
Playing Games with the Job-Level Computation System

Chung-Chin Shih†1 Ting han Wei†1 Zheng-Yuan Lee†1 I-Chen Wu †1

Abstract: This paper describes how the job-level computation system is used as a game playing agent, with a 90% win rate for

Connect6 tournaments on the website Little Golem between the years 2009 to 2018. In addition, we also construct a win/loss

database as an add-on to the existing job-level computation system. This database helps save precious computing resources when

encountering previously solved game positions. In the experiments, a benchmark of 32 Connect6 openings is used. The results

show that there are about 94.2% and 96.5% of the jobs can be conserved in JL-PNS and JL-UCT respectively for the benchmark

when applying the win/loss database. Moreover, we discuss the issues about Graph Interaction Problem and how we generate hash

keys of win/loss database.

Keywords: Computer games, Job-level computing, Distributed computing, Connect6.

1. Introduction

 Job-level computing (JL), proposed by Wu et al. [1],

is a distributed computing scheme that can be used to

parallelize larger problems by breaking them down into

smaller jobs. When used in the context of computer game

analysis (e.g. solving game positions), the JL system works

by encapsulating specific game positions and a

corresponding game AI into a job. Each job will be

dispatched to a worker, who will then perform calculations

for the job (e.g., search for the best move for the job’s given

position) with a predefined budget. Upon completion, the

worker returns the result back to the job-level search tree

for updates. An actual implementation of a JL application

involves the distributed computing environment, the

algorithms used to parcel jobs, and defined behaviors for

workers. It is collectively referred to as a job-level

computation system (JLCS).

JL has been successfully used in analyzing opening

positions for complex games such as Connect6 [1] [3],

Chinese chess [2], and Hex [4]. The job-level computation

system can be implemented with different search

algorithms. Job-level proof number search (JL-PNS) was

used to solve several Connect6 openings [1]. Chen et al.

verified Chinese chess opening book positions using job-

level alpha-beta search (JL-ABS). Another

implementation, job-level upper-confidence bound tree

search (JL-UCT), was used to solve Hex openings [4].

Lastly, Wei et al. compared JL-UCT and JL-PNS on their

performance in solving Connect6 openings and

constructing Connect6 opening books [3].

Collectively, the above-mentioned games can be prone

to combinatorial explosion and memory restrictions. One

of JL’s main advantages is that it can utilize existing game

AIs, while also benefiting from problem parallelization.

This allows JL applications to be suitable for bigger

 †1 National Chiao Tung University, Hsinchu, Taiwan.

problems, while simultaneously allowing faster speed up

during analysis.

Meanwhile, JL systems can also be used as a game

playing agent. This paper describes in detail how JL was

applied to playing Connect6 on the website Little Golem

(LG) [9]. JL was used to generate the best move to play for

each turn, with the exception of the opening moves, which

were determined manually. The results show that the JL

playing agent was able to win 205 games out of a total of

228 games, and 12 out of 18 tournaments.

In the process of playing games with JL systems, we

identified some potential improvements. Identical

positions are often encountered across different games.

Since each game is treated independently by the JL system,

we may end up wasting precious computing resources on

positions that have already been thoroughly analyzed, or in

other cases, completely solved.

To avoid the above problem, we implemented a

win/loss database that collects all previously solved

positions. Upon encountering these previously solved

positions in future games, the stored results can be used

immediately, saving computing resources for new positions.

This allows us to ultimately solve more complex openings

and also improve the JL system’s playing strength.

This paper is summarized as follows. Section 2

reviews background information, including the JLCS,

Connect6 and our experiences on LG tournaments. In

Section 3, we describe in more detail the implementation

of the win/loss database in a JLCS. The experiments for the

win/loss database in given in Section 4. In Section 5, some

implementation issues for the win/loss database are

discussed. Lastly, we conclude in Section 6.

