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An Improved Algorithm for Uniform Page Migration on

Euclidean Space
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Abstract: This report addresses the classical page migration problem on Euclidean space. It is known that there is

a 2.75-competitive deterministic online page migration algorithm on Euclidean space under the uniform model. We

extend this algorithm and improve the competitive ratio to 2.5723. Although there still exists a slight gap between our

competitive ratio and the currently known lower bound 2.5, our result significantly narrows the previous gap. We also

demonstrate that our analysis of the competitive ratio is nearly tight.

Keywords: page migration, Euclidean space, online algorithm, competitive analysis

1. Introduction

The page migration problem is one of the most classic online

problems extensively studied for 30 years. In this problem, we

manage the position of a data object, called a page, in a metric

space M. Online requests are a sequence of points in M. Every

time we receive a request r ∈ M, we are required to serve the

request r by paying a cost of the distance between r and the cur-

rent position of the page. Then, we are asked to determine the

next position of the page. I.e., we may move the page to another

position by paying the cost of the distance between the current

and next positions multiplied by the page size D. Typically D is

a positive integer because the page generally models a collection

of D data pieces of the unit size that can be accessed at a time.

The objective is to minimize the total sum of service costs and

the migration costs. Although this problem was introduced for

an application of efficiently managing of multiple cache mem-

ories of a multiprocessor system, we can apply the problem to

more general frameworks of dynamically allocating a date object

shared on a network of various kinds. See [2] for a survey such

as other variants of the page migration problem. The formal def-

inition of the page migration problem, as well as the definitions

of other notions, such as online algorithms and competitive ratio,

are provided in Sect. 2.

In this report, we focus on Euclidean space as the underly-

ing metric space. Considering continuous metric spaces should

be important to model wireless networks. Several results on n-

dimensional real space Rn were proved by Chrobak et al. [5]. In

particular, they presented a (2+ 1
2D

)-competitive deterministic al-

gorithm on Rn under L1 norm, and a c(D)-competitive determin-

istic algorithm on Rn under any norm, where c(D) is a function

such that c(1) = 2.8 and tends to 3+
√

5
2
≈ 2.6180 as D grows large.
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Since they also proved that 2+ 1
2D

is a lower bound on R1 (hence,

even on Rn), their algorithm under L1 metric is optimal. However,

it is open for over 20 years whether we can close the gap between

upper and lower bounds under Lp norm with p ≥ 2. Recently,

under uniform model, i.e., D = 1, and L2 norm, the competitive

ratio was improved from c(1) = 2.8 to 2.75 [6]. Although the

uniform model is a significant restriction, we know an interesting

case (actually, only three points) such that the competitive ratio

is not monotonic with respect to D [10]. This would imply dif-

ferent principles between small and large D in the page migration

problem. Therefore, studying the uniform model, as well as large

D, would be important for our deeper understanding of the page

migration problem and possibly other problems.

In this report, we further improve this ratio to 2.5723 on Rn

under L2 norm and uniform model. Our ratio narrows the previ-

ous gap between 2.75 and 2 + 1
2
= 2.5 for D = 1 significantly,

although a slight gap still remains. We do not know whether the

general lower bound can be improved; however, we demonstrate

that our analysis of the competitive ratio is nearly tight.

The algorithm of [6] is extremely simple. It maintains two

points, called counters here, always located at two of previous

requests, and keeps its page at the midpoint of the counters. The

similar idea (often implicitly) was used in many other algorithms.

Actually, (2 + 1
2D

)-competitive algorithms under L1 norm works

in a similar way for D = 1. We modify in our algorithm the way

of maintaining the counters by introducing a new rule to locate a

counter not necessarily at a previous request. Previous counter-

based algorithms “count“ the number of requests that are thought

to be important to determine the new page position. Our algo-

rithm generalize the idea to “mark” positions that are thought to

be important to determine the new page position, without regard

to previous requests. Specific definition of our algorithm is pro-

vided in Sect. 3
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1.1 Other related results

