
IPSJ SIG Technical Report

 1

A Node Level Performance/Power Efficiency Aware Resource

Management Technique

LE LI†1 Keiichiro FUKAZAWA†2 Hiroshi NAKASHIMA†2

Takeshi NANRI†3

Abstract: The amount of data grows rapidly, since everything can be easily digitalized today. For obtaining values from those

data, datacenters continuously enlarge and enhance their computer systems. However, recently the silicon transistors are difficult

to develop, and it becomes much harder for us to extract its physical ultimate, and so the performance becomes hardly catch up

the growth of data. Thus, we have to increase the number of hardware to reach the demanded performance and also sacrifice

more power as a result. Most of the supercomputer systems are homogeneous systems, which means all of their nodes are

comprised by identical hardware. However, the process variation in manufacturing processes results in a variation on

performance/power. In this research, taking a node level performance power variation into consideration, we come up with a

power saving resource management technique. We also make a job scheduling simulator to verify its effects by comparing with

primary methods.

Keywords: Power Saving, Resource Management, Node Level Heterogeneity, Job Scheduling

1. Introduction

 Increasing energy consumption has become a major challenge

for the development of HPC systems. This has been aware by

not only data centers and system makers, but also governments

and environmental organizations since high power consumption

also means high cost and environmental matters.

It is estimated that the power consumption of data centers will

reach 2% of the world’s total electricity usage by 2020 [1]. For

controlling a power budget, data centers have to limit their

system’s specification or carry out policies that impose

restriction on peak power, and thus performance is also limited

at the same time. However, more powerful systems are exactly

demanded for driving future computing, especially in some

fields, such as big data and machine learning.

For competing in a data-driven world, a great amount of

systems were developed and updated. From 1993 to 2018, the

sum performance of all the recorded HPC systems in Top 500

increased a thousand times, with a 20-fold average increase

every 5 years [2]. Additionally, the performance of the top 10

systems averagely rises 90% every year, meanwhile, power

consumption also rises 20% every year in average [3].

The purpose of this paper is to analyze the power

consumption situation and tendency of HPC systems, come up

with a resource management technique that improves power

efficiency, without leading increase of execution time. The

remainder of this paper is organized as follows. Section 2

illustrates HPC systems’ power situation in the past several

years and the latest predictive inclination. Section 3 describes

the node level heterogeneity and its genetic analysis in

large-scale systems and the evaluation of it, which have been

utilized to improve power efficiency by our creation. Section 4

elaborates the organization of node level heterogeneity aware

resource management heuristic. Section 5 introduces the

 †1 Graduate School of Informatics, Kyoto University

 †2 Academic Center for Computing and Media Studies, Kyoto University

 †3 Research Institute for Information Technology Kyushu University

simulator we have created and the evaluation simulation.

Section 6 makes a conclusion for the contents in the paper.

2. Background

2.1 Performance/Power Tradeoff

 Fig. 1 shows the historical data of the top performance

supercomputers. Even the performance and power efficiency

benefit most from the development of hardware, an unavoidable

fact is a tradeoff between performance and power. Note that

for activating next generation supercomputer ─ the exascale

system, about 50MW is required that judging from the

prediction, which is almost 2.5 times of the target power

(20MW) that planned by many system centers and

organizations.

Fig. 1 LINPACK Performance & Power Data of Historical Top

Performance Supercomputers [4]

2.2 Power Efficiency Enhancement

 For achieving probable power saving and limiting the peak

power , many researches have been studied. To cite recent

examples, forcing processors to execute programs on optimal

frequency to reach high power efficiency, i.e. DVFS and power

capping, or dynamically tuning the resource configuration of

ⓒ 2018 Information Processing Society of Japan

Vol.2018-HPC-166 No.3
2018/9/27

IPSJ SIG Technical Report

 2

running jobs on power constrained systems [5]. Furthermore,

other researchers try to do a prediction for the power

consumption through job history before starting jobs [6] or

predict system level power to avoid power surpasses threshold

[7]. However, due to the internal overhead of power capping

and prediction, most of these techniques may lead to time

degradation.

