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Abstract: E-textiles have come to be used instead of several types of common equipment, such as bed-sheets, in
some cases. An application using body pressure data collected through such bed-sheet type sensors is the in-bed pos-
ture classification expected for pressure ulcer prevention. Since such body pressure data is a kind of low-resolution
image, Deep Neural Network (DNN) based algorithms seem suitable. However, it is difficult to collect enough data
to use for DNN in this domain because the number of sleep postures obtained from one experiment is small. For an
example, the number of postures collected from 19 subjects with four hours of sleep each is only 224. To solve such a
small data-size problem in DNN, data augmentation techniques have been proposed. However, random augmentations
are not so suitable. Therefore, we investigated appropriate augmentation parameters for this domain. As a result, the
combination of the up to ±20% and ±40% random shifts along short and long sides of a bed, the up to ±10 degree rota-
tion, and non-use of other transformations showed the best performance. With the parameters, the built DNN showed
99.7% accuracy and 0.997 Weighted F1-score for three posture classifications: supine, left and right lateral positions,
and 97.1% accuracy and 0.970 Weighted F1-score for four posture classifications: supine, prone, left and right lateral
positions.

Keywords: data augmentation, deep neural network, in-bed posture classification, pressure ulcer prevention, e-textile,
pressure sensor

1. Introduction

Performance of e-textiles has improved, and such e-textiles
have come to be used instead of several types of common equip-
ment, such as bed-sheets, in some cases. An example application
using body pressure data during sleep collected through such bed-
sheet type sensors is the in-bed posture classification expected for
pressure ulcer prevention. An example of body pressure data and
our bed-sheet-type pressure sensor is shown in Fig. 1.

Since such body pressure data is a kind of low-resolution im-
age, Deep Neural Network (DNN) based algorithms [1], [2], [3]
seem to be suitable for classifier implementation. In addition,
high performance algorithms that seem useful for pressure ul-
cer prevention are developed on DNN actively, such as human
body-part detection [4], [5], [6] and human posture detection with
occlusion avoidance [7], [8]. These algorithms can be used for
tracking of high risk parts of the body, in-bed posture estimations
avoiding disturbance of pressure dispersion cushions, and so on.

However, it is difficult to collect enough data to use for DNN
training of sleep posture classification because the number of
sleep postures obtained in one experiment is small. Moreover,
data collected from natural sleeping includes many variations in
one posture, such as arm and leg positions, angles of elbow and
knee joints, and overlapping body parts. Showing an overview of
our experiment as an example, the number of postures collected
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from 19 subjects with four hours of natural sleep each is only
224 totally: 118 supine positions from 16 subjects, 51 left lat-
eral positions from 13 subjects, 40 right lateral positions from 15
subjects, and 15 prone positions from six subjects. Typical exam-
ples of the supine, lateral and prone postures are shown in Fig. 2.
In addition, these included many variations in one posture, such
as inserting hands under a pillow, folding legs as in the shape of
the number “4”, and so on. Several examples of such variations
are shown in Fig. 3. These sample sizes of classes are too small
for DNN training, compared with typical DNN studies such as

Fig. 1 Bed-sheet type e-textile pressure sensor and example data.
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Fig. 2 Examples of typical supine, lateral and prone postures.

Fig. 3 Examples of posture variety (A: rising knees, B: “4” letter like legs,
and the right foot hiding under the left leg, C: hard curl, D: arms
inserted under the pillow).

Refs. [1], [2], [3].
To solve such a small data size problem in DNN, data augmen-

tation techniques have been proposed [9], [10]. Such techniques
augment data size with post processing, such as expanding, crop-
ping and rotating. However, random augmentations are not so
suitable. Investigations of appropriate augmentation parameters
for each data domain are necessary and important.

Therefore, we are investigating appropriate augmentation pa-
rameters for DNN in this domain, to enhance the performance of
DNN based algorithms that seem useful for pressure ulcer preven-
tion, such as human body-parts detection and human posture de-
tection with occlusion avoidance that are described already. This
paper, as the first step to establish such DNN based pressure ul-
cer preventions, describes a result of investigation with a simple
in-bed posture classifier that is also not studied enough.

