AI橋渡しクラウドABCIの性能評価

佐藤 仁^{1,a)} 溝手 竜¹ 滝澤 真一朗¹

概要:2018 年 8 月に稼働を開始した産総研 AI 橋渡しクラウド ABCI は,従来の高性能計算のみに特化し た典型的なスーパーコンピュータとは異なり,高性能計算の要素に加えて AI/ビッグデータ処理に特化し た設計が行われている.本稿では,ABCI のシステムのうち,GPU を搭載した計算ノードに対し AI/ビッ グデータ処理に関する性能評価を行った結果を報告する.

1. はじめに

近年,AIやビッグデータ処理においても高性能計算の 必要性が著しく高まっている.とりわけ,深層学習は,自 動車の自動運転,製造業,ロボット,医療,創薬,金融な ど様々な分野への応用が期待されており,アルゴリズム (Algorithm Theory)の進展だけでなく,大量のビッグデー タ (Big Data)を蓄えるストレージ技術や,それらのデー タに対して高速に処理する計算能力 (Computation)など 三位一体となった解決が求められている.

AI 橋渡しクラウド ABCI [1] は、世界最高水準の 0.550 EFlops(FP16)の機械学習処理能力,37 PFlops(FP64, Peak),19.88 PFlops(FP64, Real)の高性能計算能力及び 12.054 GFlops/Watt の省電力性を備え、アルゴリズム・ ビッグデータ・計算能力の協調による高度な AI/ビッグ データ処理を可能にする大規模クラウド基盤であり、2018 年 6 月末に産業技術総合研究所に導入され、2018 年 8 月 に稼働を開始した。ABCI は、AIの研究開発のためのオー プンなリーディングインフラストラクチャとして、画像認 識・音声認識・自然言語処理等の種々の機械学習アルゴリ ズムやデータモデルの高度化、自動車・ロボットの自動運 転・制御のアルゴリズム開発、創薬向け化合物推定、音声 対話・自動翻訳のアルゴリズム開発等、幅広い分野でのア プリケーション創出が期待されている.

ABCI は従来の高性能計算のみに特化した典型的なスー パーコンピュータとは異なり,高性能計算の要素に加えて AI/ビッグデータ処理に特化した設計が行われている.一 方で,実機での具体的な性能値は明らかではない.本稿は, ABCI のシステムのうち,GPU を搭載した計算ノードに 対し AI/ビッグデータ処理に関する性能評価を行った結果

図1 ABCIの全体構成

を報告する.

2. AI 橋渡しクラウド ABCI

2.1 概要

図1にABCIの全体構成を示す.ABCIは,GPUを搭 載する1088台の計算ノードをメインとして,多目的用途 の10台のマルチプラットフォームノード,ログイン用途 の4台のインタラクティブノード,その他管理サーバ等 からなる高性能計算システム,22PBのSpectrum Scale (GPFS)のストレージ領域からなる大容量ストレージシス テム,Infiniband EDR からなる計算用途の計算ネットワー ク,10 Gbps Ethernet からなる外部接続用途のサービス ネットワークを含むネットワークインターコネクト等から 構成される.本稿では特にベンチマークに関連する部分に ついて焦点を当てて説明する.

2.2 計算ノード

図2に計算ノードの構成を示す.計算ノードは、GPUを 搭載する典型的なスーパーコンピュータと同様の構成であ り、演算装置として最新鋭のCPUとGPUを搭載し、大容 量の主記憶装置、広帯域低遅延なネットワークインターコ ネクトやフラッシュストレージ等から構成される.CPUは Intel Xeon Gold 6148 プロセッサ (Skylake-SP, 2.4GHz, 20

¹ 国立研究開発法人產業技術総合研究所

^{a)} hitoshi.sato@aist.go.jp

IPSJ SIG Technical Report

図2 計算ノードの構成

図3 1 ラック内のネットワーク構成

cores)を2基搭載し、DDR4-2666 ECC RDIMM 32 GiB モジュールを12枚により容量 384 GiB,バンド幅 256 GB/s となる.GPU は NVIDIA Tesla V100 (SXM2, 16 GiB)を 4基搭載する.ネットワークインターコネクトは Infiniband EDRのHCA(Host Channel Adapter)を2ポート有し,理 論インジェクションバンド幅は片方向 200 Gbps,双方向 400 Gbps となる.また、ローカルストレージとして、容 量 1.6 TBの Intel DC P4600の NVMe SSD を有する.