3. Node Level Heterogeneity

 Many powerful systems appeared in the past several years,

and more gigantic systems will spring forth in the near future,

many of them are large-scale systems that comprised by over

thousands of nodes. A node is a basic unit in system network,

which is comprised by fundamental hardware, like

motherboards, processors and memories. Nodes in a specific

system usually constructed under the same specification, which

means they are comprised by hardware that has identical model

and launch the same operating system. This is the so-called

“Homogeneous System”. Even though some researchers have

started to undertake researches on the heterogeneous system

architecture, like considering processing element and ACPI

performance variability in Eurora system, whose nodes are built

using heterogeneous hardware [8]. However, the

homogeneous system still has a forceful momentum, and thus

for the foreseeable future, it will remain mainstream. The most

important reason is that the heterogeneity system is

sophisticated, and thus hard to be built, and the homogeneous

system has many advantages, like easy workloads balancing and

program portability. The reasons that accounts for these are

similar node performance, identical instruction set and software

(OS, compliers).

 Even though those systems are homogeneous systems,

variation exactly exists. In this paper, we mainly discuss the

node level performance/power variation.

3.1 Term Explanation

 Node level Heterogeneity implies that even though nodes in a

specific system are comprised by identical hardware model,

viewing performance/power variation exists among nodes. In

other words, when executing the same workload, different nodes

may spend different time and have different power consumption.

The gigantism of HPC systems results in the increase of

physical nodes, and therefore, leads to the growth of node level

variation. Some of those large-scale systems contain more than

thousands of nodes, and thus have millions of processor cores

and petabyte scale memories.

Although the power distribution varies from system to

system and depends on the executing workloads. However, on

the other hand, when executing workloads, Processing Elements

(PE, the sum of memory and processor package, which refers to

a small silicon block that fabricates microprocessor circuit)

consume most of the power [9]. Processors need substantial

power in driving its processing, and with the demand of

operating large amount of data, memory capacity also has been

expanded, especially in HPC systems. In some cases, it may

reach hundreds of watt, and become a non-negligible existence.

3.2 Genetic Analysis

 Physical Reason

 As previously mentioned, with the gigantism of HPC

systems, the node level heterogeneity become much more

dramatic than ever before. There are several causes of node

performance and power differences in spite of the same

specification among nodes, one reason is the process variation

of hardware in manufacturing processes.

 For describing this, we should explore the manufacturing

processes of processors. As it is well known to all that

transistors are the most important part of a processor. Hundreds

of procedures are needed for making sands into a silicon wafer,

like polishing, etching, ion doping etc. [10]. For controlling

error, all these steps are operated by precision instruments.

However, transistors are extremely tiny (from microscale in

the past to nanoscale now), to some degree, a small deviation

will also show impacts if we consider it from the respect of

percentage [11]. For example, the width and length will be

different due to diffraction [12]. Worse still, because of the

difficulties in scaling, process variation has exactly become a

trouble in integrated circuit design. However, macroscopically

speaking, process variation finally does impact on power

efficiency in some degree, which is viewing.

 Technical Reason

 Besides the physical reason in making hardware, recent

micro-techniques also result in runtime variation, comparing

with “the external variation” among nodes, which can be named

“the within-node internal variation”. Those micro-techniques

mainly refer to Dynamic Voltage Frequency Scaling (DVFS)

and Turbo Boost etc.

DVFS is a widely used power management technique in

integrated circuit design, where voltage and frequency is tuned

depending upon runtime circumstances for reaching the balance

between performance and power. Its function has been evaluated

by many researchers [1] [13], and also utilized to improve

power efficiency by other researchers, who have developed a

DVFS-enabled scheduling system for a cloud data center [1].

 Overclocking, which is also a dynamic frequency tuning

technique that adjusts frequency in pace with the task changing,

has been utilized to trade power consumption for performance in

current processors design. In general, for a given processor,

higher frequency implies higher performance, this technology

can accelerate processors for current workloads, and turn into a

low frequency status (which also means low power

consumption) to save power. Its functions also have been

studied on the respect of HPC systems [14]. Unfortunately, the

relation between performance and power is non-linear [15], thus

when processors are accelerated to operate workloads in a

high frequency, it may result in a bad power efficiency.

