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Abstract: This paper describes how the job-level computation system is used as a game playing agent, with a 90% win rate for 

Connect6 tournaments on the website Little Golem between the years 2009 to 2018. In addition, we also construct a win/loss 

database as an add-on to the existing job-level computation system. This database helps save precious computing resources when 

encountering previously solved game positions. In the experiments, a benchmark of 32 Connect6 openings is used. The results 

show that there are about 94.2% and 96.5% of the jobs can be conserved in JL-PNS and JL-UCT respectively for the benchmark 

when applying the win/loss database. Moreover, we discuss the issues about Graph Interaction Problem and how we generate hash 

keys of win/loss database. 
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1. Introduction

  Job-level computing (JL), proposed by Wu et al. [1], 

is a distributed computing scheme that can be used to 

parallelize larger problems by breaking them down into 

smaller jobs. When used in the context of computer game 

analysis (e.g. solving game positions), the JL system works 

by encapsulating specific game positions and a 

corresponding game AI into a job. Each job will be 

dispatched to a worker, who will then perform calculations 

for the job (e.g., search for the best move for the job’s given 

position) with a predefined budget. Upon completion, the 

worker returns the result back to the job-level search tree 

for updates. An actual implementation of a JL application 

involves the distributed computing environment, the 

algorithms used to parcel jobs, and defined behaviors for 

workers. It is collectively referred to as a job-level 

computation system (JLCS). 

JL has been successfully used in analyzing opening 

positions for complex games such as Connect6 [1] [3], 

Chinese chess [2], and Hex [4]. The job-level computation 

system can be implemented with different search 

algorithms. Job-level proof number search (JL-PNS) was 

used to solve several Connect6 openings [1]. Chen et al. 

verified Chinese chess opening book positions using job-

level alpha-beta search (JL-ABS). Another 

implementation, job-level upper-confidence bound tree 

search (JL-UCT), was used to solve Hex openings [4]. 

Lastly, Wei et al. compared JL-UCT and JL-PNS on their 

performance in solving Connect6 openings and 

constructing Connect6 opening books [3]. 

Collectively, the above-mentioned games can be prone 

to combinatorial explosion and memory restrictions. One 

of JL’s main advantages is that it can utilize existing game 

AIs, while also benefiting from problem parallelization. 

This allows JL applications to be suitable for bigger 
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problems, while simultaneously allowing faster speed up 

during analysis. 

Meanwhile, JL systems can also be used as a game 

playing agent. This paper describes in detail how JL was 

applied to playing Connect6 on the website Little Golem 

(LG) [9]. JL was used to generate the best move to play for 

each turn, with the exception of the opening moves, which 

were determined manually. The results show that the JL 

playing agent was able to win 205 games out of a total of 

228 games, and 12 out of 18 tournaments. 

In the process of playing games with JL systems, we 

identified some potential improvements. Identical 

positions are often encountered across different games. 

Since each game is treated independently by the JL system, 

we may end up wasting precious computing resources on 

positions that have already been thoroughly analyzed, or in 

other cases, completely solved.  

To avoid the above problem, we implemented a 

win/loss database that collects all previously solved 

positions. Upon encountering these previously solved 

positions in future games, the stored results can be used 

immediately, saving computing resources for new positions. 

This allows us to ultimately solve more complex openings 

and also improve the JL system’s playing strength. 

This paper is summarized as follows. Section 2 

reviews background information, including the JLCS, 

Connect6 and our experiences on LG tournaments.  In 

Section 3, we describe in more detail the implementation 

of the win/loss database in a JLCS. The experiments for the 

win/loss database in given in Section 4. In Section 5, some 

implementation issues for the win/loss database are 

discussed. Lastly, we conclude in Section 6.   

2. Background

In this section, an introduction of a JLCS will be given

in Subsection 2.1, including the components of a JLCS, and 
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the operations involved in a job-level search. Subsection 

2.2 introduces Connect6 and the program NCTU6. 

Subsection 2.3 introduces the website Little Golem, and 

discusses our experiences using JLCS as a game playing 

agent on it. In Subsection 2.4, we review related work. 

2.1 Job-Level Computation System (JLCS) 

A job-level computation system is mainly composed 

of two components: a JL system and a client that connect 

to it. When a JLCS wants to analyze a given game position, 

the client encapsulates the game position into a job, and 

submits it to the JL system. Once the job is completed, the 

JL system returns the job result back to the client so that it 

can update the JL search tree. The above process is 

illustrated in Fig 1.  