Competitive analysis of the page migration problem was first

studied by Black and Sleator [4]. They presented tight 3-

competitive deterministic algorithms on trees, uniform networks,

and their Cartesian products. The first lower bound larger than 3

for general networks under uniform model was found by Chrobak

et al. [5], who proved that there is a network (of arbitrarily large

size) on which no deterministic algorithm achieves a competi-

tive ratio smaller than 85/27 ≈ 3.148. This lower bound was

improved to 3.1639 [8]. The first lower bound of 3 + Ω(1),

where Ω-notation is with respect to D, under non-uniform model

was presented in [9]. Although the best deterministic algorithm

on general metric spaces had been 4.086-competitive for over

20 years [1], very recently, this bound is improved to 4 by Bi-

enkowski et al. [3]. For uniform model, there exists a better,

(2 +
√

2) ≈ 3.4142-competitive algorithm [8]. For three points,

there are 3-competitive algorithms for D = 1, 2 [5], [10] and

(3 + Θ(1/D))-competitive algorithm for any D ≥ 3 [10].

For randomized algorithms, there is c(D)- and 3-competitive

algorithms against oblivious and adaptive online adversaries, re-

spectively, for any metric space [11]. The latter algorithm is op-

timal. For trees [5] and uniform networks [7], there are tight

(2 + 1
2D

)-competitive algorithms against oblivious adversaries.

2. Definitions and Notations

Let M be a metric space with metric ‖uv‖ for p, q ∈ M. In the

page migration problem, we are given requests r1, . . . , rk ∈ M,

the initial position s0 ∈ M of the page of size D ∈ Z+, and asked

to find s1, . . . , sk such that the total cost
∑k

i=1(‖si−1ri‖+D‖si−1si‖)
is minimized. An online algorithm Alg receives the requests on-

line, i.e., ri after ri−1, pays the cost ‖si−1ri‖ to serve ri, and then

determines the next position si of the page before ri+1 arrives.

The decision of si is irrevocable, i.e., Alg cannot change si after

ri arrives. The migration costs D‖si−1si‖. We denote an optimal

offline algorithm, i.e, which knows all the requests in advance,

by Opt. We denote the cost of an algorithm A by CA. For a de-

terministic online algorithm Alg, if there exists a constant α, i.e.,

independent of the number of requests, such that CAlg ≤ ρ·COpt+α

for any inputs, then Alg is said to be ρ-competitive.

In the remainder of the report, we consider n-dimensional Eu-

clidean space with n ≥ 2 as the metric space. I.e., ‖uv‖ is the

Euclidean distance (L2 norm) between u and v.

3. Algorithm and Competitiveness

3.1 Algorithm Mark

Our Algorithm, called Mark, maintains two points p and q on

Euclidean Space as our markers, in such a way that our page s is

always located at the midpoint of p and q. Markers p and q may

be located at the same point; in particular, they coincide initially.

Suppose we have markers p, q and our page s at the midpoint of

the markers. After a request r is issued, we perform the following

steps:

( 1 ) Case ‖pr‖ ≥ ‖qr‖.
( a ) If

p q

r

s

u

(a)

p q

r

s

v

(b)

Fig. 1 Algorithm Mark.

‖sr‖− ρ − 1

2
‖pr‖−

(

ρ

2
− 1

)

‖qr‖ ≤ 5

2
‖sr‖− ρ

2
(‖pr‖ + ‖qr‖)

(1)

with ρ = 2.5753, then move p to r, and s to the midpoint

u of r and q.

( b ) Otherwise, move p to r, q to s, and then s to the mid-

point v of r and the original s.

See Fig. 1 for these operations.

( 2 ) Case ‖pr‖ < ‖qr‖. We interchange p and q and perform

Step 1.

Actually, Mark is obtained from the algorithm of [6] (Step (a))

by adding Inequality (1) and Step (b).

3.2 Competitiveness

We prove the competitiveness of Mark using the standard po-

tential function method. The basic framework of our proof (such

as our potential function and events) is the same as that of [6].

Our potential function is defined as

Φ :=
ρ

2
(‖tp‖ + ‖tq‖) −

(

ρ

2
− 1

)

‖pq‖,

where t is the page of Opt. Our goal is to prove that

f := ∆CMark + ∆Φ − ρ · ∆COpt ≤ 0 (2)

for any event of the following types:

• Any Opt’s migration.

• Services of Opt and Mark for a request r, together with mi-

gration of Mark after the request r.