計算ノードは34台を束ねて1ラックとして構成され,次 節の2.3 で述べるように,ラック内で理論インジェクショ ンバンド幅が200 Gbpsでフルバイセクションバンド幅と なるようにFat Tree構成のInfiniband EDRネットワーク で接続される.従って,典型的なユースケースではラック 単位で分散深層学習の処理を大量に流すことを意図してお り,複数ラックに跨る計算ノードを用いる大規模ジョブを 実行する際はネットワーク通信の最適化が必要となる.

2.3 ネットワークインターコネクト

計算ノードやマルチプラットフォームノード,インタ ラクティブノード,管理サーバ等のその他のノード,大容 量ストレージシステム等は Infiniband EDR で構成される Fat Tree 構成のネットワークで相互接続されている.計算 ノード同士は,1ラック内の計算ノード間は,図3で示すよ うに,理論インジェクションバンド幅が200 Gbpsでフル バイセクションバンド幅となるように接続され,ラックを 跨ぐ計算ノード間は1/3のオーバーサブスクリプションバ ンド幅となるように接続されている.また,マルチプラッ トフォームノード,インタラクティブノード,管理サーバ 等のその他のノードや大容量ストレージシステムはフルバ イセクションバンド幅となるよう接続されている. 一部の ノードは外部接続用のネットワークであるサービスネット ワークに 10Gbps Ethernet で接続されているが本稿では詳 細を省く.

2.4 ストレージ

ABCI は性能,容量,用途に応じて,複数のストレージ 階層を設けている.

1つ目の階層は,計算ノードに接続された NVMe SSD か らなるローカルストレージである.計算ノードには,ロー カルストレージとして,容量 1.6TB の Intel DC P4600 の NVMe SSD が接続されており,サイズの小さなファイル への大量の I/O に向いている.また,これらのローカル ストレージは,ジョブスケジューラが計算ノードを割り当 てられた際に,分散ファイルシステムである BeeGFS [2] OnDemand (BeeOND) [3] により共有ストレージを構成 し,シングルシステムイメージでボリュームを利用するこ とができる.

2 つめの階層は、大容量ストレージシステム上に構成され る並列ファイルシステム Spectrum Scale (GPFS) である. 10 台のエンクロージャ (SS8462) が接続された DDN SFA 14K を 3 セット用いることにより 22 PB からなる共有ス トレージ領域を構成している. 典型的な POSIX ファイル I/O の他, MPIIO などの並列 I/O によるバースト I/O に 向いている. 計算ノードやマルチプラットフォームノー ド, インタラクティブノード等からネットワークインター コネクトを介してシングルシステムイメージでボリューム を利用することができる.

3 つめの階層は、大容量ストレージシステムの Spectrum Scale (GPFS) の一部に OpenStack Swift を用いて構成さ れるオブジェクトストレージである。ABCI の計算ノード や ABCI 外のインターネット上の計算機から Amazon S3 互換のインターフェースによるオブジェクトへのアクセス を提供することができる。今回は、オブジェクトストレー ジに対するベンチマークは行っていないため、本稿では詳 細を省く.

3. ベンチマークによる性能評価

ABCIのシステムのうち,GPUを搭載した計算ノード に対し AI/ビッグデータ処理に関する性能評価を行った. ベンチマークとしては,演算性能,メモリバンド幅性能, ネットワーク通信性能,ストレージ I/O 性能,そして,分 散深層学習の性能について行った.