3.3 Statistical Verification

 The process variation in making hardware and technical

reason leading runtime variation have been illustrated in

previous contents. A more important point is how much they can

influence performance and power.

 A significant element for scaling heterogeneity, is the

ⓒ 2018 Information Processing Society of Japan

Vol.2018-HPC-166 No.3
2018/9/27

IPSJ SIG Technical Report

 3

Table 1 Specification of Kyoto University System-A

The Number of Nodes 1800

Processor
Intel Xeon Phi Knights Landing

 (68 cores 1.4GHz × 1) / node

MCDRAM Cache Mode

Memory DDR4-2133MHz 96GB / node

Measurement Tool Cray-Pat

Table 2 Benchmark Testing Information

Benchmark Problem Size & Parallelism

HPCG
Problem Size: Default

64 processes (1 core/1 thread for each)

STREAM
Problem Size: Default

68 processes (1 core/1 thread for each)

Fig. 2 Measured Power/Time Variation of HPCG

Fig. 3 Measured Power/Time Variation of STREAM

Table 3 Specification of Kyushu University Subsystem-A

The Number of Nodes 2000

Processor
Intel Xeon Gold 6154 (Skylake-SP)

(3.0 GHz, 18 core）× 2 / node

Memory DDR4-2666 192 GB / node

Measurement Tool Intel RAPL

Table 4 Benchmark Testing Information

Benchmark Problem Size & Parallelism

HPCG

Problem Size 1: X=104, Y=104, Z=104

1 processes (36 cores/36 threads for each)

Problem Size 2: X=128, Y=192, Z=128

1 processes (36 cores/36 threads for each)

STREAM

Problem Size 1: 86GB

1 processes (36 cores/36 threads for each)

Problem Size 2: 144GB

1 processes (36 cores/36 threads for each)

number of nodes. Hence, we evaluated the node level variation

on two many-nodes systems with two different measuring tools.

The first one is the system-A of Kyoto University (Camphor),

with Cray-Pat, and the second one is the subsystem-A of

Kyushu University (ITO), with Intel RAPL.

 Benchmarks

 Two benchmarks were used for scaling the performance and

power variation on processors and memories. One is High

Performance Conjugate Gradients (HPCG) [16], the other one is

STREAM [17].

 HPCG is designed as a complement to High Performance

LINPACK (HPL) to create a new metric for ranking HPC

systems and was exploited by Top 500 Supercomputer Site from

November 2017. It mainly carries out sparse matrix-vector

multiplication, vector updates etc., which is the so-called

computational intensive program. STREAM measures

sustainable memory bandwidth, and carries out simple vector

kernel computation. Different from HPCG, STREAM is a

memory intensive program.

 In the System-A of Kyoto University, we simply used them to

evaluate the node level heterogeneity, and in Subsystem-A of

Kyushu University, we also evaluate whether the type of

benchmarks and their problem sizes influence the variation.

 System-A of Kyoto University (Camphor)

Table 1 shows the specification of this system. Each node has

only one socket that incorporated with one latest Intel Xeon Phi

series coprocessor, code name Knights Landing (KNL). Table 2

shows the benchmarking information. We executed those

benchmarks in single node mode, and measured execution time

and power consumption by Cray-Pat performance tool kit. Due

to the job scheduling policy of the system, only 414 samples for

HPCG, and 341 samples for STREAM were measured even

though there are 1800 nodes.

Fig. 2 shows the measurement results of HPCG. The x-axis

stands for samples, which refers to each measured node. The left

y-axis is the power variation, and the right y-axis is the time

degradation, both are the comparison to the best case (i.e. the

least power or time consuming node). Power stands for

Processing Element Power. Both power consumption and time

expenditure are varying among nodes. When executing HPCG,

the power variation reaches 15% and the time degradation of

most of the nodes is under 8%.

 Fig. 3 shows the measurement results of STREAM. Similar

with HPCG, the power variation of STREAM also reaches a

high level (almost 12%) varying among nodes. However, the

time degradation of most of the nodes is around 3%, which

implies that the execution time of most of the nodes is closed.