Here, we use the symbol ∆ to denote the amount changed by an

event. By the symmetry of Φ with respect to p and q, and by the

definition of Mark, we may assume ‖pr‖ ≥ ‖qr‖ and prove f ≤ 0

only for Step (1).

Lemma 1 ([6]) For any Opt’s migration, it follows that f ≤ 0.

Proof Suppose that Opt moves its page from t to t′. Then,

∆CMark = 0, ∆Φ =
ρ

2
(‖t′p‖−‖tp‖+‖t′q‖−‖tq‖), and ∆COpt = ‖tt′‖.

Therefore, it follows that

f =
ρ

2

(‖t′p‖ − ‖tp‖ + ‖t′q‖ − ‖tq‖) − ρ · ‖tt′‖

≤ ρ
2

(‖tt′‖ + ‖tt′‖) − ρ · ‖tt′‖ = 0.

�

We prove f ≤ 0 for events of the other type by a series of

lemmas.

Lemma 2 For any point t, it follows that

‖tp‖ + ‖tq‖ + ‖tr‖ − ‖ts‖ ≥ ‖pr‖ + ‖qr‖ − ‖sr‖. (3)
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Fig. 2 Regions for t.

Proof If s = p = q, then (3) follows by the triangle inequality

‖ts‖ + ‖tr‖ ≥ ‖sr‖. Moreover, if r is on the line segment pq, then

we obtain (3) by the triangle inequalities ‖tp‖ + ‖tq‖ ≥ ‖pq‖ and

‖tr‖ − ‖ts‖ ≥ −‖sr‖. We therefore assume neither s = p = q nor r

is on the line segment pq. We note that the assumption s = p = q

implies p , q.

We fix p, q, r, and s. We regard t to be variable but fix ‖tp‖
and ‖tq‖ such that ‖tp‖ + ‖tq‖ ≥ ‖pq‖. Then, ‖ts‖ is also fixed,

and t lies at the distance ‖tp‖ sin ∠tpq = ‖tq‖ sin ∠tqp to the line

pq. If the dimension of Euclidean space is more than 2, then t is

on the circumference C, on the plane orthogonal to the line pq,

with radius ‖tp‖ sin ∠tpq = ‖tq‖ sin ∠tqp and a center on the line

pq. Since ‖tp‖, ‖tq‖, and ‖ts‖ are fixed, ‖tp‖ + ‖tq‖ + ‖tr‖ − ‖ts‖
is minimized with the minimum ‖tr‖, i.e., t at the point closer to r

of the two intersections of C and the plane P containing p, q, and

r. Therefore, it is sufficient to consider t on the half-plane H of P

divided by the line pq and containing r.

We divide the half-plane H into three regions of t as shown in

Fig. 2 and prove (3) for each case of the regions containing t.

Case Fig. 2 (a). We can observe that

‖tq‖ + ‖tr‖ ≥ ‖qr‖ and ‖tp‖ + ‖sr‖ ≥ ‖ts‖ + ‖pr‖.

Summing these inequalities, we have (3).

Case Fig. 2 (b). We can observe that

‖tp‖ + ‖tr‖ ≥ ‖pr‖ and ‖tq‖ + ‖sr‖ ≥ ‖ts‖ + ‖qr‖.

Summing these inequalities, we have (3).

Case Fig. 2 (c). We can observe that

‖tr‖ + ‖sr‖ ≥ ‖ts‖.

Because t is outside the ellipse consisting of points with the sum

of the distances to p and q equal to ‖pr‖ + ‖qr‖, it follows that

‖tp‖ + ‖tq‖ ≥ ‖pr‖ + ‖qr‖.

Summing the obtained inequalities, we have (3).

�

Lemma 3 For services of Opt and Mark for a request r, to-

gether with migration of Mark after the request r, f = min{ f1, f2},
where

f1 := ‖sr‖ − ρ − 1

2
‖pr‖ −

(

ρ

2
− 1

)

‖qr‖ +
(

ρ

2
− 1

)

‖pq‖, and

f2 :=
5

2
‖sr‖ − ρ

2
(‖pr‖ + ‖qr‖) +

(

ρ

2
− 1

)

‖pq‖.

Proof Suppose that Mark and Opt locates their pages at s and

t, respectively, at the point that the request r is issued. Then,

∆COpt = ‖tr‖.