2. Background

In this section, an introduction of a JLCS will be given

in Subsection 2.1, including the components of a JLCS, and

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 192 -

the operations involved in a job-level search. Subsection

2.2 introduces Connect6 and the program NCTU6.

Subsection 2.3 introduces the website Little Golem, and

discusses our experiences using JLCS as a game playing

agent on it. In Subsection 2.4, we review related work.

2.1 Job-Level Computation System (JLCS)

A job-level computation system is mainly composed

of two components: a JL system and a client that connect

to it. When a JLCS wants to analyze a given game position,

the client encapsulates the game position into a job, and

submits it to the JL system. Once the job is completed, the

JL system returns the job result back to the client so that it

can update the JL search tree. The above process is

illustrated in Fig 1.

Fig 1. Illustration of a job-level computation system

A generic JL computation for tree search comprises

four phases: selection, pre-update, execution, and update.

When the JL system notifies the client of idling

workers, a generic JL computation starts. In the selection

phase, it continues to select the most promising node

(MPN) according to a specified algorithm from the root

downwards, until it reaches a leaf. For example, if we use

JL-UCT, UCB [20] applied to trees is used as the criterion

to select the next child for visiting. The game position at

the leaf is then encapsulated as a job with a predefined

budget, and then submitted to the JL system, entering the

execution phase.

Once the job-level system returns the job result, it

enters the update phase. A node is expanded to store

information from the job result such as the best move to

play, and it updates data from the leaf upwards to the root

using the information of the job result.

However, in the situation where there are multiple

idling workers, we need to prevent the JLCS from selecting

the same node for job submission. To do this, a pre-update

phase is added after the selection phase. In the pre-update

phase, the simplest policy is to flag the leaf node that has

been selected for submitting the job. This means that the

next selection will not select the same leaf. There are

several other policies such as virtual win, virtual loss, and

greedy, which are all discussed in depth in previous work

[1], so we will not describe them here.

When the algorithm reaches its predefined

computation budget (say, 30,000 jobs) or the root is already

proved/disproved, the search is complete. We then use the

JL search tree to analyze the game position at the root. The

above process is illustrated in Fig 2.

Fig 2. The four phases of a generic job-level computation

Following the mechanism described above, note that

we only expand a child at a time after the execution phase

because it is inefficient to expand all possible moves in the

JLCS [1]. However, this implies that there would be no

opportunity to expand other children for each of the

selected nodes. Therefore, the postponed sibling

generation method [1] is used. When a leaf node is selected

according to the criteria in the selection phase, we submit

not only the job on the selected leaf node but also another

job on its parent node simultaneously. The job submitted

on the parent node is given an extra restriction on the game

AI so that it does not return the moves that the parent has

already generated. For the case of NCTU6, the first layer

of the game AI’s search tree will then exclude computing

the restricted moves. In other words, NCTU6 will ignore

these moves in the first layer of its search tree completely.

Fig 3. The postponed sibling generation method

To state more formally, the postponed sibling

generation method is illustrated in Fig 3. The node 𝑛3 is

the leaf node selected now, which we submit a job for. Its

parent 𝑛 has currently three children. Simultaneously,

another job is submitted for 𝑛 with the restriction that the

game AI is not to consider the three existing children

moves 𝑛1, 𝑛2, and 𝑛3. Once the client receives this job

with the restrictions, the returned move is now the 4th best

move, assuming that the game AI will always return the

best move in descending order of move quality, and

subsequently 𝑛4 is created. And so, one sibling of the

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 193 -

selected node is expanded. As a result, all possible child

nodes of 𝑛 will be eventually explored, given an infinite

amount of computation budget. For this reason, the ability

to ignore specific moves is a prerequisite for a game AI if

it is to be used in a JLCS without modifications.

In the JL system, the broker is responsible for

receiving jobs from the client and managing the workers.

If a worker has idle computation resources, it notifies the

broker, and the broker will dispatch a job to it for

computation.

