較する.

- (1) 関節ごとの重み付けベクトルのユークリッド距離
 - (a) 一様な重み([3] の手法)
 - (b) DTW 距離の標準偏差 (SD) を用いた重み
 - (c) EER を用いた重み
 - (d) EER と SD を両方用いた重み

-2 -

(2) 全関節 DTW 距離の投票([5] の手法の変種)

(3) DTW 距離のマハラノビス距離

3.2.1 一様な DTW 距離のベクトルのユークリッド距離

[3] で用いていた,各関節のDTW 距離のベクトルのユー クリッド距離を求める手法である.関節 ℓ におけるテンプ レートと対象特徴量間のDTW 距離を d_{ℓ} ,統合後の距離を D_{euc} とすると,関節 ℓ と m を統合した距離は

$$D_{euc} = \sqrt{d_l^2 + d_m^2}$$

と定める. D_{euc} が閾値 θ_{euc} 以下の場合は本人,それ以外の場合は他人と識別する.

3.2.2 EER で重み付けしたベクトルのユークリッド距離 EER が小さい関節は安定していて識別に有益であるの で,DTW 距離に 1/EER を重み付けする手法である.関 節 $\ell \geq m$ の EER $E_{\ell} \geq E_m$ を統合した距離 D_{eer} は,

$$D_{eer} = \sqrt{\left(\frac{d_\ell}{E_\ell}\right)^2 + \left(\frac{d_m}{E_m}\right)^2}$$

と定める. D_{eer} が閾値 θ_{eer} 以下の場合は本人,それ以外の場合は他人と識別する.

3.2.3 SD で重み付けしたユークリッド距離

個人差が大きい関節は識別に有益であるという仮定の下 で、各関節ごとに、他人と比較したときの DTW 距離の標 準偏差 (SD) の逆数を用いて重み付けをする手法である. 関節 $\ell \geq m$ の SD $\sigma_\ell \geq \sigma_m$ を統合した距離 D_{sd} は

$$D_{sd} = \sqrt{\left(\frac{d_\ell}{\sigma_\ell}\right)^2 + \left(\frac{d_m}{\sigma_m}\right)^2}$$

と定める. D_{sd} が閾値 θ_{sd} 以下の場合は本人,それ以外の場合は他人と識別する.

3.2.4 EER と SD で重み付けしたベクトルのユークリッ ド距離

3.2.2 節と 3.2.3 をハイブリッドに組み合わせた手法であ る. 関節 $\ell \geq m$ の EER E_{ℓ}, E_m と他人との DTW 距離の SD σ_{ℓ}, σ_m を統合した距離 D_{eer_sd} は

$$D_{eer} = \sqrt{\left(\frac{d_l}{E_\ell \sigma_\ell}\right)^2 + \left(\frac{d_m}{E_\ell \sigma_\ell}\right)^2}$$

と定める. D_{eer_sd} が閾値 θ_{eer_sd} 以下の場合は本人,それ 以外の場合は他人と識別する.

3.2.5 投票方式

Muaaz らの先行研究 [5] で提案されていた手法である. c 個の関節の DTW 距離のうち, DTW 閾値 θ を下回って いる関節の数が閾値 θ_t 個以下の場合は本人, それ以外の場 合は他人と識別する.

3.2.6 マハラノビス距離 [7]

DTW 距離ベクトルのマハラノビス距離を用いた手法で ある. 関節 $\ell \geq m$ の DTW 距離の平均値を $\hat{d}_{\ell} \geq \hat{d}_{m}$ とす るとき,マハラノビス距離 D_mは,

$$D_m^2 = \frac{1}{k} \begin{pmatrix} d_\ell & d_m \end{pmatrix} \begin{pmatrix} 1 & r \\ r & 1 \end{pmatrix}^{-1} \begin{pmatrix} d_\ell \\ d_m \end{pmatrix}$$
$$= \frac{1}{k} \begin{pmatrix} d_\ell & d_m \end{pmatrix} \frac{1}{1 - r^2} \begin{pmatrix} 1 & r \\ r & 1 \end{pmatrix}^{-1} \begin{pmatrix} d_\ell \\ d_m \end{pmatrix}$$
$$= \frac{d_\ell^2 - 2rd_\ell d_m + d_m^2}{k(1 - r^2)}$$