Fig 1. Illustration of a job-level computation system 

A generic JL computation for tree search comprises 

four phases: selection, pre-update, execution, and update. 

When the JL system notifies the client of idling 

workers, a generic JL computation starts. In the selection 

phase, it continues to select the most promising node 

(MPN) according to a specified algorithm from the root 

downwards, until it reaches a leaf. For example, if we use 

JL-UCT, UCB [20] applied to trees is used as the criterion 

to select the next child for visiting. The game position at 

the leaf is then encapsulated as a job with a predefined 

budget, and then submitted to the JL system, entering the 

execution phase. 

Once the job-level system returns the job result, it 

enters the update phase. A node is expanded to store 

information from the job result such as the best move to 

play, and it updates data from the leaf upwards to the root 

using the information of the job result.  

However, in the situation where there are multiple 

idling workers, we need to prevent the JLCS from selecting 

the same node for job submission. To do this, a pre-update 

phase is added after the selection phase. In the pre-update 

phase, the simplest policy is to flag the leaf node that has 

been selected for submitting the job. This means that the 

next selection will not select the same leaf. There are 

several other policies such as virtual win, virtual loss, and 

greedy, which are all discussed in depth in previous work 

[1], so we will not describe them here.  

When the algorithm reaches its predefined 

computation budget (say, 30,000 jobs) or the root is already 

proved/disproved, the search is complete. We then use the 

JL search tree to analyze the game position at the root. The 

above process is illustrated in Fig 2. 

Fig 2. The four phases of a generic job-level computation 

Following the mechanism described above, note that 

we only expand a child at a time after the execution phase 

because it is inefficient to expand all possible moves in the 

JLCS [1]. However, this implies that there would be no 

opportunity to expand other children for each of the 

selected nodes. Therefore, the postponed sibling 

generation method [1] is used. When a leaf node is selected 

according to the criteria in the selection phase, we submit 

not only the job on the selected leaf node but also another 

job on its parent node simultaneously. The job submitted 

on the parent node is given an extra restriction on the game 

AI so that it does not return the moves that the parent has 

already generated. For the case of NCTU6, the first layer 

of the game AI’s search tree will then exclude computing 

the restricted moves. In other words, NCTU6 will ignore 

these moves in the first layer of its search tree completely. 

Fig 3. The postponed sibling generation method 

To state more formally, the postponed sibling 

generation method is illustrated in Fig 3. The node 𝑛3 is

the leaf node selected now, which we submit a job for. Its 

parent 𝑛  has currently three children. Simultaneously, 

another job is submitted for 𝑛 with the restriction that the 

game AI is not to consider the three existing children 

moves 𝑛1, 𝑛2, and 𝑛3. Once the client receives this job

with the restrictions, the returned move is now the 4th best 

move, assuming that the game AI will always return the 

best move in descending order of move quality, and 

subsequently 𝑛4  is created. And so, one sibling of the
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selected node is expanded. As a result, all possible child 

nodes of 𝑛 will be eventually explored, given an infinite 

amount of computation budget. For this reason, the ability 

to ignore specific moves is a prerequisite for a game AI if 

it is to be used in a JLCS without modifications. 

In the JL system, the broker is responsible for 

receiving jobs from the client and managing the workers. 

If a worker has idle computation resources, it notifies the 

broker, and the broker will dispatch a job to it for 

computation.  

We deploy our JLCS on the Computer Game Desktop 

Grid (CGDG) [11]. CGDG is a volunteer computing 

system developed by Wu et al. and aims to take advantage 

of idle computing resources. With CGDG, the volunteers 

can choose the number of CPU cores that they wish to 

donate to the grid. During the LG competitions, which we 

will discuss in more detail in Subsection 2.3, dozens to 

hundreds of CPU cores were available via CGDG for the 

JL player. 

2.2 Connect6 and NCTU6 

 Connect6 is a two-player board game introduced by Wu 

et al. [12] [13]. Both players play on a 19x19 board, where 

the game starts with the black player playing one stone in 

her first move. Both players then take turns to play two 

stones for each move. The winner of a Connect6 game is 

the first player to connect six consecutive stones of her own 

horizontally, vertically, or diagonally. 

 NCTU6 is a Connect6 program developed by a team led 

by Wu, winning several Connect6 tournaments and man-

machine championships [14] [15] [16] [17] [18]. It mainly 

uses relevance-zone based proof search [19] to solve 

Connect6 game positions effectively. NCTU6 is used as the 

game AI in the JLCS in this paper.  