We deploy our JLCS on the Computer Game Desktop

Grid (CGDG) [11]. CGDG is a volunteer computing

system developed by Wu et al. and aims to take advantage

of idle computing resources. With CGDG, the volunteers

can choose the number of CPU cores that they wish to

donate to the grid. During the LG competitions, which we

will discuss in more detail in Subsection 2.3, dozens to

hundreds of CPU cores were available via CGDG for the

JL player.

2.2 Connect6 and NCTU6

 Connect6 is a two-player board game introduced by Wu

et al. [12] [13]. Both players play on a 19x19 board, where

the game starts with the black player playing one stone in

her first move. Both players then take turns to play two

stones for each move. The winner of a Connect6 game is

the first player to connect six consecutive stones of her own

horizontally, vertically, or diagonally.

 NCTU6 is a Connect6 program developed by a team led

by Wu, winning several Connect6 tournaments and man-

machine championships [14] [15] [16] [17] [18]. It mainly

uses relevance-zone based proof search [19] to solve

Connect6 game positions effectively. NCTU6 is used as the

game AI in the JLCS in this paper.

2.3 Playing on Little Golem (LG)

LG is a website that holds tournaments for games such

as Chinese chess, Go, Gomoku, Connect6 etc., all of which

is open to the public. Since 2009, we have been part of the

Connect6 tournament, playing as the players Happy6 and

Lomaben. For each game of the Connect6 tournament, both

players will be given a total of 240 hours to play. Whenever

a move is played, an additional 36 hours will be added to

the player’s total thinking time, up to a maximum of 240

hours. From our experience of playing on LG, it often takes

weeks or even months to complete a game. Given the

longer timeframe, JL is more suitable as a playing agent

than exploiting a game AI purely for two reasons. First, JL

allows for a much larger-scale analysis, for which

conventional game AI cannot handle due to memory

constraints. Second, unlike the case of a real-time

competition, performance is less important for longer

games on LG. The overhead involved in a JL system is

significant, but at the same time JLCS can fully utilize the

long thinking time allowed on LG, whereas a conventional

game AI might not. Note that the JLCS player can take up

to several hours to generate the best move to play, during

which time the search tree is explored more thoroughly

than a conventional game AI.

JL-PNS and JL-UCT have both been applied to solve

Connect6 openings [3]. JL-PNS was developed first, so it

was used exclusively in the earlier tournaments. While JL-

PNS is often suitable to solving games, UCT was designed

to choose the best moves to play. Wei et al. [3] showed that,

as expected, JL-UCT is able to choose the better move to

play for openings, and can be comparable to JL-PNS at

solving positions. For the more recent tournaments, JL-

UCT has been used to great effect.

For each turn, the JL system computes about 15,000 to

30,000 jobs using workers on the CGDG. Each job consists

of a worker invoking NCTU6 and computing the best move

to play given a certain position in the overall JL search tree.

When using JL-PNS to play, the worker’s returned

candidate moves are classified into 13 ordered game

statuses according to NCTU6’s evaluation function. After

15,000 to 30,000 jobs are computed, we choose the next

move by sorting them according to their games status; in

the case of ties, the moves that belong to the best game

status is further sorted by its proof number/disproof

number ratio. That is, the move with the smallest proof

number/disproof number ratio of the best game status is

chosen. This method tended to be overly complicated and

in many cases, produced unexpected results. As an

improvement, for JL-UCT, we simply choose the move that

has the largest subtree to play like with MCTS.

We analyzed 49 games which were recorded in detail in

recent LG tournaments from 2015 to 2018. In these games,

on average, about 10 moves (the least being 2, at most 25)

are determined by JLCS. For each move determined by

JLCS, there’s a corresponding JL search tree produced.

There are no more than 30,000 nodes in each search tree.