で与えられる.ここで, k は次元の数で, k = 2, r は $d_{\ell} \geq d_{m}$ の相関係数である.r = 0のとき(無相関), $D_{m}^{2} = (d_{\ell}^{2} + d_{m}^{2})/2 \geq x$ り, $D_{euc} \geq$ 等しくなる. D_{m} が閾 値以下の場合は本人,それ以外の場合は他人と識別する.

4. 評価実験

4.1 実験目的

本実験の目的を以下に示す.

- (1) Kinect から得られるスケルトンデータに DTW を適 用する識別手法において、複数特徴量の統合方法によ る識別精度を評価し、提案手法の中で最も識別に有効 な統合手法を明らかにする.
- (2) 結合する特徴数 c について, c による精度の変化, 最 適な値を明らかにする.
- (3) 被験者数 n についての精度の変化を明らかにする.
- (4) 深度センサから得られる関節のなかで、少ない数で識別に有効な関節の最適な組み合わせを求める.

4.2 モーションキャプチャデバイス

データ取得には Kinect v2 を用いる. Kinect v2 は, Microsoft 社から発売されたモーションキャプチャデバイス である.ユーザの身体の動きによりゲーム中におけるプレ イヤーの操作を行うことを主目的として設計されている. NUI(Natural User Interface) と呼ばれるインタフェースの 一つである.

4.3 実験方法

4.3.1 データ収集手法

Kinect v2 を用いて歩行データを収集し,提案手法の精 度を求める.実験に関する情報を表 2 に示す.測定環境 は図 1 のとおりであり,直進歩行中の時刻 t のスケルト ンデータ $(a_1(t), \ldots, a_{25}(t))$ を正面から測定する. Kinect は床から 0.9m の位置に水平を向いて固定する. Kinect よ り 5.5m の離れた位置から歩行を開始し, 1m の位置で終了 する.歩容の測定は 4.5m 地点から 2m 地点までの区間で 行う.1人について 5 回ずつ測定を行い,各測定について 欠損値の少ない 1 歩分のスケルトンデータを取る.すなわ ち,5 個/人 ×145 人=760 データを用いて分析を行う.期 間 1 の被験者は本研究室の学生,教員であり,期間 2 の被 験者は大学のロビーで募集した学生,職員,地域の方であ

表 2 被験者の情報						
項目	期間 1	期間 2				
実験日	2018年4月19日	2018年7月26,27,30日				
実験時刻	12 時 40 分から 2 時間	11 時 00 分から 7 時間				
人数	31 名	114 名				
男女比	男性 26 名:女性 5 名	男性 77 名:女性 44 名				
測定回数	5回/人	5回/人				
年齢	18~51 歳	18~70 歳				
場所	本学教室	本学体育館				

図 2 実験風景

る.期間2における実験の様子を図2に示す.

4.3.2 各特徴量統合手法の精度比較

提案手法の6つの手法を用いて精度を計算する. n = 145に固定して Equal Error Rate(EER)を調べる. このとき, 閾値は FAR = FRRとなるときの θ^* を用いて, 6つの統 合手法のそれぞれについて, c = 8のとき, ランダムに選 んだ関節の組み合わせをそれぞれ 300 組計算した. ベンチ マークとして,今回収集したデータを用いて [3]の手法を 適用した際の EER を求める.