2.3 Playing on Little Golem (LG) 

LG is a website that holds tournaments for games such 

as Chinese chess, Go, Gomoku, Connect6 etc., all of which 

is open to the public. Since 2009, we have been part of the 

Connect6 tournament, playing as the players Happy6 and 

Lomaben. For each game of the Connect6 tournament, both 

players will be given a total of 240 hours to play. Whenever 

a move is played, an additional 36 hours will be added to 

the player’s total thinking time, up to a maximum of 240 

hours. From our experience of playing on LG, it often takes 

weeks or even months to complete a game. Given the 

longer timeframe, JL is more suitable as a playing agent 

than exploiting a game AI purely for two reasons. First, JL 

allows for a much larger-scale analysis, for which 

conventional game AI cannot handle due to memory 

constraints. Second, unlike the case of a real-time 

competition, performance is less important for longer 

games on LG. The overhead involved in a JL system is 

significant, but at the same time JLCS can fully utilize the 

long thinking time allowed on LG, whereas a conventional 

game AI might not. Note that the JLCS player can take up 

to several hours to generate the best move to play, during 

which time the search tree is explored more thoroughly 

than a conventional game AI. 

JL-PNS and JL-UCT have both been applied to solve 

Connect6 openings [3]. JL-PNS was developed first, so it 

was used exclusively in the earlier tournaments. While JL-

PNS is often suitable to solving games, UCT was designed 

to choose the best moves to play. Wei et al. [3] showed that, 

as expected, JL-UCT is able to choose the better move to 

play for openings, and can be comparable to JL-PNS at 

solving positions. For the more recent tournaments, JL-

UCT has been used to great effect. 

For each turn, the JL system computes about 15,000 to 

30,000 jobs using workers on the CGDG. Each job consists 

of a worker invoking NCTU6 and computing the best move 

to play given a certain position in the overall JL search tree. 

When using JL-PNS to play, the worker’s returned 

candidate moves are classified into 13 ordered game 

statuses according to NCTU6’s evaluation function. After 

15,000 to 30,000 jobs are computed, we choose the next 

move by sorting them according to their games status; in 

the case of ties, the moves that belong to the best game 

status is further sorted by its proof number/disproof 

number ratio. That is, the move with the smallest proof 

number/disproof number ratio of the best game status is 

chosen. This method tended to be overly complicated and 

in many cases, produced unexpected results. As an 

improvement, for JL-UCT, we simply choose the move that 

has the largest subtree to play like with MCTS. 

We analyzed 49 games which were recorded in detail in 

recent LG tournaments from 2015 to 2018. In these games, 

on average, about 10 moves (the least being 2, at most 25) 

are determined by JLCS. For each move determined by 

JLCS, there’s a corresponding JL search tree produced. 

There are no more than 30,000 nodes in each search tree.  

From these search trees, we observed that there are on 

average 6.7% identical positions in the JL search trees of 

each move in the same game. The low identical percentages 

of the JL search trees is because the opponent may not 

respond with the moves that JLCS considered, opting to 

play instead moves that were investigated less from the 

perspective of the JL player. 

Furthermore, in these games, we also observed that in a 

single game there are on average 6.9% identical positions 

that other games have searched previously. As mentioned 

in the introduction, opening moves are determined 

manually. This is because we wish to compile data for a 

wide variety of openings, and is also a reason why identical 

positions between games is still low. Despite this, however, 

in extreme cases a game could have up to 80 percent 

repeated positions from other games (including positions 
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that are outright proved/disproved). In this case, the JL 

player can benefit significantly by reusing the previous 

results, through the use of a win/loss database, which we 

will describe in Section 3. 

2.4 Related Work 

Schaeffer et al. solved checkers [6] using distributed 

computing, where their approach contains two main 

components: the proof-tree manager and the proof solver. 

The proof-tree manager performs the same role as the client 

in our JLCS, where it maintains a proof tree and dispatches 

positions to the proof-solver, similar to the jobs submitted 

to workers in JLCS. Chaslot et al. [7] proposed Meta-

MCTS to construct Go openings. They used the UCT 

algorithm to select the next position, and then dispatch it to 

the worker for simulation, similar to JL-UCT in JLCS. The 

above approaches are limited to proof-number search and 

UCT and were only applied to specific games. JLCS is 

more general, and can apply different kinds of search 

algorithms like JL-PNS and JL-UCT, for various games. 

Saffidine et al. [8] has applied JL-PNS to solving 

breakthrough, and proposed using the simple flag policy to 

prevent starvation. 