From these search trees, we observed that there are on

average 6.7% identical positions in the JL search trees of

each move in the same game. The low identical percentages

of the JL search trees is because the opponent may not

respond with the moves that JLCS considered, opting to

play instead moves that were investigated less from the

perspective of the JL player.

Furthermore, in these games, we also observed that in a

single game there are on average 6.9% identical positions

that other games have searched previously. As mentioned

in the introduction, opening moves are determined

manually. This is because we wish to compile data for a

wide variety of openings, and is also a reason why identical

positions between games is still low. Despite this, however,

in extreme cases a game could have up to 80 percent

repeated positions from other games (including positions

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 194 -

that are outright proved/disproved). In this case, the JL

player can benefit significantly by reusing the previous

results, through the use of a win/loss database, which we

will describe in Section 3.

2.4 Related Work

Schaeffer et al. solved checkers [6] using distributed

computing, where their approach contains two main

components: the proof-tree manager and the proof solver.

The proof-tree manager performs the same role as the client

in our JLCS, where it maintains a proof tree and dispatches

positions to the proof-solver, similar to the jobs submitted

to workers in JLCS. Chaslot et al. [7] proposed Meta-

MCTS to construct Go openings. They used the UCT

algorithm to select the next position, and then dispatch it to

the worker for simulation, similar to JL-UCT in JLCS. The

above approaches are limited to proof-number search and

UCT and were only applied to specific games. JLCS is

more general, and can apply different kinds of search

algorithms like JL-PNS and JL-UCT, for various games.

Saffidine et al. [8] has applied JL-PNS to solving

breakthrough, and proposed using the simple flag policy to

prevent starvation.

3. Win/Loss Database

The win/loss database is a kind of transposition table.

The traditional transposition table mechanism often stores

all positions that it has analyzed before, then reuses the

information once it encounters the same position. In

contrast, for our win/loss database, we are only interested

in positions that have been proved to be winning or losing

instead of storing every encountered position. This is

because a tremendously large amount of memory space is

required to store the wide variety of game positions we may

encounter throughout different LG matches. By skipping

the unsolved positions, we will be able to store the most

important information with much less memory. Once a JL

search has started, the worker can query the win/loss

database to find whether the returned position has already

been proved or disproved.

The win/loss database is constructed and used as

follows. Once a position is proved by the JLCS, we store

its entire solution tree into the database. More specifically,

for each of the position’s descendants with a solved

win/loss/draw value, its hash key along with its theoretical

value are stored into the win/loss database for future use.

In our implementation, when a worker is given a job to

analyze a position p, it will return the best move to play m,

leading to a new position p’. Let the hash key for p’ be h,

which is computed by the arrangements of the stones on the

board and the player to play with Zobrist hashing [22]. The

worker will query the win/loss database with h to find

whether p’ is proved/disproved or otherwise. If h is found

in the database, the worker will then modify the job’s result

with the database’s theoretical value, and then return the

modified result to the JL search tree for update; if not, we

update the JL search tree with just the original job result.

The above process is illustrated in Fig 4.

Fig 4. The process of querying the win/loss database

This added mechanism does not need extensive

changes to the original software architecture [5] of a JLCS.

The JLCS will treat the job result as if the given position p’

is solved by the worker itself.

It is worth noting that the original responsibility of the

worker is only to invoke the specified game AI for

computing the best move m, and does not include

calculating the hash key h of the position p’ after playing

the move m. For this reason, to query the win/loss database

for the theoretical value, the worker will need to know how

to compute the new hash key h by itself for different games.

That is, it will need to know the rules of the game (e.g. for

Go, it should know basic rules for capturing) and play the

moves from an empty board to the desired position p’ for

computing the hash key h. To be more specific, when the

worker get the best move m from the game AI, the worker

calls a subroutine to generate the next hash key with the

arguments: game type g, position p, best move m, and then

follows the relevant game rules to get the new position p’

for computing the new hash key. This game-specific code

is the responsibility of the game developers, and is

originally shared between different job-level applications

[5]. To use the win/loss database, the game developer’s

work includes implementing this game-specific code on the

worker when generating the hash keys.