We used only simple methods to data augmentation in this in-
vestigation because complex methods, such as multi-scale sliding
window, may provide bad effects and conflicts for such related
algorithms. The investigated parameters are ones of shear trans-
formation, zoom, rotation, and shifts along short and long sides
of a bed.

As a result, the combination of the up to ±20% and ±40%
random shifts along short and long sides of a bed, the up
to ±10 degree rotation, and non-use of other transformations
showed the best performance. With the parameters, the built
DNN showed 99.7% accuracy and 0.997 Weighted F1-score for
three posture classifications: supine, left and right lateral posi-
tions, and 97.1% accuracy and 0.970 Weighted F1-score for four
posture classifications: supine, prone, left and right lateral posi-

tions.
The rest of the paper is organized as follows. Section 2 summa-

rizes related works. Section 3 presents our dataset overview. Sec-
tion 4 describes the details of our data augmentation parameter
investigation. Section 5 shows the performance of DNN trained
with the investigated data augmentation parameters. Section 6
discusses the comparison result with related works. Finally, Sec-
tion 7 concludes the paper.

2. Related Works

In-bed posture classifications using pressure sensors are stud-
ied well as in the following. However, most of them are based on
SVM (Support Vector Machine) and kNN (k-Nearest Neighbor).
DNN is not so significant in this domain.

In-bed posture classifications based on SVM were presented
in the following studies. Hsia et al. established 83.5% accuracy
for six posture classifications, not including the prone position,
using a force-sensitive resistor (FSR) sensor array [11]. Huang
et al. established 94.1% accuracy for nine posture classifications,
including the prone position, with data collected from FSR sen-
sors and cameras [12]. Mineharu et al. established 77.1% accu-
racy for nine posture classifications, including the prone position,
with matrix pressure data and region depending on feature ex-
traction [13]. Hayashi et al. established 92.3% accuracy for four
posture classifications, including the prone position, and 96.3%
accuracy for three posture classifications, not including the prone
position, with matrix pressure data and of Center-of-Pressure fea-
tures [14].

In-bed posture classifications based on kNN were presented in
the following studies. Yousefi et al. established 97.7% accuracy
for five posture classifications, not including the prone position,
using PCA (principal component analysis), kNN and binarized
matrix pressure data [15]. Pouyan et al. established 97.1% accu-
racy for eight posture classifications, not including the prone po-
sition, using kNN with humming distance and binarized matrix
pressure data [16]. Ostadabbas et al. established 98.4% accuracy
for three posture classifications, not including the prone position,
using the combination of kNN and GMM [17].

A DNN based study was presented by Heydarzadeh et al. [18].
They used HoG based features for input of an auto-encoder type
DNN, and established 98.1% accuracy for five posture classifi-
cations, not including the prone position. They also used data
augmentation, but there is no detailed discussion about appropri-
ate parameters of the data augmentation. Moreover, use of HoG
based features would interfere with collaborations related with
DNN techniques. More basic DNN, as shown in this paper, is
required for such collaborations.

3. Dataset Overview

In this section, we describe overview of our dataset.

3.1 Sensor
The data was collected with an e-textile pressure sensor shown

in Fig. 4. Its specification is summarized in Table 1. This sensor
is a kind of weave-structure based sensor. Our textile sensor has
multiple capacitance sensors between the weft and the warp in
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Fig. 4 Overview of textile-weave-structure based pressure-sensor.

Table 1 The specification of the e-Textile sensor.

Size 180 × 90 cm
(depending on the setup)

Thickness 0.6 mm

Sensing point size 1 cm2

Distance of sensing points 2 ∼ 2
√

2 cm
(between their center)

Resolution 3,200 (80 × 40)

Sampling rate* up to 10 Hz per one surface

Interface Wi-Fi / Bluetooth

* Sampling rate was set as 2 Hz in this study.