 Subsystem-A of Kyushu University (ITO)

 Table 3 shows the specification of this system. Different with

the system-A of Kyoto University, the node of subsystem-A of

Kyushu University has two sockets, and each socket

incorporates one Intel Xeon Gold 6154 processor. The

evaluation is also carried out by utilizing HPCG and STREAM.

In addition, different problem sizes in HPCG and STREAM also

be applied to see its impact on variation. Table 4 shows the

benchmark testing information. In the system-A of Kyoto

ⓒ 2018 Information Processing Society of Japan

Vol.2018-HPC-166 No.3
2018/9/27

IPSJ SIG Technical Report

 4

・HPCG – 104 104 104(XYZ) ・HPCG – 128 192 128(XYZ)

・STREAM – 144G ・STREAM – 86G

Fig. 5 Package and Memory Energy Variation

・HPCG – 104 104 104(XYZ) ・HPCG – 128 192 128(XYZ)

・STREAM – 144G ・STREAM – 86G

Fig. 4 Package and Memory Power Variation

University, we only measured a small part of nodes. In this

system, we measured all of them. Another change in this testing

is that PE power was divided into package power and memory

power for scaling respective power variation.

 Power

Fig. 4 shows the measured power of each workload. The

x-axis refers to nodes, which is sorted by average power

(average value of all the four workloads) in ascending order.

The y-axis stands for package or memory power.

The data of package power illustrates that for STREAM

benchmark, those nodes consume less power when executing

problem size 1, most of them also consume less power when

executing problem size 2. However, drawing from the

measurement result of HPCG benchmark, it becomes different,

those nodes consume less power when executing problem size 1,

they do not always consume less power when executing problem

size 2.

Comparing the data of package power, the memory power is

more stable, in other words, those nodes consume less power

when executing one workload, they also consume less power

when executing other workloads.

 Energy

 Power only stands for instantaneous expenditure, a more

important quota which we concerned is, considering execution

time as a factor, how much energy a node consumes when

executing a specific workload.

Fig. 5 shows the measurement of package and memory energy

consumption. The x-axis stands for nodes (ordered by average

energy consumption), and the y-axis stands for variation, which

is shown in the percentage of the energy consumption of each

node comparing with average energy consumption of all the

nodes.

 In the previous package power variation figure, when a node

executes different workloads, it may show different inclinations,

which can be named within-node variation. On the other hand,

we can find the inclination (i.e. those nodes consume less energy

when executing one workload, most of them also consume less

energy when executing other workloads) when looking into the

total energy consumption within the execution period. Thus it is

memory energy variation.

 Most of the data are around the average value of energy

consumption. For example, the orange data (HPCG – 128 192

128(XYZ)) is within the range of its average ±10%.

A more interesting phenomenon is that the variation level of

package energy consumption depends on the benchmark and its

problem sizes. For instance, the orange data (HPCG – 128 192

128(XYZ)) shows that the maximum variation is almost 18%

(from 90% to 108%) and other benchmarking data only shows

10% variation (from 93% to 103%). Moreover, these data may

illustrate that the package energy variation of computational

intensive workloads is greater than that of memory intensive

workloads.

 Even though it is obvious that the variation level of package

energy consumption is depended on the workloads, however, the

memory energy variation is different. To some degree, all the

benchmarking data shows almost 40% variation (from 80% to

ⓒ 2018 Information Processing Society of Japan

Vol.2018-HPC-166 No.3
2018/9/27

IPSJ SIG Technical Report

 5

120%).

 With this knowledge, we can consider a node level

heterogeneity aware scheduling policy, for example, the most

straightforward method is scheduling those low power

consuming nodes precedentially, to achieve probable energy

saving.

4. Technique

 Resource management technique and HPC scheduler have a

long history and have been well developed for HPC systems,

which are growing much more gigantic than ever before. Those

techniques are important for increasing systematic efficiency.

In this chapter, we design a node heterogeneity aware

resource management heuristic and compare its function with

two different heuristics. The first comparison target decides

execution nodes randomly (like the scheduler in the systems of

Kyoto University), and the second one selects execution nodes

by node-id (like the Kyushu University systems).

4.1 Hierarchy Pool

 Based on our introduction in chapter 3, if we increase the

usage probability of low power consuming nodes and avoid

passing jobs to those high power consuming nodes, we can

achieve probable power saving in some degree.