4.3.3 統合する関節の数 c の評価

統合する関節の数 c についての変動を確かめるため,24 個の関節からランダムに c 個を抜き出し,その関節のみを 用いて繰り返し EER を計算した. $_{24}C_c$ は c の値によって は膨大になってしまうため,最大で 300 組に制限をした.

4.3.4 被験者数 n の変化による FAR の変動

本実験では,合計 145 名の被験者を集めた.この被験 者からいくつかの部分集合を求めて FAR を評価すること で,被験者数 (規模) が精度に及ぼす影響を明らかにする. c = 1のときの D_{euc} について, $n \in 5$ から 145 まで,5 ず つ変化させたときのそれぞれの関節ごとの FAR を計算す

図 3 1 サイクルのスケルトンデータ a(t) の変化

る.最大このときの閾値は、FRR が 0.1 になるよう調整したときのものを使用する.なお、c = 1の場合は重み付けベクトルを使用する 4 手法 D_{euc} , D_{eer} , D_{sd} , D_{eer_sd} では EER は同じ結果となる.

4.3.5 最適な関節の選択

24 個の関節の DTW 距離全ての組に関して相関係数を求 める.全ての関節において,相関係数が最も高い関節が同 じグループに属するようにクラスタリングをして,グルー プ内の代表的な関節のみを用いて識別を行う.

4.4 実験結果

4.4.1 測定データの統計量

収集したスケルトンデータa(t)の一部を図3に示 す.24個の関節のうち主要な11個(Head, SpineShoulder, ShoulderRight/Left, HandTipRight/Left, SpineBase, HipRight/Left, FootRight/Left)のみをプロットしている. これは24歳男性の歩行であり、頭を左右に振りながら歩 いている特徴がわかる.時間は1サイクルに正規化してい る.本例は、 t_1, \ldots, t_{33} の1.1秒が1サイクルであった.

測定したスケルトンデータの時系列データについて,各 フレームごとに SpineBase を原点とした相対座標に変換し, 各関節ごとに DTW 距離を計算した. 各関節ごとの EER, DTW 距離の平均値,標準偏差を**表 3**に示す.表3の統計 量は全て,本人同士の DTW 距離と他人同士の DTW 距離 の両方を含んでいる.

各関節ごとの平均値, SD の相関を図 4 に示す. 平均値 と SD の間に相関係数 0.99 の強い正の相関がみえる. 平均 値 2.0 を境として,右上の動的な関節群と,左下の静的な 関節群の 2 つに分かれている. WristRight と WristLeft の ように,左右の関節はほぼ同一の平均値で分布している.

4.4.2 各結合手法の精度

 D_{eer_sd} と D_m の,本人同士,他人同士の結合結果のヒストグラムを図 5,図 6 に示す.図 5 の D_{eer_sd} と比べて図 6 の D_m では他人間が混在して分布しており.それゆえ

表 3 DTW 距離の統計量						
	EER	Mean	SD			
ElbowLeft	0.10	1.76	0.62			
ElbowRight	0.11	1.73	0.64			
ShoulderRight	0.11	0.95	0.38			
ShoulderLeft	0.12	0.99	0.40			
HandLeft	0.12	3.31	1.44			
KneeRight	0.12	2.39	1.08			
WristLeft	0.12	2.80	1.20			
Neck	0.12	0.76	0.31			
HandTipLeft	0.13	3.77	1.67			
SpineShoulder	0.13	0.57	0.23			
HipRight	0.13	0.88	0.36			
FootRight	0.13	4.03	1.79			
AnkleRight	0.13	3.33	1.64			
HandRight	0.14	3.28	1.59			
HipLeft	0.14	0.83	0.34			
HandTipRight	0.14	3.70	1.83			
WristRight	0.14	2.79	1.30			
Head	0.14	1.35	0.55			
KneeLeft	0.14	2.42	1.14			
FootLeft	0.14	4.03	1.80			
SpineBase	0.14	0.80	0.33			
AnkleLeft	0.14	3.31	1.63			
ThumbLeft	0.19	3.84	1.48			
ThumbRight	0.19	3.79	1.57			

図 4 各関節の平均値, SD による散布図

誤差を上げていることが観測される.

c = 8のときの 6 手法について, c 個の関節の組み合わ せをランダムにそれぞれ 300 組評価したときの各手法の EER の累積分布を図 7 に示す.分布が左側に寄っている 方が識別率が高いことを表している.,この場合は D_{eer_sd} が最も有効な手法である.