Table 2 Characteristics of subjects.

elderly young
Age 68.8 ± 4.0 21.3 ± 0.8
Male 6 6
Female 4 6
Body Mass Index (BMI) 21.8 ± 3.7 21.3 ± 3.0
* All subjects were healthy.

the cross points of the gray conductive yarn lines. Values of the
capacitance sensors change depending on the distance between
the weft and the warp that is altered if additional load is added to
the textile surface. Thus, we can measure the size of the load that
is placed on the textile through capacitance value change mea-
surements using a capacitance measuring device. The sensor was
formed as a bed-sheet for a single bed whose size was 180×90 cm
in this study. Its sampling rate was set as 2 Hz per surface. The
size of sensing points was 1 cm square. Such sensing points were
located as a matrix pattern. The distance between centers of ad-
jacent sensing points was 2 cm.

3.2 Subject
Subjects were 22 healthy elderly and young people as summa-

rized in Table 2. The average age of the elderly group (6 males
and 4 females) was 68.8 ± 4.0. The average age of the young
group (6 males and 6 females) was 21.3 ± 0.8. Body mass in-
dexes (BMI) of the elderly and young groups were 21.8± 3.7 and
21.3 ± 3.0. This means they had standard body shape. Unfortu-
nately, the data on three young subjects (2 males and 1 female)
included errors related to machine troubles. Therefore, this study
excluded such subjects from the dataset, and used the data of 19
healthy elderly and young subjects.

Fig. 5 Overview of body-pressure data collection.

3.3 Process Overview and Sample Data
Figure 5. is an overview of the data collection environment

and samples of collected data. We installed the bed-sheet type
pressure sensor in the same manner as Fig. 1 and put two infrared
cameras to collect ground truth data. The lights of the room were
turned off. The temperature of the room was controlled to be
comfortable. Subjects slept four hours each naturally.

The heat-maps in the lower side of Fig. 5 are visually deter-
minable examples of collected data. The dataset also includes
many visually indeterminable ones because they are collected
from natural sleeping. Moreover, the dataset includes many vari-
ations in one posture, such as supine and lateral positions with
their hands inserted under a pillow, supine positions with their
legs folded like letter “4”, supine positions with raised knees, lat-
eral positions with a hand protruding from the bed, and so on.

3.4 Posture Data Extraction and Post Processing
The posture data was extracted in the following manner. First,

we extracted stable postures with no body movement of more
than five minutes. Then, the first frame one minute after the
body movement stopped was extracted as the data of the posture.
This study used only one data for one posture because there are
no significant sensor output changes during one stable posture.
This means that the data of the same posture can not be included
in training, validation, and test dataset at the same time even if
naive data separations such as simple cross validation methods
were used. The number of collected postures was 224 with 118
supine positions from 16 subjects, 51 left lateral positions from
13 subjects, 40 right lateral positions from 15 subjects, and 15
prone positions from 6 subjects. The data was doubled with flip-
ping along the short side of the bed. Thus, finally, the number
of collected postures was 448 with 236 supine positions from 16
subjects, 91 left lateral positions from 16 subjects, 91 right lat-
eral positions from 16 subjects, and 30 prone positions from 6
subjects.

4. DNN Based Classifier for In-bed Postures

Figure 6 is the DNN used for in-bed posture classification in
this study. Its input was arranged as 28 × 28 to be able to be ap-
plied for more sparse sensors. Thus, our sensor data was subsam-
pled to 28 × 28 from 80 × 40 first. The input data was processed
through the two 3× 3 convolution layers whose kernel sizes were
32 and 64. Then, it was processed through a 2 × 2 max pooling

c© 2018 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.26

Fig. 6 CNN based DNN for in-bed posture classification.

Fig. 7 Example images transformed by data augmentation.

layer for position aberration adjustment. It was once again pro-
cessed through a 3×3 convolution layer whose kernel size was 64
and a 2 × 2 max pooling layer. Finally, it was calculated through
the two dense layers whose kernel sizes were 256 and 128. The
output layer was a dense layer with the kernel size of the number
of target postures. The activation functions used were: Softmax
for the output layer (L8) and LeRU for the others. The optimizer
used was Nadam.