 Differ from other node pool management methods, we

manage nodes in hierarchy pools. This heuristic is based on the

testing result which has been shown in chapter 3, and the pool

arrangement is shown in Fig. 6.

In this heuristic, three pools were prepared, and arrange nodes

by their power efficiency (Pe). From upper to lower is High

Efficiency Node Pool (Pool 1), General Node Pool (Pool 2), and

Low Efficiency Node Pool (Pool 3). It can be expressed, as:

)3 (Pool)>P2 (Pool)>P1 (Pool P eee

When the scheduler intends to start a new job, Pool 1 will be

firstly checked. If those nodes in Pool 1 are all unavailable, or

the number of nodes is not enough, those nodes in Pool 2 will be

chosen. This policy is also applied between Pool 2 and Pool 3.

When nodes are chosen, they will be put into a corresponding

pool in Exclusive Pool, and when it finishes execution, it will

return to its primary pool in Free Pool. Inside each pool, nodes

are chosen randomly. With this resource management, those

nodes which are high power efficiency node will be exploited

before others that are low power efficiency node.

4.2 Pool Size

 Another problem should be considered is how to decide the

pools’ size. The target of many HPC system centers is to

reinforce the function of systems as much as possible, systems

are launched almost the whole years, and whenever it will reach

a minimum usage. However, most of the time, systems are not

fully loaded (i.e. 100% usage).

 Hence, over a period of time, the usage of one system is

between its lowest usage (UL) and highest usage (UH). We can

set the size of pools, as:

LU1PoolSize =) (

LH-U)=U2Size(Pool

HU-%100)=3Size(Pool

 This is a clear thought that all the nodes in Pool 1 will be in

execution status when the system is active since within this

period, the usage of system is greater than UL. And for those

nodes in Pool 3, they are avoided to be selected for completing

workloads, which is because those nodes in Pool 2 will not be

exhausted when usage is under its peak.

Fig. 6 Hierarchy Node Pool Management

5. Simulation & Result

 In this chapter, we will introduce our simulation and how

much energy can be saved through applying our resource

management technique. We utilized the system-A of Kyushu

University (ITO) to carry out this simulation. However, it is

impossible for a user to revise the real scheduler of a

supercomputer, hence, we made a multi-node scheduling

simulator and used it to evaluate our proposition.

5.1 Simulator

There already exist many simulators in the world and did

contribution to science for many researchers. While most of

those simulators have two factors that may lead to impact on our

result. The first reason that accounts for this is they not only

simulate a scheduler and its interior elements, but also simulate

the hardware (like the processor, cache, memory etc.), and the

second one need to be guaranteed is more important that many

of them only schedule workloads, without actually executing

those workloads or just execute workloads on the simulated

hardware (the execution result is modeled). Our research focus

on the hardware and its process variation, for reflecting them,

the workloads should be actually executed on real nodes, and

that is what our creation can do.

 Structure

 This simulator is created by utilizing the widely used parallel

computing architectures MPI and OpenMP. There are mainly

three components in this simulator, Resource Management

Kernel (RMK), Workload Simulator (WLS), and Compute Node

Kernel (CNK). The structure of it is shown in Fig. 7.

ⓒ 2018 Information Processing Society of Japan

Vol.2018-HPC-166 No.3
2018/9/27

IPSJ SIG Technical Report

 6

Table 5 Workload Information

Workloads Execution Times

FFT2D (problem size 3600):

36 processes (1 core/1 thread for each)
6102

FFT2D (problem size 7200):

36 processes (1 core/1 thread for each)
25050

Fig. 8 Node Usage of The System-A of Kyoto University

Fig. 7 Simulator Structure

 Resource Management Kernel (RMK)

 The RMK mainly contains Scheduler, Job Queue, and Node

Pool. The Scheduler handle the submissions from WLS and

push them into corresponding Job Queue if they are accepted.

When there are waiting jobs in Job Queue, the Scheduler will

select execution nodes from Node Pool, and then pass jobs

through MPI communication, certainly, the precondition is that

there are available nodes.