後述する 5 つの代表的な関節を用いた場合の ROC カー ブを図 8 に, EER を表 4 に示す. この場合は *D_{sd}* を用い た際に最も EER が低くなり, 0.048 となった.

[3] の手法を用いた際の EER の最適値は 0.060 であった ため,本研究の提案手法を用いることで EER が 20%低下 した.

図 6 c=8のときの D_m のヒストグラム

図 7 結合手法の EER の累積分布 (c = 8)

表 4 代表関節を用いた際の EER

	D_{euc}	D_{eer}	D_{sd}	D_{eer_sd}	Voting	D_m
EER	0.083	0.075	0.048	0.049	0.061	0.086

4.4.3 統合する関節の数 c の評価

*c*を変更したときの*D_{eer}*の EER の分布を図 9 に, 投票 方式の EER の分布を図 10 に示す. 投票以外の5 手法は 図 9 と同様に平均値が単調減少した. 投票方式も増減を繰 り返しているが不安定ながら減少していく傾向となった. また, 6 手法全てにおいて, *c* の増加に伴い多少不安定では あるが分散も減少している.

- 5 -

図 8 最適時の ROC カーブ

図 9 特徴量数 c を変更したときの Deer の EER の分布

図 10 c を変更したとき投票方式の EER の分布

6 つの結合手法について,結合特徴量cについての EER の平均値の分布を表 5 と図 11 に示す.表 5 では各cにつ いて,最小の EER に下線を引いている.ほぼ全てのcに おいて, D_{eer_sd} の EER が最小であった.

4.4.4 被験者数 n の変化による EER の変動

被験者数 *n* と FAR の関係を図 **12** に示す. *n* ≤ 45 まで

表 5 結合特徴量の数 c に対する 6 手法の EER の平均値

			(0.19/13.)	0014-		
c	D_{euc}	D_{eer}	D_{sd}	D_{eer_sd}	Voting	D_m
1	0.136	0.136	0.136	0.136	0.134	0.210
2	0.119	0.116	0.101	0.100	0.143	0.136
3	0.108	0.104	0.086	0.084	0.162	0.124
4	0.104	0.098	0.080	0.078	0.097	0.116
5	0.097	0.092	0.073	0.071	0.109	0.105
6	0.095	0.090	0.070	0.067	0.080	0.102
7	0.093	0.087	0.068	<u>0.066</u>	0.086	0.103
8	0.091	0.086	0.066	0.064	0.069	0.098
9	0.089	0.084	0.065	0.062	0.074	0.094
10	0.087	0.082	0.063	0.061	0.066	0.093
11	0.086	0.081	0.062	<u>0.060</u>	0.068	0.092
12	0.085	0.081	0.062	0.059	0.064	0.089
13	0.085	0.080	0.061	0.059	0.064	0.086
14	0.084	0.080	0.061	0.058	0.064	0.084
15	0.084	0.079	0.059	0.057	0.060	0.083
16	0.084	0.079	0.060	0.057	0.062	0.081
17	0.084	0.079	0.059	0.056	0.058	0.080
18	0.083	0.079	0.059	0.056	0.060	0.077
19	0.083	0.078	0.059	0.055	0.056	0.075
20	0.082	0.078	0.058	0.056	0.058	0.074
21	0.082	0.078	0.058	0.055	0.054	0.074
22	0.081	0.078	0.057	0.054	0.056	0.074
23	0.080	0.078	0.055	0.056	0.053	0.073
24	0.077	0.080	0.060	0.054	0.055	0.070
平均	0.091	0.087	0.068	0.066	0.077	0.096

図 11 結合特徴量の数 c に対する 6 手法の EER の変化

は FAR は不安定ながら増加していたが, n = 45をピーク としてゆるやかに減少していく. [3] の被験者数は 31 名で あったが,この結果では最も変動の大きなサイズのサンプ リングである.