For maintainability and robustness, we choose

MariaDB [10], which is a community-developed fork of

MySQL, to construct our win/loss database, allowing us to

query the database using SQL commands through the

network. By choosing to implement this way, the entire

win/loss database can be treated as an add-on mechanism

to our JLCS. We only need to implement interfaces on the

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 195 -

worker to query the information that we need.

A total of 308,111 positions are stored into the win/loss

database and cost about 808 MB memory space in

MariaDB. It costs about 0.078 seconds to query the

database for a given position. The win/loss database values

consists of positions from 52 common Connect6 openings

and 49 games played on LG (which consists of 480 search

trees). The 52 common Connect6 openings have been both

solved by JL-UCT and JL-PNS. Among these positions,

JL-UCT can solve 23 of them using less jobs, and JL-PNS

can solve the remaining 29 positons better. Every opening

can be solved within 150,000 jobs.

4. Experiments

To test the functionality and performance of our

win/loss database in the JLCS for solving games, we chose

32 Connect6 openings that have all been solved as winning

for black previously. These openings are all less than five

plies into the game, and are the parent positions of the 52

common Connect6 openings described in Section 3.

Both JL-PNS and JL-UCT are applied to compare node

counts between the cases with and without the database.

The experiments are tested on CGDG, which typically has

about 250 cores. Each job costs about 30 seconds on

average. The node counts for both algorithms are listed in

Table 1.

Without DB With DB

JL-PNS 217502 12405

JL-UCT 249397 8510

Table 1. The total search nodes to solve the 32 Connect6

positions

The results show that about 94.2% of the nodes can be

saved for JL-PNS, and 96.5% for JL-UCT, which is a

significant improvement. Most of them can be proven in

the first move, which is returned by the job that contains a

win/loss value in the database.

We also list the number of nodes that are directly

proved/disproved by win/loss database in Table 2. Most of

the nodes are proved/disproved in the earlier plies, guiding

the JL player to find the immediate-win node, or

alternatively, to avoid searching immediate-losses to save

precious computation resources.

However, as we mentioned in Section 2, the JLCS uses

the postponed sibling generation method to expand

branches. In other words, it does not expand all children

after a single expansion phase. In the case where there is

a winning position for a later branch, the game AI might

not return it until several earlier branches have been

expanded. Therefore, the JLCS cannot use the win/loss

value until the winning/losing job in the later branch is

returned.

#Win nodes #Loss nodes

JL-PNS 36 86

JL-UCT 36 96

Table 2. The number of jobs that used queried values from

the win/loss database

5. Discussion

In this section, we discuss some implementation issues

when we build the win/loss database to our JLCS. In

Subsection 5.1, we discuss the Graph History Interaction

(GHI) problem [21], which occurs in retrieving

proof/disproof values from a transposition table when

cycles are involved. In Subsection 5.2, we discuss the

design issues of generating the new hash key on the worker

side.

5.1 The GHI Issues of the Win/Loss Database

In our implementation, the GHI problem is prone to

occur, resulting in incorrect proofs when reusing the results

from a transposition table (i.e. the win/loss database). For

the game of Connect6, cycles are not possible. Thus, there

is no need to worry about the GHI problem when reusing

the theoretical values of a position for Connect6.

However, for games such as Go and Chinese chess,

certain rules exist that forbid players from recreating

positions that have already been played previously in the

same game. Go, for example, prohibits players from

playing ko, which occurs frequently (often single ko). More

specifically, two positions that have the same arrangement

on the board with the same player to play, should, in fact

be regarded as different positions in terms of the win/loss

values in certain conditions.

To handle the GHI problem, we define columns for

preconditions in the win/loss database to discriminate

between these cases that share the same board positions,

but do not have the same theoretical value. This issue is

game-related, and the method to identify duplicates with

different values depends on the game developers. We will

investigate the issue in the future and apply it to solve game

positions for Go.