5. Appropriate Parameter Investigation for
Data Augmentation

We explored the best combination of data augmentations for
in-bed posture classification domain from the following transfor-
mations: shear transformation, zoom, rotation, and shifts along
short and long sides of the bed. Examples of transformed images
were shown in Fig. 7.

The shear and zoom transformations were expected to solve
body shape and size variety insufficient. The rotation, and shifts
along short and long sides of a bed transformations were expected
to solve position variety insufficient. In addition, combinations
among them are expected to solve miscellaneous issues. For ex-
ample, combinations of rotation, zoom and shifts were expected
to solve variety insufficient of free angle body parts, such as arms
and legs. This is because the investigation range of the rotation
have 0 to 360 degree of the arc despite of the fact that adults sleep
within 5 or 10 degree rotations in most cases as the bed is nar-
row. Such small degree rotations are investigated additionally in
Section 5.4.

We note that the above transformations are limited to the geo-
metrical transformations. This means the data augmentation will
not increase posture variety. At least, one data is required for each
posture.

5.1 Investigation Ranges of Parameters
The investigation ranges of the parameters of the transforma-

tions were as follows.
• shear transformation: ±0, 0.2, 0.4, 0.6
• zoom: ±0, 0.2, 0.4, 0.6
• rotation: ±0, 90, 180, 270, 360 degrees of arc
• shift along long side of bed: ±0, 0.2, 0.4, 0.6 of long side

length
• shift along short side of bed: ±0, 0.2, 0.4, 0.6 of short side

length
The total number of combinations was 1,280. The transforma-
tions were applied with a random parameter between the selected
limits. The individual transformations were applied for one input,
multiply.

5.2 Investigation Process
We investigated the best parameter with the DNN trainings for

the three posture classifications: supine, and right and left lateral
postures. The subjects of even number IDs were excluded in this
parameter investigation. A half of the subjects are used for train-
ing, and the others for validation. Both datasets included almost
equal numbers of the elderly and young subjects. The data of the
prone position was excluded in this investigation because the data
was so small and disturbed healthy DNN training.

The data augmentations were applied only for the training
dataset. The training parameters were the following.
• batch size: 64
• batch iterations per one epoch: 200
• total epoch: 30
We note that the meaning of the above epoch is not the same as

common machine learning terminology that is a cycle to use up
all the training dataset because “a cycle to use up all the training
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dataset” cannot be defined with the data augmentation described
in this paper. The data augmentation provides new training data
unlimitedly. Therefore, we defined the epoch as 64 batches ×
200 iterations = 12,800 trainings with generated data, and ap-
plied common processes that should be run every epoch, such as
learning rate adjustment.

Thus, a total of 384,000 transformed data were learned in one
training. Source data for the data augmentation were selected ran-
domly and removed from the source dataset. When all data are
selected from the source dataset, the selection was restarted with
the default source dataset. The epoch result with the lowest vali-
dation loss was selected as the best model of each training. Two
trainings were done for each combination of investigated param-
eters, and each mean value of training and validation losses of the
best model of each of the two trainings was used for the parameter
combination selection described in the next section.

5.3 Investigation Result and Discussion
In this study we used mean values of training loss and valida-

tion loss for the best parameter selection, compared with typical
DNN studies, because several training results showed low valida-
tion loss but also high training loss. Such combinations of low
validation loss and high training loss mean such trainings were
not processed correctly.

Figure 8 is the whole summary of the parameter investigation
sorted in ascending order. The result on the left of the graph is
better. Figure 9 is a detailed summary of the top 10 results of

Fig. 8 Mean values of train and validation losses of all training.

Fig. 9 Top 10 results of parameter investigation.