4.4.5 最適な関節の選択

24 個の関節と最も相関係数が高くなった関節を表 6 に 示す.相関係数が最も高い関節同士をグルーピングした結 果を表 7 に示す.一番右の列に示す代表関節は,グループ 内で EER が最も低いものである.概ね,1:左手,2:右手, 3:左足,4:右足,5:その他変動の少ない部位,の5 グループ に分かれているが,KneeRight だけは左足との相関よりも

図 12 被験者数 *n* と FAR の関係

表6 各関節と量	も相関の高い関節対
----------	-----------

関節	相関係数最上位	相関係数
AnkleLeft	FootLeft	0.901
SpineBase	SpineShoulder	0.973
WristLeft	HandLeft	0.983
ElbowLeft	WristLeft	0.877
WristRight	HandRight	0.989
KneeRight	KneeLeft	0.787
HipLeft	SpineBase	0.959
Neck	SpineShoulder	0.999
Head	Neck	0.591
HandTipRight	HandRight	0.995
HandTipLeft	HandLeft	0.991
FootLeft	AnkleLeft	0.901
SpineShoulder	Neck	0.999
KneeLeft	AnkleLeft	0.807
ShoulderRight	HipLeft	0.667
FootRight	AnkleRight	0.878
HandLeft	HandTipLeft	0.991
HipRight	SpineBase	0.954
ElbowRight	WristRight	0.832
AnkleRight	FootRight	0.878
ShoulderLeft	HipRight	0.731
HandRight	HandTipRight	0.995
ThumbLeft	HandLeft	0.825
ThumbRight	HandTipRight	0.897

KneeLeft との相関が強かったため左足グループに分類されている.また,代表関節同士の散布図行列を図 13 に示す.kおこで赤が自分,青が他人との DTW 距離を示している.グループ3の右膝とグループ4の右足の間には強い相関があり (r = 0.71),逆に,グループ4の neck とグループ1の ElbowL は相関が小さく,おそらく両特徴量が独立していると考えられる.

4.5 考察

図 10 において, n が偶数の際は EER が低くなって,奇 数のときは大きくなるという不安定な EER が観測され た.これは,投票方式の閾値 θ_v が整数しか取れないこと が原因である. $c = 3 \ge c = 4$ のときの投票方式の FAR, FRR のグラフを図 14 と図 15 に示す. c = 3のときは EER=0.081, c = 4のときは EER=0.096 である. cが偶 数の場合は図 14 のように FAR と FRR のクロスポイント に近い位置に閾値があるが, cが奇数の場合は図 15 のよ うに閾値とクロスポイントの位置に大きなズレが生じて しまう. EER はクロスポイントに最も近い閾値の FAR と FRR の平均により求めているが, 線の傾きが一定でない ためクロスポイントから離れるほど値が大きくなってしま う. したがって, 投票方式の EER だけ n と EER の関係 が不安定になったと考えられる.

図 11 において, *D_{sd}* を用いた場合, *D_{euc}* よりも常に EER が小さくなった. [3] で用いていた一様な Euclid で は,特徴量ごとに大きさが異なっていたため値の大きな特 徴量に引っ張られていた. そこで SD の逆数を重みとして 掛けることで, すべての特徴量の値がほぼ等しくなり公平 に扱われるため, EER が低下したと考えられる.

図 11 おいて投票方式が *D_{euc}* よりも EER が小さくなった原因は,個数という平等な尺度に正規化されることでどの特徴量も等しく扱われたためだと考えられる.