5.2 The Design Issues of Generating the Hash Key

A potential question is whether the game AI should

compute the hash key h instead of having the worker do it.

In that case, there would be no need to call a subroutine in

the worker to generate h. There are two main reasons why

we do not design our mechanism this way.

First, one of the main benefits of the JL model is that

the game AI can be developed independently, without the

need for modification from the JL application developer.

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 196 -

For this reason, it is not preferable to have to modify the

source code of the game AI. In any case, the JL application

developer may not even have access to the game AI code,

or it may be difficult to understand and alter the game AI if

the JL developer cannot contact or consult the original

game AI authors.

Second, two different game AIs might share the same

win/loss information of the same position when we want

exploit their differing advantages. In this situation, each AI

program will need to contain the same duplicate code to

ensure the hashing mechanism is consistent between them.

For a more flexible and maintainable JLCS framework, we

keep the hashing mechanism sharable and reusable, while

also removing the requirement to alter the original game AI.

6. Conclusionb

This paper describes how the JLCS, which has been

traditionally used to analyze game positions, can also be

used as a game playing agent. Our JLCS has been used as

a player on the website Little Golem, where it is the owner

of the two handles Happy6 and Lomaben. Collectively, the

JLCS has won 12 championships†2 in 18 tournaments from

2009 to 2018, achieving about 90% (205 games) winrate in

a total of 228 games. The more recent Lomaben has an Elo

rating of 2591 currently, being the top Connect6 player on

LG, while the second place player is rated at 2453.

Additionally, we constructed a win/loss database as an

add-on to our JLCS. The added win/loss database saves

precious computing resources when encountering game

positions solved previously, allowing us to focus on new

problems, while potentially improving the playing strength

when using JLCS as a game playing agent.

Experiment results show that the win/loss database

achieves 94.2% savings in jobs for JL-PNS and 96.5% for

JL-UCT when solving Connect6 openings compared to not

using the database.

Currently, the win/loss database is only designed for

Connect6. For other games such as Go, the so-called GHI

problem may occur, resulting in incorrect proofs. The

win/loss database can be improved by adding pre-

conditions with the given hash key, which we will

investigate in a more generic way and apply to Go in the

future.

References
[1] I-Chen Wu, Hung-Hsuan Lin, Der-Johng Sun, Kuo-Yuan

Kao, Ping-Hung Lin, Yi-Chih Chan, and Po-Ting Chen,

"Job-Level Proof Number Search", the IEEE Transactions on

Computational Intelligence and AI in Games (SCI), Vol. 5,

No. 1, pp. 44-56, March 2013.

[2] Jr-Chang Chen, I-Chen Wu, Wen-Jie Tseng, Bo-Han Lin,

†2 The 2nd Connect6 tournament in 2018 on LG is not counted because it

is still ongoing as of this writing, but we are guaranteed to win according

to the current score.

and Chia-Hui Chang, "Job-Level Alpha-Beta Search", IEEE

Transactions on Computational Intelligence and AI in

Games (SCI), Vol. 7, No. 1, pp. 28-38, March 2015.

[3] Ting-han Wei, I-Chen Wu, Chao-Chin Liang, Bing-Tsung

Chiang, WenJie Tseng, Shi-Jim Yen, and Chang-Shing Lee,

Job-Level Algorithms for Connect6 Opening Book, ICGA

Journal (SCI), Vol. 37(3), September 2015.

[4] Xi Liang, Ting-han Wei, and I-Chen Wu, Solving Hex

Openings Using Job-Level UCT Search, ICGA Journal (SCI),

Vol. 37(3), September 2015.

[5] Ting-han Wei, Chao-Chin Liang, I-Chen Wu, and Lung-Pin

Chen, Software Development Architecture for Job-Level

Algorithms, ICGA Journal (SCI), Vol. 37(3), September

2015.