Fig. 8. Each mark on each entry in Fig. 9 is the parameter of:
• shear transformation: red circle and dashed line
• zoom: green circle and dotted line
• shift along short side of bed: blue circle and chain line
• shift along long side of bed: light blue circle and long dashed

line
• rotation: purple circle and long chain line
• mean value of training and validation losses: black circle and

solid line
As shown in Fig. 8, selection of parameter combinations of

data augmentation greatly affected the construction results of
classifiers. As shown in Fig. 9, rotation was not used in all cases
of top 10 results. This means such big degree rotations are not
useful on the data augmentation in this domain. Zoom was not
used in seven out of the top 10 results. This means zoom is not
so useful on the data augmentation in this domain. On the other
hand, the ±0.2 parameter for shift along the short side of the bed
was used in all of the top five results and eight out of the top
10 results. This means the parameter value of the transformation
greatly affects usefulness of the data augmentation in this domain.
On the rest of the parameters, results of shift along the long side
of the bed and shear transformation showed no significant trend.
There are five ±0.2 and five ±0.4 parameters for shift along the
long side of the bed, and there are all parameter variations are
shown for the shear transformation. In this paper, we selected
±0.4 parameter for shift along the long side of the bed because
the parameter appeared in the best result and also appeared in
three out of the top five results. With shear transformation, we
selected ±0.0 appeared in the best result as the best parameter in
this paper. This means shear transformation should not be used.

As the above result, the most variety insufficient of data in this
domain seems to be depending on the sleeping positions. Body
shape and size are not a big matter or these are avoided with a
dataset that has variety of sleeping positions. In addition, several
combination effects expected did not appear in the result such as
a combination of rotation, zoom and shifts to solve variety insuf-
ficient of free angle body parts, such as arms and legs.

5.4 Detailed Investigation for Rotation
In this section, we additionally investigate the best range of ro-
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Fig. 10 Mean values of train and validation losses of small degree rotations.

tation transformation with small degrees, such as 0, 5, 10, 15, 20,
25 and 30. Adults sleep within 5 or 10 degree rotations in most
cases as the bed is narrow. Therefore, the best parameter of rota-
tion transformation is expected to be around such degrees instead
of big degrees such as 360, if combinations of rotation and other
parameters do not provide good effects.

In this investigation, parameters except rotation were fixed for
the best parameters obtained in the previous section. This means
the combination of no shear, no zoom, ±0.4 for shift along the
long side of the bed, and ±0.2 for shift along the short side of the
bed.

Figure 10 is an investigation result. As it was expected, the
10 degree showed the best performance. Therefore, we selected
the 10 degree as the best parameter of rotation transformation.

6. Performance of DNN with the Best Data
Augmentation Parameters

As a result of Section 5, the combination of the up to ±20%
and ±40% random shifts along the short and long sides of the
bed, the up to ±10 degree random rotation, and the non-use of
other transformations showed the best performance. Therefore,
we built DNN with the parameter combination and evaluated its
performance.

The evaluations were done in the following cross validation
(CV) manner.
• Fixed data for training: odd number id subjects
• CV data for training, validation and test: 1/3 of even number

id subjects (d0, d1, d2)
Therefore, in total six validations were in one CV. We tried ten

trainings for each validation of CV and selected a training result
that has the lowest validation loss as the best model of the vali-
dation. This is because the proposed approach, data augmenta-
tion with small base dataset, have instability. Many combinations
of selected randomized parameters and base data do not provide
significant improvement for trainings. If such non-effect combi-
nations get a majority of training data, the training result show
low performance even if several good combinations are provided
in the last part of the training because the training process used
several common techniques, such as learning rate reductions with
continuous non-improvement trainings. Therefore, we select the
best result from 10 trainings to solve such instability.

Table 3 Accuracy of each training w/o D.A for 3 Pos.

Data

Training Validation Test Accuracy
d0 d1 d2 0.759
d1 d2 d0 0.966
d2 d1 d0 0.966
d0 d2 d1 0.976
d1 d0 d2 0.778
d2 d0 d1 0.976

mean ± SD 0.903 ± 0.095

Table 4 Confusion matrix w/o D.A for 3 Pos.