計算ノードの OS は CentOS 7.4.1708 で構成され, Linux のカーネルは v3.10.0 である.特別な記載がない限り,各 種ベンチマークプログラムのビルドには OS のデフォルト のコンパイラである gcc v4.8.5 を用いた.

3.1 演算性能

演算性能を計測するために BLAS(Basic Linear Algebra Subprograms) ライブラリの GEMM(General Matrix Multiplication) カーネルを GPU と CPU を対象に実行した. GPU に対しては, CUDA Toolkit 9.2.88.1 に付属する cuBLAS [4] を用いて倍精度 (FP64),単精度 (FP32),半精度 (FP16) の GEMM を実行した. CPU に対しては, Intel Math Kernel Library 2018.2.199 の CBLAS [5] を用いて 倍精度 (FP64),単精度 (FP32) の GEMM を実行した.

図4に単体のGPUでの実行結果を示す. x軸は行列のサ イズ (M = N = K) を表し, y 軸は演算性能 [TFlops] を表 す. 単精度と半精度 (HGEMM(FP16)) の実行では CUDA Core を用いた実行の他に, Tensor Core を用いた実行も 行った. CUDA Core を用いた場合, 演算性能の理論値 は, 倍精度で 7.8 TFlops, 単精度で 15.7 TFlops, 半精度 \mathfrak{C} 31.3 TFlops (= 1530 MHz × 80 SMs × 64 cores/SM × 4 ops/clock / 1000000) となるが,結果より各々最大で7.2 TFlops (M = N = K = 3264), 14.2 TFlops (M = N =K = 9216), 29.8 TFlops (M = N = K = 13056) となり, 概ね理論値に対して各々 92.3 %, 90.4 %, 95.2 %の性能と なることを確認した. さらに, Tensor Coreを用いた場合 は、演算性能の理論値は半精度で125 TFlops となるが、結 果より最大で 106 TFlops (M = N = K = 13056) となり, 概ね理論値に対して 84.8 %の性能となることを確認した. GPUに関しては、TensorCore に向く FP16の FMA(Fused Multiply-Add) 演算の場合に特に高速化されることが伺え る. 今回, FP32 に対しても TensorCore による実行を行っ ているが内部で FP16 に変換して演算するため精度に問題 がある可能性があるのに注意されたい.

次に、図 5 に 1 socket の CPU での結果を示す. CPU の実 行では、SSE4.2、AVX、AVX2、AVX512 による SIMD 最適化 を行った. CPU 単体の演算性能の理論値は、AVX512 の最 適化を行い Turbo Boost を用いた場合、倍精度で 1.4 TFlops (= 2200 MHz × 20 cores × 32 ops/clock / 1000000)、単精 度で 2.8 TFlops (= 2200 MHz × 20 cores × 64 ops/clock / 1000000) となるが、各々最大で 1.1 TFlops、2.3 TFlops となり、概ね理論値に対して各々 78.6 %、82.1 %となる ことを確認した. 1 ノード全体となる 2 socket の CPU の 実行では、図 6 のようになり、AVX512 の最適化を行った 場合に各々最大で 2.1 TFlops、4.3 TFlops となり、概ね理 論値に対して各々 75.0 %、76.8 %となることを確認した. CPU に関しては、概ね妥当な性能であることが伺える.

3.2 メモリバンド幅性能

GPU と CPU のメモリバンド幅を計測するために STREAM ベンチマークを実行した. STREAM ベンチ マークは,

Copy: 配列のコピー a(i) = b(i)

Scale: 配列とスカラ値の乗算 a(i) = q * b(i)

Add: 配列の加算 a(i) = b(i) + c(i)

Triad: Scale と Add の組み合わせ a(i) = b(i) + q * c(i)を計測する. 今回は, バージニア大学のサイトより入手した コード [6] を基に, GPU に対しては OpenACC により並列 化を行い, CPU に対しては OpenMP により並列化を行った 実装を用いて計測した. GPU に対する OpenACC による 並列化では, 文献 [7] で述べられているように, C 言語版の オリジナルのコードを基に OpenACC の指示文を追加した. コンパイルには PGI Compiler 18.5 を使用し, コンパイルオ プションには, -02 -acc -ta=tesla:cc70 を指定してい る. ここで, -acc は OpenACC を有効, -ta=tesla:cc70 は Nvidia Tesla V100 GPU 向けの最適化のためのオプショ ンである. CPU の OpenMP による並列化はデフォルトの gcc v4.8.5 を用いた.