表 5 の各 c の EER の平均値を比較すると, D_{eer_sd} を 用いた場合は D_{sd} よりも平均 3.7%低い. これは, SD に よって各特徴量の値がほぼ等しくなるように正規化された 後に, EER が小さい, つまり, 識別に有効な関節の重みが 大きくなったからである. 図 11 より, c は 6 以上ではほぼ 変化が見られないため, c = 5 が適切であると考えられる.

図 12 において, $n \ge 45$ では FAR が減少していった. こ れは, n を 増やすと, 誤って本人と識別されてしまう似通っ た人物よりも, きちんと他人と判別できる, DTW 距離の 大きな人物の方が増加するからである考えられる. $n \ge 45$ では FAR の平均値はほぼ安定して減少していることから, nは 45 以上あれば提案手法の精度評価が十分行えるとい える.

5. おわりに

深度センサを用いた歩容識別手法において,複数特徴量の統合手法を6つ提案し,145名の被験者を用いて精度評価を行った.実験により,統計的に最も EER が低くなるのは EER と SD を用いて重み付けをする $D_{eer_{sd}}$ であること,統合する特徴量の数 cについては5が適切であること,被験者数 n は 45名以上いれば適切な精度評価が行えることを明らかにした.

特徴量をグループ化し,その代表関節 ElbowLeft/Right, KneeRight, FootRight, Neck を用いて識別を行うること で,先行研究より EER を 20%低下させることができた.

今後の計画としては、荷物や服装など、外的要因にもロ バストな手法を検討することや、なりすまし、他人になろ うとする行為に対しても頑強な方式について検討すること

衣 ?									
グループ		関節						代表	
1	WristL	HandL	HandTipL	ThumbL	ElbowL				ElbowL
2	HandR	HandTipR	ElbowR	WristR	ThumbR				ElbowR
3	FootL	AnkleL	KneeL	KneeR					KneeR
4	AnkleR	$\underline{\mathrm{FootR}}$							FootR
5	HipR	SpineBase	ShoulderL	Shoulder R	Head	Neck	SpineShoulder	HipL	Neck

ERAT OF V

図 13 グループの代表関節による散布図行列

図 14 c=3のときの投票方式の FAR, FRR の分布

図 15 c = 4 のときの投票方式の FAR, FRR の分布

参考文献

- [1] 大塚孝信,西田智裕,柴田大地,伊藤孝行,"プライバシ に配慮した深度センサ式人流計測システムの試作と実装", 第 32 回人工知能学会全国大会,pp. 1-4, 2018
- [2] 森 駿文,菊池 浩明,"深度センサによる歩容特徴量 を用いた個人識別・追跡方式の提案",コンピュータセ キュリティシンポジウム (CSS 2017),情報処理学会,pp. 972-979, 2017.
- [3] 森 駿文,菊池 浩明,"歩容データの DTW 距離に基づく個人識別手法の提案と外乱に対する評価",DICOMO 2018, pp. 672-680, 2018.
- [4] D. Berndt, J. Clifford, Using Dynamic Time Warping to Find Patterns in Time Series, The Third International Conference on Knowledge Discovery and Data Mining, pp.359-370, 1944.
- [5] M. Muaaz, R. Mayrhofer, "Smartphone-Based Gait Recognition: From Authentication to Imitation", IEEE Transactions on Mobile Computing, Vol. 16, pp. 3209-3221, 2017.
- [6] G. A. ten Holt, M. J. Reinders, E. A. Hendriks, "Multi-Dimensional Dynamic Time Warping for Gesture Recognition", Thirteenth annual conference of the Advanced School for Computing and Imaging, 2007.
- [7] Mahalanobis, P. C., "On the Generalized Distance in Statistics,", Proceedings of the National Institute of Sciences of India, Vol. 2(1) pp. 49-55, 1936.