 Workload Simulator (WLS)

 The WLS is applied to generate workloads. When the WLS is

launched, it reads workloads information from setup file, and

other things that needed to be prepared are only executables.

 Compute Node Kernel (CNK)

 The CNK is very simple, it only receives workloads from

RMK’s scheduler and completes it. After finishing the execution,

a signal will be sent to RMK via MPI communication.

 Execution

 When the simulator is launched, only one node will become

the Master, the others will be treated as Slaves. The Master

Node is decided by the setup file, judging from MPI rank or

hostname. RMK and WLS will be launched on the Master node,

the others launch CNK.

5.2 Workload

 In chapter 3, we obtained the node benchmarking data by

utilized HPCG and STREAM. In our simulation, we used

2D-Fast Fourier Transformation (FFT2D) [18] to carry out

evaluation. For evaluating our creation in a real case, the node

usage is an important element. Thus, if the usage is always very

low or high, it cannot reflect the effect. Furthermore, if the

usage is always 100% (like someone attempt to exhaust all of

the nodes), scheduling will not produce many effects.

 For simulating a real case, we traced node usage of the

System-A of Kyoto University, and its data is shown in Fig. 8.

This system carries out job exclusive mode (i.e. one node can

only execute one job), generally, its usage is higher than those

systems that carry out job busy mode (i.e. one node may execute

multiple jobs at the same time). Drawing from the usage tracing

figure, within the period that shows in the x-axis, the node usage

ranges from 65% ~ 80%. The workloads information is shown

in Table 5.

5.3 Result

 Table 6 shows the comparison of our creation with other node

select heuristics. Random is the so-called heuristic that decides

execution nodes randomly, and Sequence selects nodes by their

node-id order. Within the period of simulation, the maximum

usage of our simulation reaches 67%.

Our result clearly shows that whether compare with Random

or Sequence, the Hierarchy resource management heuristic

enhances not only package power efficiency, but also memory

power efficiency. Within the period of simulation, this heuristic

can achieve 0.640% energy saving when comparing with

Random, and 1.346% energy saving when comparing with

Sequence. These effects and workloads are highly reasonable

dependent in two respects. The first reason that accounts for this

is the node usage. The node level heterogeneity scale of

available nodes is greatly based on the number of nodes in free

pool, higher node usage implies less available nodes, which also

means low heterogeneity scale. Another reason is the type of

workloads. This results from the reason that we have described

ⓒ 2018 Information Processing Society of Japan

Vol.2018-HPC-166 No.3
2018/9/27

IPSJ SIG Technical Report

 7

in chapter 3, the heterogeneity scale not only depends on the

hardware property of nodes, but also has relation with

workloads.

 Although, in this simulation, this technique only achieves 1%

level saving now, it shows contribution in two aspects. Firstly, it

reduces power consumption, without causing time degradation

(the time variation is less than 0.1%). Secondly, reducing the

power consumption of compute nodes also implies the power

reduction in the cooling system, since less heat is generated by

the heat effect. Thus, when we put our sight on the whole

system, it can be a great contribution for those systems that cost

more than 100 million dollars per year.

Table 6 Enhancement ─

The Comparison of Hierarchy and others

 Time
Package

Power

Memory

Power

Total

Power

Total

Energy

vs.

Random
< 0.1% 0.748% 0.341% 0.602% 0.640%

vs.

Sequence
< 0.1% 1.555% 0.951% 1.339% 1.346%

6. Conclusions

 In this paper, we take process variation and technology

problems of hardware into consideration and verified how much

impact they have on performance and power. The competition of

the top HPC systems becomes more and more vehement, and

gigantism of systems will not end, hence, the node level

heterogeneity should be aware. Our research focus on the node

level performance/power heterogeneity and make advantage of

this knowledge to achieve probable power saving in HPC

systems.

 This paper also introduces a simulator and presents its

structure and evaluation on job exclusive mode. In this mode,

1% level power saving was achieved under the FFT2D testing

with a maximum usage 67%. More tests will be carried out to

evaluate its functions. Moreover, we intend to extend it with job

busy mode. Most of the systems that carry out job busy mode

have less usage, thus we attempt to make better effects on those

systems.