図 7 に結果を示す. GPU 単体のメモリバンド幅の理論 値は 900 GB/sec であるが, 図 7(a) に示す単体の GPU の 実行では, Triad で 840 GB/sec となり, 理論値に対して 93.3 %の性能を達成することを確認した. また, CPU の メモリバンド幅の理論値は 1 socket あたり 128 GB/sec, 2 socket で 256 GB/sec であるが, 図 7(b) に示す CPU の 実行では, Triad で 1 socket あたり 89.9 GB/sec, 2 socket で 115 GB/sec となり, 理論値に対して各々 70.2 %, 44.9 %となることを確認した.

3.3 ネットワーク通信性能

3.3.1 OSU Micro-Benchmarks

ネットワーク通信性能を計測するために OSU Micro-Benchmarks [8] を実行した.今回は, OSU Micro-Benchmarks v5.4.2を用いて,計算ノードの CPU ホスト 間及び GPU デバイス間のネットワークのバンド幅,遅延 を計測した.使用した MPI 実装は, OpenMPI v2.1.3 で, 1 台の計算ノードに 1 プロセスを割り当て 2 ノード間で計 測を行った.

図 8 にネットワークのバンド幅の性能の結果を示す. *x* 軸は各プロセスが送信するデータサイズ [Bytes] を表し, *y* 軸はバンド幅 [GB/sec] を表す.計算ノードからネット ワークインターコネクトへは2ポートの Infiniband EDR HCA により接続されており,理論値は1ポートあたり 12.5 GB/sec である.CPUホスト間の通信では,データ サイズが1 MiB 以上の場合に概ね理論値に近い性能を達 成することを確認した.一方,GPU デバイス間の通信で は,GPU Direct による GPU デバイスと Infiniband HCA 間の直接通信 (GDRDMA),パイプライン転送による通信 (Pipeline),両者の手法を組み合わせたハイブリッド通信で は 30000 bytes を境にアルゴリズムの切り替えが起きる. データサイズが小さい場合,具体的には 8 KiB 以下の場

合は,GPU Direct による直接通信の性能が良好であるが, 8 KiB を超えたあたりからパイプライン転送による通信の 性能が良好であることを示している.ハイブリッド通信で は、アルゴリズム切り替えにより、どのデータサイズにお いても良好な性能を示している.ただ、2 MiB を境に性能 が低下しており、この原因は現在解析中である.

次に, 図9に遅延の結果を示す. *x*軸は各プロセスが送 信するデータサイズ [bytes] を表し, *y*軸は遅延 [msec] を 表す. 概ね妥当な性能を示すことを確認した.

3.3.2 NCCL

多くの分散深層学習フレームワークのネットワークの集 団通信の実装では、NVIDIA Collective Communications Library (NCCL) [9] が広く使用されている. そこで、NCCL による GPU 間の通信性能を計測するために、nccl-tests [10] を用いて AllReduce, AllGather, ReduceScatter を実行し た. 1 プロセスに 1 台の GPU、 1 台の計算ノードに 4 プロ セスを割り当て、計算ノードの台数を 1 から 32 台まで変 えて計測した. 使用した NCCL のバージョンは v 2.2.13-1 である.