Estimation

LL RL SP recall F1

T
ru

e LL 67 3 6 0.882 0.865
RL 3 69 4 0.908 0.885
SP 9 8 219 0.928 0.942

precision 0.848 0.863 0.956
CV Accuracy 0.916

Weighted F1-score 0.915
LL: Left Lateral, RR: Right Lateral, SP: Supine

The test results were calculated with the best models, such as
TP (true positive), FP (false positive), TN (true negative), FN
(false negative), precision (TP/(TP+FP)), recall (TP/(TP+FN)),
accuracy (TP/(TP + FP + TN + FN)) and F1-score (2 · precison ·
recall/(precison+ recall)). We also used Weighted F1-score to fix
the inbalance of the sample size of each class. Its definition is the
following.

Weighted F1-score (F1
t ) =
∑

i

wiF
1
i

wi = ni/N

where i: i-th class,

F1
i : F1-score of i-th class,

ni: sample size of i-th class,

N: total size of samples.

The DNN in this study was, first, trained with only three pos-
tures: supine, and right and left lateral positions. Then, it was
trained for four postures with a fine-tuning approach. This is be-
cause the amount of prone position data was small. In the rest of
this section, we will discuss these separately.

6.1 Comparison with Three Posture Classifications
The results without data augmentation are summarized in Ta-

ble 3 and Table 4. The results with data augmentation with the
best parameters are summarized in Table 5 and Table 6.

The significant accuracy improvements are shown in compar-
ison between Table 3 and Table 5. There is the same trend in
the comparison between Table 4 and Table 6. The values of CV
accuracy and Weighted F1-score in each confusion matrix table
are almost the same. This means the trained classifiers were not
trained biased to class with a large sample size.

Since the comparison between Table 3 and Table 5, the biggest
improvement occurred when test data is d2. Figure 11 shows
several examples that were estimated as wrong classes without
data augmentation and were estimated as correct classes with
data augmentation. The left one is shifted for the upper side a
lot, thus the parameter of shifts make such improvement. In the
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Table 5 Accuracy of each training w/ D.A for 3 Pos.

Data

Training Validation Test Accuracy
d0 d1 d2 1.000
d1 d2 d0 1.000
d2 d1 d0 1.000
d0 d2 d1 1.000
d1 d0 d2 1.000
d2 d0 d1 0.988

mean ± SD 0.998 ± 0.005

Table 6 Confusion matrix w/ D.A for 3 Pos.

Estimation

LL RL SP recall F1

T
ru

e LL 76 0 0 1.000 1.000
RL 0 75 1 0.987 0.993
SP 0 0 236 1.000 0.998

precision 1.000 1.000 0.996
CV Accuracy 0.997

Weighted F1-score 0.997
LL: Left Lateral, RR: Right Lateral, SP: Supine

Fig. 11 Examples of wrong estimation w/o D.A. when test data is d2.

Fig. 12 Similar data of correct and wrong estimations w/o D.A. when test
data is d2.

middle one, subject’s legs folded as letter “4”. This is because it
was miss-categorized as left lateral posture. On the other hand,
why it is categorized into correct class with data augmentation
is not clear. The improvement seems to be caused by only the
enhancement of the training data number because shifts and ro-
tation transformation do not seem to make effect. The right side
example seems to be improved with rotation transformation. Un-
fortunately, these three example are the most meaningful data that
human can understand. Most causes of improvements cannot be
specified. Figure 12 were other examples. The left one was esti-
mated for correct class, however, the rest that are very similar for
the left one were categorized into wrong classes. The enhance-
ment of the training data size seems to be the main cause of such
improvement, however, it is not clear. It should be discussed in
future work.

6.2 Comparison with Four Posture Classification
The results without data augmentation are summarized in Ta-

ble 7 and Table 8. The results with data augmentation with the
best parameters are summarized in Table 9 and Table 10. Note
here again, the classifiers for four postures were trained with a
fine-tuning approach using the best model of each validation of
three posture classification CV. The output layer was replaced
and re-trained with the whole dataset. This is because the num-
ber of prone position data was small.

Table 7 Accuracy of each training w/o D.A. for 4 Pos.

Data

Training Validation Test Accuracy
d0 d1 d2 0.645
d1 d2 d0 0.950
d2 d1 d0 0.933
d0 d2 d1 0.859
d1 d0 d2 0.613
d2 d0 d1 0.859

mean ± SD 0.810 ± 0.133

Table 8 Confusion matrix w/o D.A for 4 Pos.