If Inequality (1) follows, i.e., f1 ≤ f2, then p is moved to

r, and then s is moved to the midpoint u of r and q. Hence,

∆CMark = ‖sr‖+‖su‖ and ∆Φ =
ρ

2
(‖tr‖−‖tp‖)−(

ρ

2
−1)(‖qr‖−‖pq‖).

Therefore, it follows that

f = ‖sr‖ + ‖su‖ + ρ
2

(‖tr‖ − ‖tp‖) −
(

ρ

2
− 1

)

(‖qr‖ − ‖pq‖) − ρ‖tr‖

= ‖sr‖ + ‖pr‖
2
− ρ

2
(‖tr‖ + ‖tp‖) −

(

ρ

2
− 1

)

(‖qr‖ − ‖pq‖)

≤ ‖sr‖ − ρ − 1

2
‖pr‖ −

(

ρ

2
− 1

)

‖qr‖ +
(

ρ

2
− 1

)

‖pq‖

= f1 = min{ f1, f2}.

Here, ‖su‖ = ‖pr‖/2 since s and r are midpoints of the line seg-

ments pq and qr.

If Inequality (1) is not satisfied, i.e., f1 > f2, then p, q, and

s are moved to r, s, and the midpoint v of s and r, respectively.

Hence, ∆CMark = ‖sr‖ + ‖sv‖ and ∆Φ =
ρ

2
(‖tr‖ − ‖tp‖ + ‖ts‖ −

‖tq‖) − (
ρ

2
− 1)(‖sr‖ − ‖pq‖). Therefore, it follows that

f = ‖sr‖ + ‖sv‖ + ρ
2

(‖tr‖ − ‖tp‖ + ‖ts‖ − ‖tq‖)

−
(

ρ

2
− 1

)

(‖sr‖ − ‖pq‖) − ρ‖tr‖

≤ 3

2
‖sr‖ − ρ

2
(‖tr‖ + ‖tp‖ + ‖tq‖ − ‖ts‖) −

(

ρ

2
− 1

)

(‖sr‖ − ‖pq‖)

≤ 3

2
‖sr‖ − ρ

2
(‖pr‖ + ‖qr‖ − ‖sr‖) −

(

ρ

2
− 1

)

(‖sr‖ − ‖pq‖)

[by Lemma 2]

≤ 5

2
‖sr‖ − ρ

2
(‖pr‖ + ‖qr‖) +

(

ρ

2
− 1

)

‖pq‖

= f2 = min{ f1, f2}.

�

We want to prove min{ f1, f2} < 0. To this end, we set xy-

coordinates on the plane with s at the origin and p and q on the x-

axis. We may assume without loss of generality that q = (−1, 0),

p = (1, 0), and r = (ℓ cos θ, ℓ sin θ) with ℓ ≥ 0 and 0 ≤ θ ≤ π/2.

Lemma 4 ([6]) For any ℓ ≥ 0, there exists 0 ≤ τ ≤ π/2 such

that if r , q, then
∂ f1
∂θ
< 0 for 0 ≤ θ < τ, and

∂ f1
∂θ
≥ 0 for

τ ≤ θ ≤ π/2.

Proof It follows that

‖pr‖ =
√

(ℓ cos θ + 1)2 + (ℓ sin θ)2 =

√
ℓ2 + 2ℓ cos θ + 1,

‖qr‖ =
√

(ℓ cos θ − 1)2 + (ℓ sin θ)2 =

√
ℓ2 − 2ℓ cos θ + 1.

Hence,
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∂‖pr‖
∂θ

=
−ℓ sin θ

√
ℓ2 + 2ℓ cos θ + 1

= − ℓ sin θ

‖pr‖
,

∂‖qr‖
∂θ

=
ℓ sin θ

√
ℓ2 − 2ℓ cos θ + 1

=
ℓ sin θ

‖qr‖
.

Since

f1 = ℓ −
ρ − 1

2
‖pr‖ −

(

ρ

2
− 1

)

‖qr‖ + ρ − 2,

we have

∂ f1

∂θ
= −ρ − 1

2

(

− ℓ sin θ

‖pr‖

)

−
(

ρ

2
− 1

)

ℓ sin θ

‖qr‖

=
ρ − 1

2
· ℓ sin θ

‖qr‖

(

‖qr‖
‖pr‖

− ρ − 2

ρ − 1

)

.