図 10 に結果を示す. x 軸は1台の GPU が割り当てら れたプロセスが送信したデータサイズ [Bytes] を表し, y 軸はバンド幅 [GB/sec] を表す.プロセスあたり1 GiB の データサイズにおいて, 1 ノードでは, AllReduce で 124.12 GB/sec, AllGather で 114.03 GB/sec, ReduceScatter で 110.68 GB/sec であるのに対し、32 ノードでは、AllReduce で12.12 GB/sec, AllGather で12.07 GB/sec, ReduceScatter で 12.09 GB/sec となった. 1台の計算ノードには 4 基 の GPU が搭載されており、各々の GPU 間は1本あたり 25 GB/sec の NVLink が 2 本で接続されている. 1 ノード での実行では,NCCL により計算ノード内の GPU 間の 接続を考慮して自動的に 12本の Ring を生成し,各々の GPU 間では Ring を用いて通信を行っている.一方,複数 ノードでの実行では,計算ノード間は,1ポートあたり12.5 GB/sec の Infiniband EDR HCA を 2 ポートで介して接続 されており, NCCL により計算ノード間のネットワークや 計算ノード内の GPU 間の接続を考慮して自動的に 2 本の Ring を生成し、各々の GPU 間では Ring を用いて通信を 行っている.このため、1ノードの実行と複数ノードの実 行での性能の大幅な乖離はこのためである。ただし、現状 の NCCL では ABCI のネットワークに最適な Ring が生成 されていないため、多少の性能向上は期待できると考えて いる.

3.4 ストレージ I/O 性能

ストレージの I/O スループット性能を計測するために, IOR ベンチマーク [11] を実行した.今回は,計算ノードを クライアントとして,クライアント毎に 8 GiB のファイル を生成し,POSIX による WRITE, READ の逐次 I/O の性 能をクライアントとなる計算ノードの台数を 1 から 32 台 まで変えながら計測した.対象とするストレージは大容量 ストレージシステムに構成された Spectrum Scale (GPFS) と計算ノードの NVMe SSD のローカルストレージを集約 して構成された BeeOND とした.

Spectrum Scale に対して実行した結果を図 11(a) に示 す. x軸は計算ノードの台数を表し、y軸はスループット

図 8 OSU Micro Benchmarks によるネットワーク性能 (バンド幅)

図 9 OSU Micro Benchmarks によるネットワーク性能 (遅延)

[GiB/sec] を表す. クライアントとなる計算ノードの台数 が増加するにつれ,スループット性能が向上していること が伺える. 最終的には,計算ノードが 32 台のとき,READ で 17.8 GiB/sec, WRITE で 23.1 GiB/sec の性能なるこ とを確認した.また,BeeOND に対して実行した結果を 図 11(b) に示す. クライアントとなる計算ノードの台数 が増加しても,スループット性能は一定であった.具体的 には,計算ノードが 32 台のとき,READ で 1.16 GiB/sec, WRITE で 2.74 GiB/sec の性能なることを確認した.

次に,ファイルシステムのメタデータ性能を計測するために,mdtest [11] を実行した.1ノードあたり2プロセスを割り当て,プロセスあたり25000 個のファイルないしディレクトリを対象にメタデータ操作を行った.使用したmdtest のバージョンは v 1.9.3 である.

図 12 に結果を示す. x 軸は計算ノードの台数を表し, y 軸は IOPS [KIOPS] を表す. Spectrum Scale ではノード 数が増えるにつれメタデータ性能が向上するが, BeeOND ではノード数が増えても一定のメタデータ性能を示すこと を確認した.

3.5 分散深層学習

分散深層学習の性能を計測するために ImageNet のデー タセット [12] に対して ResNet-50 [13] による学習を行っ た.今回は, ChainerMN [14] を用いて, 64 台の計算ノー ド (256 GPU) で実行した. ChainerMN は v1.3.0 を使用 し,内部的に Chainer v4.2.0, CuPy v4.2.3, mpi4py v3.0.0, Python v3.6.5 を使用している. パラメタ等の設定は [15] の手法と同等であり,バッチサイズを GPU あたり 32,全 体で 8192 とし,学習率を 0.1 から warm up scheduling で 5 epoch で 0.1 · $\frac{k \cdot n}{256}$ (ただし, k = 256 は GPU の台数, n = 32は GPU あたりのバッチサイズ)と線形に増加させた後, 30, 60, 80 epoch 毎に 0.1 倍とし, Momentum SGD (momentum=0.9) の最適化を用い,Weight Decay を 0.0001 とし て 100 epoch の学習を行った.