Estimation

LL RL SP PR recall F1

T
ru

e

LL 65 3 8 0 0.855 0.798
RL 3 67 6 0 0.882 0.793
SP 7 12 217 0 0.919 0.897
PR 8 8 14 0 0 na

precision 0.783 0.744 0.886 na
CV Accuracy 0.835

Weighted F1-score na
LL: Left Lateral, RR: Right Lateral, SP: Supine, PR: Prone

Table 9 Accuracy of each training w/ D.A. for 4 Pos.

Data

Training Validation Test Accuracy
d0 d1 d2 0.968
d1 d2 d0 0.983
d2 d1 d0 0.981
d0 d2 d1 0.978
d1 d0 d2 0.952
d2 d0 d1 0.978

mean ± SD 0.973 ± 0.012

Table 10 Confusion matrix w/ D.A for 4 Pos.

Estimation

LL RL SP PR recall F1

T
ru

e

LL 75 0 1 0 0.987 0.962
RL 0 76 0 0 1.000 0.993
SP 1 0 232 3 0.983 0.985
PR 4 1 2 23 0.767 0.821

precision 0.938 0.987 0.987 0.885
CV Accuracy 0.971

Weighted F1-score 0.970
LL: Left Lateral, RR: Right Lateral, SP: Supine, PR: Prone

Here are the same trends with the results of three-posture clas-
sification. The significant accuracy improvements are shown in
comparison between Table 7 and Table 9, and the comparison
between Table 8 and Table 10. The values of CV accuracy and
Weighted F1-score in each confusion matrix tables are almost the
same. This means the trained classifiers were not trained biased to
class with a large sample size. Although the CV accuracy shown
in Table 10 is lower than ones shown in Table 6, it still shows
high performance value of 97.1%.

Except the improvement related to d2 test data, since the com-
parison between Table 8 and Table 10, the biggest improvement
occurred for prone postures. Figure 13 shows several examples
of prone data with estimation results using data augmentation.
The left and middle ones were examples classified into correct
class with the trainings with data augmentation. The right one is
an example classified into incorrect class with the trainings with
data augmentation. The left and middle ones have similar shape
and position difference. 24 out of 30 prone data have such charac-
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Fig. 13 Examples of prone posture data with estimation results w/ D.A.

teristics, and all data categorized correct have the same character-
istics. Thus, the main factor of improvement about prone posture
classification seems to be the position shift data augmentation.

6.3 Comparison with related works
The comparison with related works is summarized in Table 11.

As shown in Table 11, our result has the highest accuracy in the
group whose dataset includes a prone position. Our result also
has the highest accuracy in the group whose dataset does not in-
clude a prone position, except [18]. The five postures of Ref. [18]
are a supine position, two left lateral positions and two right lat-
eral positions. These can be recalculated for the three postures
discussed in this study, and then the recalculated accuracy of
Ref. [18] becomes 100%. However, there are many things that
are not discussed, such as base dataset size without data augmen-
tation, training processes and so on. Our result showed almost
100% accuracy, 99.7%, with the described solid process. In addi-
tion, our DNN is simpler than ones of Ref. [18] and suitable for
collaborations with related DNN techniques.

7. Conclusion

In this paper, we investigated appropriate data augmentation
parameters for DNN based in-bed posture classification. The in-
vestigated parameters are ones of shear transformation, zoom, ro-
tation, and shifts along short and long sides of a bed. As a re-
sult, the combination of the up to ±20% and ±40% random shifts
along short and long sides of a bed, the up to ±10 degree random
rotation, and the non-use of other transformations showed the
best performance. With the parameters, the built DNN showed
99.7% accuracy and 0.997 Weighted F1-score for three posture
classifications: supine, left and right lateral positions, and 97.1%
accuracy and 0.970 Weighted F1-score for four posture classifica-
tions: supine, prone, left and right lateral positions. These results
are the best performances among the compared related works in
Section 6.3. In addition, our DNN described in this paper is sim-
pler than those of related works and suitable for collaborations
with related DNN techniques.
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