The term
‖qr‖
‖pr‖ =

√
ℓ2−2ℓ cos θ+1√
ℓ2+2ℓ cos θ+1

monotonically increases from
|ℓ−1|
ℓ+1

to 1 as θ increases from 0 to π/2. If
|ℓ−1|
ℓ+1
≥ ρ−2

ρ−1
, then

∂ f1
∂θ
≥ 0

for any 0 ≤ θ ≤ π/2, i.e., the lemma holds for τ = 0. Oth-

erwise, since 0 <
ρ−2

ρ−1
< 1, there exists 0 < τ < π/2 such

that
√
ℓ2−2ℓ cos τ+1√
ℓ2+2ℓ cos τ+1

=
ρ−2

ρ−1
. It follows for such τ that

∂ f1
∂θ
< 0 for

0 ≤ θ < τ, and
∂ f1
∂θ
≥ 0 for τ ≤ θ ≤ π/2. �

Lemma 5 For any ℓ ≥ 0, it follows that if r , q, then
∂ f2
∂θ
≤ 0.

Proof Since

f2 =
5

2
ℓ − ρ

2
(‖pr‖ + ‖qr‖) + ρ − 2,

we have

∂ f2

∂θ
= −ρ

2

(

− ℓ sin θ

‖pr‖
+
ℓ sin θ

‖qr‖

)

=
ρ

2
· ℓ sin θ

(

1

‖pr‖
− 1

‖qr‖

)

.

This is at most 0 by ‖pr‖ ≥ ‖qr‖. �

Lemma 6 min{ f1, f2} < 0 for ρ = 2.5753.

Proof By Lemmas 4 and 5, min{ f1, f2} is maximized if r lies on

the x-axis or yields f1 = f2. If r lies on the x-axis, then

min{ f1, f2} ≤ f1 = ℓ −
ρ − 1

2
(ℓ + 1) −

(

ρ

2
− 1

)

|ℓ − 1| + ρ − 2

≤ ℓ − ρ − 1

2
(ℓ + 1) + ρ − 2

=
2 − ρ

2
· ℓ + ρ − 3

2
,

which is negative since 2 < ρ < 3.

We assume r yields f1 = f2. In the proof for this case, we need

quite involved derivation of formulae. Taking priority of compre-

hensibility of ideas, we omit some derivation of formulae.

A relation between ℓ and θ of points such that f1 = f2 is pro-

vided by

3

2
‖sr‖ − 1

2
‖pr‖ − ‖qr‖

=
3

2
ℓ − 1

2

√
ℓ2 + 2ℓ cos θ + 1 −

√
ℓ2 − 2ℓ cos θ + 1 = 0.

Solving this with respect to cos θ, we can obtain

cos θ =
6

25

(√
ℓ2 + 10 − ℓ

)

+
3

10ℓ
.

Substituting 3‖sr‖−2‖qr‖ for ‖pr‖ and 6
25

(
√
ℓ2 + 10− ℓ+ 3

10ℓ
) for

cos θ in f1, we can obtain the following equation g of point such

that f1 = f2:

g := ‖sr‖ − ρ − 1

2
‖pr‖ −

(

ρ

2
− 1

)

‖qr‖ + ρ − 2

= ‖sr‖ − ρ − 1

2
(3‖sr‖ − 2‖qr‖) −

(

ρ

2
− 1

)

‖qr‖ + ρ − 2

= −3ρ − 5

2
‖sr‖ + ρ

2
‖qr‖ + ρ − 2

= −3ρ − 5

2
ℓ +
ρ

2

√
ℓ2 − 2ℓ cos θ + 1 + ρ − 2

= −3ρ − 5

2
ℓ +
ρ

2

√

ℓ2 − 2ℓ

{

6

25

(√
ℓ2 + 10 − ℓ

)

+
3

10ℓ

}

+ 1

+ ρ − 2

= −3ρ − 5

2
ℓ +
ρ

10

√

37ℓ2 − 12ℓ
√
ℓ2 + 10 + 10 + ρ − 2

We note that g in the last form, in which cos θ is replaced with

a function of ℓ, has a value for all ℓ. However, it is not the case

in the original form of g including cos θ even for ℓ > 0, due to

cos θ ≤ 1. Actually, d
dℓ

cos θ = 6
25

( ℓ
ℓ2+10

− 1) − 3
10ℓ2
< 0 and

cos θ = 1 (i.e., θ = 0) at ℓ = 3/4. This means that any point r

with f1 = f2 has ℓ ≥ 3/4.