3. Win/Loss Database

The win/loss database is a kind of transposition table. 

The traditional transposition table mechanism often stores 

all positions that it has analyzed before, then reuses the 

information once it encounters the same position. In 

contrast, for our win/loss database, we are only interested 

in positions that have been proved to be winning or losing 

instead of storing every encountered position. This is 

because a tremendously large amount of memory space is 

required to store the wide variety of game positions we may 

encounter throughout different LG matches. By skipping 

the unsolved positions, we will be able to store the most 

important information with much less memory. Once a JL 

search has started, the worker can query the win/loss 

database to find whether the returned position has already 

been proved or disproved. 

The win/loss database is constructed and used as 

follows. Once a position is proved by the JLCS, we store 

its entire solution tree into the database. More specifically, 

for each of the position’s descendants with a solved 

win/loss/draw value, its hash key along with its theoretical 

value are stored into the win/loss database for future use. 

In our implementation, when a worker is given a job to 

analyze a position p, it will return the best move to play m, 

leading to a new position p’. Let the hash key for p’ be h, 

which is computed by the arrangements of the stones on the 

board and the player to play with Zobrist hashing [22]. The 

worker will query the win/loss database with h to find 

whether p’ is proved/disproved or otherwise. If h is found 

in the database, the worker will then modify the job’s result 

with the database’s theoretical value, and then return the 

modified result to the JL search tree for update; if not, we 

update the JL search tree with just the original job result. 

The above process is illustrated in Fig 4. 

Fig 4. The process of querying the win/loss database 

This added mechanism does not need extensive 

changes to the original software architecture [5] of a JLCS. 

The JLCS will treat the job result as if the given position p’ 

is solved by the worker itself. 

It is worth noting that the original responsibility of the 

worker is only to invoke the specified game AI for 

computing the best move m, and does not include 

calculating the hash key h of the position p’ after playing 

the move m. For this reason, to query the win/loss database 

for the theoretical value, the worker will need to know how 

to compute the new hash key h by itself for different games. 

That is, it will need to know the rules of the game (e.g. for 

Go, it should know basic rules for capturing) and play the 

moves from an empty board to the desired position p’ for 

computing the hash key h. To be more specific, when the 

worker get the best move m from the game AI, the worker 

calls a subroutine to generate the next hash key with the 

arguments: game type g, position p, best move m, and then 

follows the relevant game rules to get the new position p’ 

for computing the new hash key. This game-specific code 

is the responsibility of the game developers, and is 

originally shared between different job-level applications 

[5]. To use the win/loss database, the game developer’s 

work includes implementing this game-specific code on the 

worker when generating the hash keys. 

For maintainability and robustness, we choose 

MariaDB [10], which is a community-developed fork of 

MySQL, to construct our win/loss database, allowing us to 

query the database using SQL commands through the 

network. By choosing to implement this way, the entire 

win/loss database can be treated as an add-on mechanism 

to our JLCS. We only need to implement interfaces on the 

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 195 -



worker to query the information that we need. 

A total of 308,111 positions are stored into the win/loss 

database and cost about 808 MB memory space in 

MariaDB. It costs about 0.078 seconds to query the 

database for a given position. The win/loss database values 

consists of positions from 52 common Connect6 openings 

and 49 games played on LG (which consists of 480 search 

trees). The 52 common Connect6 openings have been both 

solved by JL-UCT and JL-PNS. Among these positions, 

JL-UCT can solve 23 of them using less jobs, and JL-PNS 

can solve the remaining 29 positons better. Every opening 

can be solved within 150,000 jobs. 

4. Experiments

To test the functionality and performance of our 

win/loss database in the JLCS for solving games, we chose 

32 Connect6 openings that have all been solved as winning 

for black previously. These openings are all less than five 

plies into the game, and are the parent positions of the 52 

common Connect6 openings described in Section 3. 

Both JL-PNS and JL-UCT are applied to compare node 

counts between the cases with and without the database. 

The experiments are tested on CGDG, which typically has 

about 250 cores. Each job costs about 30 seconds on 

average. The node counts for both algorithms are listed in 

Table 1. 

Without DB With DB 

JL-PNS 217502 12405 

JL-UCT 249397 8510 

Table 1. The total search nodes to solve the 32 Connect6 

positions 

The results show that about 94.2% of the nodes can be 

saved for JL-PNS, and 96.5% for JL-UCT, which is a 

significant improvement. Most of them can be proven in 

the first move, which is returned by the job that contains a 

win/loss value in the database.  

