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Abstract: The amount of data grows rapidly, since everything can be easily digitalized today. For obtaining values from those 

data, datacenters continuously enlarge and enhance their computer systems. However, recently the silicon transistors are difficult 

to develop, and it becomes much harder for us to extract its physical ultimate, and so the performance becomes hardly catch up 

the growth of data. Thus, we have to increase the number of hardware to reach the demanded performance and also sacrifice 

more power as a result. Most of the supercomputer systems are homogeneous systems, which means all of their nodes are 

comprised by identical hardware. However, the process variation in manufacturing processes results in a variation on 

performance/power. In this research, taking a node level performance power variation into consideration, we come up with a 

power saving resource management technique. We also make a job scheduling simulator to verify its effects by comparing with 

primary methods. 
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1. Introduction     

  Increasing energy consumption has become a major challenge 

for the development of HPC systems. This has been aware by 

not only data centers and system makers, but also governments 

and environmental organizations since high power consumption 

also means high cost and environmental matters. 

It is estimated that the power consumption of data centers will 

reach 2% of the world’s total electricity usage by 2020 [1]. For 

controlling a power budget, data centers have to limit their 

system’s specification or carry out policies that impose 

restriction on peak power, and thus performance is also limited 

at the same time. However, more powerful systems are exactly 

demanded for driving future computing, especially in some 

fields, such as big data and machine learning. 

For competing in a data-driven world, a great amount of 

systems were developed and updated. From 1993 to 2018, the 

sum performance of all the recorded HPC systems in Top 500 

increased a thousand times, with a 20-fold average increase 

every 5 years [2]. Additionally, the performance of the top 10 

systems averagely rises 90% every year, meanwhile, power 

consumption also rises 20% every year in average [3]. 

The purpose of this paper is to analyze the power 

consumption situation and tendency of HPC systems, come up 

with a resource management technique that improves power 

efficiency, without leading increase of execution time. The 

remainder of this paper is organized as follows. Section 2 

illustrates HPC systems’ power situation in the past several 

years and the latest predictive inclination. Section 3 describes 

the node level heterogeneity and its genetic analysis in 

large-scale systems and the evaluation of it, which have been 

utilized to improve power efficiency by our creation. Section 4 

elaborates the organization of node level heterogeneity aware 

resource management heuristic. Section 5 introduces the 
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simulator we have created and the evaluation simulation. 

Section 6 makes a conclusion for the contents in the paper. 

2. Background 

2.1 Performance/Power Tradeoff 

  Fig. 1 shows the historical data of the top performance 

supercomputers. Even the performance and power efficiency 

benefit most from the development of hardware, an unavoidable 

fact is a tradeoff between performance and power.  Note that 

for activating next generation supercomputer ─ the exascale 

system, about 50MW is required that judging from the 

prediction, which is almost 2.5 times of the target power 

(20MW) that planned by many system centers and 

organizations. 

 

 

Fig. 1 LINPACK Performance & Power Data of Historical Top 

Performance Supercomputers [4] 

 

2.2 Power Efficiency Enhancement 

  For achieving probable power saving and limiting the peak 

power , many researches have been studied. To cite recent 

examples, forcing processors to execute programs on optimal 

frequency to reach high power efficiency, i.e. DVFS and power 

capping, or dynamically tuning the resource configuration of 
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running jobs on power constrained systems [5]. Furthermore, 

other researchers try to do a prediction for the power 

consumption through job history before starting jobs [6] or 

predict system level power to avoid power surpasses threshold 

[7].  However, due to the internal overhead of power capping 

and prediction, most of these techniques may lead to time 

degradation. 

3. Node Level Heterogeneity 

  Many powerful systems appeared in the past several years, 

and more gigantic systems will spring forth in the near future, 

many of them are large-scale systems that comprised by over 

thousands of nodes. A node is a basic unit in system network, 

which is comprised by fundamental hardware, like 

motherboards, processors and memories. Nodes in a specific 

system usually constructed under the same specification, which 

means they are comprised by hardware that has identical model 

and launch the same operating system. This is the so-called 

“Homogeneous System”. Even though some researchers have 

started to undertake researches on the heterogeneous system 

architecture, like considering processing element and ACPI 

performance variability in Eurora system, whose nodes are built 

using heterogeneous hardware [ 8 ]. However,  the 

homogeneous system still has a forceful momentum, and thus 

for the foreseeable future, it will remain mainstream. The most 

important reason is that the heterogeneity system is 

sophisticated, and thus hard to be built, and the homogeneous 

system has many advantages, like easy workloads balancing and 

program portability.  The reasons that accounts for these are 

similar node performance, identical instruction set and software 

(OS, compliers). 