Verifying g → −∞ as ℓ → ∞ and
d2g

dℓ2
< 0 for ℓ >

√
2/7 ≈

0.535, we see that g has a unique maximum value. Setting

ρ ≥ 2.5753 bounds the maximum value to a negative number.

�

Theorem 1 Mark is 2.5753-competitive.

Proof By Lemmas 1, 3, and 6, f ≤ 0 for any event and

ρ = 2.5753. The potential function Φ is non-negative because

Φ =
ρ

2
(‖tp‖+‖tq‖)−(

ρ

2
−1)‖pq‖ ≥ ρ

2
‖pq‖−(

ρ

2
−1)‖pq‖ = ‖pq‖ ≥ 0.

Moreover, Φ = 0 initially since p = q = s = t. Summing f over-

all events, we obtain CMark ≤ ρ ·COpt.

�

4. Lower Bound of Algorithm Mark

In this section, we demonstrate that our analysis of the com-

petitiveness of Mark is nearly tight.

Theorem 2 If Mark is ρ-compteitive, then ρ ≥ 2.5672.

Proof Let P be a plane with setting xy-coordinates arbitrarily.

We assume without loss of generality that the initial positions of

p, q, and s are at (1, 0). Suppose that the first request is issued

at (−1, 0). Then, by the definition of Mark, p and s are moved

to (−1, 0) and (0, 0), respectively. We issue the second request at

the point r such that ‖qr‖ = 2 and r is on the point on g defined

in the proof of Lemma 6, i.e., f1 = f2 for r. Since f1 = f2, Mark

moves p to r and its page to the midpoint u of q and r. We gener-

ate the third request at r′ = (1, 0). We can observe by symmetry

that f1 = f2 for r′. Hence, Mark moves p to r′ and the page to

the midpoint v of q and r′. See Fig. 3 for locations of u, v, r, and

r′. We issue requests hereafter r and r′ alternately. After the first

request, Mark shuttles p between r and r′, and its page between
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′
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Fig. 3 Locations of u, v, r, and r′.

u and v.

Suppose that we issue k requests at each of r and r′. Let

ℓ = ‖vr‖ = ‖ur′‖ and r = (ℓ cos θ, ℓ sin θ) with 0 ≤ θ ≤ π/2.

It follows that

CMark = 3 + (ℓ + ‖uv‖) k = 3 +

(

ℓ +
‖rr′‖

2

)

k.

The optimal offline cost COpt is at most the offline cost of keeping

its page at the initial position r′. Hence, it follows that

COpt ≤ 2 + ‖rr′‖ · k

2
.

Combining these, we have

CMark

COpt

≥
3 +

(

ℓ +
‖rr′‖

2

)

k

2 + ‖rr′‖ · k
2

→ 2ℓ

‖rr′‖
+ 1 (k→ ∞)

=
2ℓ

√

(ℓ cos θ + 1)2 + (ℓ sin θ)2
+ 1

=
2ℓ

√
ℓ2 + 2ℓ cos θ + 1

+ 1 (4)

Since ‖qr‖ = 2, it follows that

‖qr‖ =
√

(ℓ cos θ − 1)2 + (ℓ sin θ)2 =

√
ℓ2 − 2ℓ cos θ + 1 = 2,

which yields

cos θ =
ℓ2 − 3

2ℓ
. (5)

On the other hand, as estimated in the proof of Lemma 6, we have

cos θ =
6

25

(√
ℓ2 + 10 − ℓ

)

+
3

10ℓ
. (6)

Solving (5) and (6), we obtain ℓ ≈ 2.3204 and cos θ ≈ 0.5137.

Substituting these values for ℓ and cos θ in (4), we can verify that

CMark/COpt ≥ 2.5672. �
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