[6] J. Schaeffer, N. Burch, Y. N. Björnsson, A. Kishimoto, M.

Müller, R.Lake, P. Lu, and S. Sutphen, “Checkers is solved,”

Science, vol. 5844, no. 317, pp. 1518–1552, 2007.

[7] G. M. Chaslot, J.-B. Hoock, J. Perez, A. Rimmel, O. Teytaud,

and M.H. M.Winands, “Meta Monte-Carlo tree search for

automatic opening book generation,” in Proc. Workshop

General Intell. Game Playing Agents, 2009, pp. 7–12.

[8] A. Saffidine, N. Jouandeau, and T. Cazenave, “Solving

breakthrough with race patterns and job-level proof number

search,” in Proc. 13th Adv. Comput. Games Conf., Tilburg,

The Netherlands, 2011, pp. 196–207.

[9] Little Golem, http://www.littlegolem.net/jsp/main

[10] MariaDB, https://mariadb.com/

[11] I.-C. Wu, C.-P. Chen, P.-H. Lin, K.-C. Huang, L.-P. Chen,

D.-J. Sun,Y.-C. Chan, and H.-Y. Hsou, “A volunteer-

computing-based grid environment for Connect6

applications,” in Proc. 12th IEEE Int. Conf. Comput. Sci.

Eng., Vancouver, BC, Canada, Aug. 29–31, 2009, pp. 110–

117.

[12] I.-C. Wu, D.-Y. Huang, and H.-C. Chang, “Connect6,” Int.

Comput. Games Assoc. J., vol. 28, no. 4, pp. 234–242, 2006.

[13] I.-C. Wu and D.-Y. Huang, “A new family of k-in-a-row

games,” in Proc. 11th Adv. Comput. Games Conf., Taipei,

Taiwan, 2005, pp. 180–194.

[14] I-Chen Wu and Shi-Jim, Yen, "NCTU6 Wins Connect6

Tournament", ICGA Journal (SCI), Vol.29, No.3, September

2006.

[15] Wu, I.-C. and Lin, P. (2008). Nctu6-Lite Wins Connect6

Tournament. ICGA Journal, Vol. 31, No. 4, pp. 240-243.

[16] Lin, P.-H. and Wu, I. (2009). Nctu6 Wins Man-Machine

Connect6 Championship 2009. ICGA Journal, Vol. 32, No.

4, pp. 230.

[17] Wu, I., Lin, Y.-S., Tsai, H.-T. and Lin, P.-H. (2011). The

Man-Machine Connect6 Championship 2011.ICGA Journal,

Vol. 34, No. 2, pp. 103.

[18] Wei, T.-H., Tseng, W.-J., Wu, I. and Yen, S.-J. (2013).

Mobile6 Wins Connect6 Tournament. ICGA Journal, Vol. 36,

No. 3, pp. 178-179.

[19] I-Chen Wu and Ping-Hung Lin, "Relevance-Zone-Oriented

Proof Search for Connect6", the IEEE Transactions on

Computational Intelligence and AI in Games (SCI), Vol. 2,

No. 3, pp. 191-207, September 2010.

[20] Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M.,

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 197 -

http://www.littlegolem.net/jsp/main
https://mariadb.com/

Cowling, P.I., Rohlfshagen, P., Tavener, S., Perez, D.,

Samothrakis, S., and Colton, S. (2012). A Survey of Monte

Carlo Tree Search Methods. Computational Intelligence and

AI in Games, IEEE Transactions on, Vol. 4, No. 1, pp. 1-43.

[21] Palay, A. J. 1983. Searching with Probabilities. Ph.D.

Dissertation, Carnegie Mellon University.

[22] Albert Lindsey Zobrist, A New Hashing Method with

Application for Game Playing, Tech. Rep. 88, Computer

Sciences Department, University of Wisconsin, Madison,

Wisconsin, 1969.

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 198 -