Reference

[1] Andrew J. Younge et al. Providing a Green Framework for Cloud

Data Centers. In Handbook on Energy-Aware and Green Computing,

page 6, published on December 26, 2011.

[2] Statistics of Performance Development of recorded HPC systems.
https://www.top500.org/statistics/perfdevel/, web site on TOP500

Supercomputer Sites.

[3] Auweter A. et al. (2014) A Case Study of Energy Aware Scheduling
on SuperMUC. In: Kunkel J.M., Ludwig T., Meuer H.W. (eds)

Supercomputing. ISC 2014. Lecture Notes in Computer Science, vol

8488. Springer, Cham.
[4] The 31st TOP500 list to the 47th TOP500 list. Available:

https://www.top500.org/lists/top500/

[5] Osman Sarood, Akhil Langer, Abhishek Gupta, Maximizing
Throughput of Overprovisioned HPC Data Centers Under a Strict

Power Budget, published in SC '14: Proceedings of the International

Conference for High Performance Computing, Networking, Storage
and Analysis. (2014)

[6] 宇野 篤也, 末安 史親, 山本 啓二, 肥田 元, 池田 直樹, 辻田

祐一, 消費電力の変動を考慮したジョブスケジューリングの検討,

Vol.2017-HPC-161 No.5, 2017/9/19.
[7] Alina Sˆ ırbu, Ozalp Babaoglu, Predicting System-level Power for a

Hybrid Supercomputer, published in 2016 International Conference

on High Performance Computing & Simulation (2016)
[8] Francesco Fraternali et al. Quantifying the Impact of Variability on

the Energy Efficiency for a Next-generation Ultra-green

Supercomputer, published in 2014 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED).

[9] Rong Ge et al. PowerPack: Energy Profiling and Analysis of

High-Performance Systems and Applications, IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, VOL. 21, NO. 5, pages 658 ~ 671, MAY 2010

[10] Intel official site. Available:
https://newsroom.intel.com/press-kits/from-sand-to-silicon-the-ma

king-of-a-chip/

[11] Lide Zhang et al. Process Variation Characterization of Chip-Level
Multiprocessors DAC’09, July 26-31, 2009, San Francisco,

California, USA

[12] M. Wirnshofer, Variation-Aware Adaptive Voltage Scaling for
Digital CMOS Circuits, Springer Series in Advanced

Microelectronics 41, DOI 10.1007/978-94-007-6196-4_2, ©

Springer Science+Business Media Dordrecht 2013
[13] Enrico Calore et al. Evaluation of DVFS techniques on modern

HPC processors and accelerators for energy-aware applications,

Published online in Wiley InterScience
(www.interscience.wiley.com). DOI: 10.1002/cpe, 2017

[14] Bilge Acun, Phil Miller, Laxmikant V. Kale, Variation Among

Processors Under Turbo Boost in HPC Systems, published in ICS
'16 Proceedings of the 2016 International Conference on

Supercomputing, Article No. 6

[15] Matthew Travers, CPU Power Consumption Experiments and
Results Analysis of Intel i7-4820K, Technical Report Series

NCL-EEE-MICRO-TR-2015-197.

[16] High Performance Conjugate Gradients (HPCG) official site.
Available: http://www.hpcg-benchmark.org/index.html

[17] McCalpin, John D., 1995: "Memory Bandwidth and Machine

Balance in Current High Performance Computers", IEEE Computer
Society Technical Committee on Computer Architecture (TCCA)

Newsletter, December 1995.
[18] T. Hoefler and S. Gottlieb: Parallel Zero-Copy Algorithms for

Fast Fourier Transform and Conjugate Gradient using MPI

Datatypes. In Recent Advances in the Message Passing Interface
(EuroMPI'10), pages 132-141, Springer, ISSN: 0302-9743, ISBN:

078-3-642-15645-8, Sep. 2010

Acknowledgments This work was supported by "Advanced

Computational Scientific Program" of Research Institute for

Information Technology, Kyushu University. The computation

was mainly carried out using the computer facilities at Research

Institute for Information Technology, Kyushu University.

ⓒ 2018 Information Processing Society of Japan

Vol.2018-HPC-166 No.3
2018/9/27