We also list the number of nodes that are directly 

proved/disproved by win/loss database in Table 2. Most of 

the nodes are proved/disproved in the earlier plies, guiding 

the JL player to find the immediate-win node, or 

alternatively, to avoid searching immediate-losses to save 

precious computation resources. 

However, as we mentioned in Section 2, the JLCS uses 

the postponed sibling generation method to expand 

branches. In other words, it does not expand all children 

after a single expansion phase.  In the case where there is 

a winning position for a later branch, the game AI might 

not return it until several earlier branches have been 

expanded. Therefore, the JLCS cannot use the win/loss 

value until the winning/losing job in the later branch is 

returned. 

#Win nodes #Loss nodes 

JL-PNS 36 86 

JL-UCT 36 96 

Table 2. The number of jobs that used queried values from 

the win/loss database 

5. Discussion

In this section, we discuss some implementation issues

when we build the win/loss database to our JLCS. In 

Subsection 5.1, we discuss the Graph History Interaction 

(GHI) problem [21], which occurs in retrieving 

proof/disproof values from a transposition table when 

cycles are involved. In Subsection 5.2, we discuss the 

design issues of generating the new hash key on the worker 

side. 

5.1 The GHI Issues of the Win/Loss Database 

In our implementation, the GHI problem is prone to 

occur, resulting in incorrect proofs when reusing the results 

from a transposition table (i.e. the win/loss database). For 

the game of Connect6, cycles are not possible. Thus, there 

is no need to worry about the GHI problem when reusing 

the theoretical values of a position for Connect6.  

However, for games such as Go and Chinese chess, 

certain rules exist that forbid players from recreating 

positions that have already been played previously in the 

same game. Go, for example, prohibits players from 

playing ko, which occurs frequently (often single ko). More 

specifically, two positions that have the same arrangement 

on the board with the same player to play, should, in fact 

be regarded as different positions in terms of the win/loss 

values in certain conditions. 

To handle the GHI problem, we define columns for 

preconditions in the win/loss database to discriminate 

between these cases that share the same board positions, 

but do not have the same theoretical value. This issue is 

game-related, and the method to identify duplicates with 

different values depends on the game developers. We will 

investigate the issue in the future and apply it to solve game 

positions for Go. 

5.2 The Design Issues of Generating the Hash Key 

A potential question is whether the game AI should 

compute the hash key h instead of having the worker do it. 

In that case, there would be no need to call a subroutine in 

the worker to generate h. There are two main reasons why 

we do not design our mechanism this way.  

First, one of the main benefits of the JL model is that 

the game AI can be developed independently, without the 

need for modification from the JL application developer. 
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For this reason, it is not preferable to have to modify the 

source code of the game AI. In any case, the JL application 

developer may not even have access to the game AI code, 

or it may be difficult to understand and alter the game AI if 

the JL developer cannot contact or consult the original 

game AI authors.  

Second, two different game AIs might share the same 

win/loss information of the same position when we want 

exploit their differing advantages. In this situation, each AI 

program will need to contain the same duplicate code to 

ensure the hashing mechanism is consistent between them. 

For a more flexible and maintainable JLCS framework, we 

keep the hashing mechanism sharable and reusable, while 

also removing the requirement to alter the original game AI. 

6. Conclusionb

This paper describes how the JLCS, which has been 

traditionally used to analyze game positions, can also be 

used as a game playing agent. Our JLCS has been used as 

a player on the website Little Golem, where it is the owner 

of the two handles Happy6 and Lomaben. Collectively, the 

JLCS has won 12 championships†2 in 18 tournaments from 

2009 to 2018, achieving about 90% (205 games) winrate in 

a total of 228 games. The more recent Lomaben has an Elo 

rating of 2591 currently, being the top Connect6 player on 

LG, while the second place player is rated at 2453. 

Additionally, we constructed a win/loss database as an 

add-on to our JLCS. The added win/loss database saves 

precious computing resources when encountering game 

positions solved previously, allowing us to focus on new 

problems, while potentially improving the playing strength 

when using JLCS as a game playing agent.  

Experiment results show that the win/loss database 

achieves 94.2% savings in jobs for JL-PNS and 96.5% for 

JL-UCT when solving Connect6 openings compared to not 

using the database. 

Currently, the win/loss database is only designed for 

Connect6. For other games such as Go, the so-called GHI 

problem may occur, resulting in incorrect proofs. The 

win/loss database can be improved by adding pre-

conditions with the given hash key, which we will 

investigate in a more generic way and apply to Go in the 

future.  
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