図 13 に結果を示す. x 軸は実行時間 [sec] を表し, y 軸 は学習 (Training) 及び検証 (Validation) データに対する精 度を表す. 特別な最適化を行わず, また, 検証の処理を含 めて, 100 epoch を実行に 4124 秒かかり, 学習データに対 する精度は 75.6 %, 検証データに対する精度は 74.5 %程 度であった. 概ね良好な性能であることが伺える.

4. おわりに

本稿では、ABCIのシステムのうち、GPUを搭載した計 算ノードに対し AI/ビッグデータ処理に関する性能評価を 行った結果を行った.今後の課題としては、より大規模な 構成での実アプリケーションを対象にした詳細な性能評価 などが挙げられる.

謝辞 本研究の一部は JSPS 科研費 18K11332 及び NEDO 次世代人工知能・ロボット中核技術開発の助成 を受けて実施した.

参考文献

- 小川宏高, 松岡聡, 佐藤仁,高野了成,滝澤真一朗,谷 村雄輔,三浦信一,関口智嗣:世界最大規模のオープンAI インフラストラクチャ AI 橋渡しクラウド (ABCI)の 概要,情報処理学会研究報告 Vol.2018-HPC-165 No.19, pp. 1–7 (2018).
- [2] ThinkparQ: BeeGFS, https://www.beegfs.io/

Accuracy 0.4 0.2 0.0 ò 500 1000 1500 2000 2500 3000 3500 4000 Elapsed time [sec]

図 13 分散深層学習の性能

content/.

- [3]ThinkparQ: BeeOND, https://www.beegfs.io/wiki/ BeeOND.
- [4]NVIDIA: cuBLAS, https://developer.nvidia.com/ cublas.
- Intel: Intel Math Kernel Library, https://software. [5]intel.com/en-us/mkl.

McCalpin, J. D.: STREAM: Sustainable Memory Bandwidth in High Performance Computers, https://www. cs.virginia.edu/stream/.

120

100

80

40

0

GB/sec

Bandwidth 60 es(16GPU

10 Data Size/Process [Bytes]

(c) ReduceScatter

- 塙敏博, 星野哲也, 中島研吾, 大島聡央, 伊田明弘: GPU 搭載スーパーコンピュータ Reedbush-H の性能評価,情 報処理学会研究報告 Vol.2017-HPC-159 No.9, pp. 1-6 (2017).
- Panda, D. K.: OSU Micro Benchmarks, http: //mvapich.cse.ohio-state.edu/benchmarks/ (2001-2017).
- NVIDIA: NVIDIA Collective Communications Library (NCCL), https://developer.nvidia.com/nccl.
- [10]NVIDIA: nccl-tests, https://github.com/NVIDIA/ nccl-tests.
- [11] hpc: HPC IO Benchmark Repository, https://github. com/hpc/ior.
- [12]Fei-Fei, L.: ImageNet, http://www.image-net.org/.
- He, K., Zhang, X., Ren, S. and Sun, J.: Deep Residual [13]Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778 (online), DOI: 10.1109/CVPR.2016.90 (2016).
- [14] Akiba, T., Fukuda, K. and Suzuki, S.: ChainerMN: Scalable Distributed Deep Learning Framework, Proceedings of Workshop on ML Systems in The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS), pp. 1–7 (2017).
- [15]Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Kaiming, Y. J. and Facebook, H.: Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, arXiv.org e-Print archive, pp. 1-12 (2017).