  Even though those systems are homogeneous systems, 

variation exactly exists. In this paper, we mainly discuss the 

node level performance/power variation. 

3.1 Term Explanation 

  Node level Heterogeneity implies that even though nodes in a 

specific system are comprised by identical hardware model, 

viewing performance/power variation exists among nodes. In 

other words, when executing the same workload, different nodes 

may spend different time and have different power consumption.  

The gigantism of HPC systems results in the increase of 

physical nodes, and therefore, leads to the growth of node level 

variation. Some of those large-scale systems contain more than 

thousands of nodes, and thus have millions of processor cores 

and petabyte scale memories. 

Although the power distribution  varies from system to 

system and depends on the executing workloads. However, on 

the other hand, when executing workloads, Processing Elements 

(PE, the sum of memory and processor package, which refers to 

a small silicon block that fabricates microprocessor circuit) 

consume most of the power [9]. Processors need substantial 

power in driving its processing, and with the demand of 

operating large amount of data, memory capacity also has been 

expanded, especially in HPC systems. In some cases, it may 

reach hundreds of watt, and become a non-negligible existence. 

3.2 Genetic Analysis 

 Physical Reason 

   As previously mentioned, with the gigantism of HPC 

systems, the node level heterogeneity become much more 

dramatic than ever before. There are several causes of node 

performance and power differences in spite of  the same 

specification among nodes, one reason is the process variation 

of hardware in manufacturing processes. 

  For describing this, we should explore the manufacturing 

processes of processors. As it is well known to all that 

transistors are the most important part of a processor. Hundreds 

of procedures are needed for making sands into a silicon wafer, 

like polishing, etching, ion doping etc. [10]. For controlling 

error, all these steps are operated by precision instruments. 

However,  transistors are extremely tiny (from microscale in 

the past to nanoscale now), to some degree, a small deviation 

will also show impacts if we consider it from the respect of 

percentage [11]. For example, the width and length will be 

different due to diffraction [12]. Worse still, because of the 

difficulties in scaling, process variation has exactly become a 

trouble in integrated circuit design. However, macroscopically 

speaking, process variation finally does impact on power 

efficiency in some degree, which is viewing. 

 Technical Reason 

  Besides the physical reason in making hardware, recent 

micro-techniques also result in runtime variation, comparing 

with “the external variation” among nodes, which can be named 

“the within-node internal variation”. Those micro-techniques 

mainly refer to Dynamic Voltage Frequency Scaling (DVFS) 

and Turbo Boost etc.    

DVFS is a widely used power management technique in 

integrated circuit design, where voltage and frequency is tuned 

depending upon runtime circumstances for reaching the balance 

between performance and power. Its function has been evaluated 

by many researchers [1] [13], and also utilized to improve 

power efficiency by other researchers, who have developed a 

DVFS-enabled scheduling system for a cloud data center [1]. 

 Overclocking, which is also a dynamic frequency tuning 

technique that adjusts frequency in pace with the task changing, 

has been utilized to trade power consumption for performance in 

current processors design. In general, for a given processor, 

higher frequency implies higher performance,  this technology 

can accelerate processors for current workloads, and turn into a 

low frequency status (which also means low power 

consumption) to save power. Its functions also have been 

studied on the respect of HPC systems [14]. Unfortunately, the 

relation between performance and power is non-linear [15], thus 

when  processors are accelerated to operate workloads in a 

high frequency, it may result in a bad power efficiency. 

3.3 Statistical Verification 

  The process variation in making hardware and technical 

reason leading runtime variation have been illustrated in 

previous contents. A more important point is how much they can 

influence performance and power. 

   A significant element for scaling heterogeneity, is the 
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Table 1 Specification of Kyoto University System-A 

The Number of Nodes 1800 

Processor 
Intel Xeon Phi Knights Landing 

 (68 cores 1.4GHz × 1) / node 

MCDRAM Cache Mode 

Memory DDR4-2133MHz 96GB / node 

Measurement Tool Cray-Pat 

Table 2 Benchmark Testing Information 

Benchmark Problem Size & Parallelism 

HPCG 
Problem Size: Default 

64 processes (1 core/1 thread for each) 

STREAM 
Problem Size: Default 

68 processes (1 core/1 thread for each) 

 

 

Fig. 2 Measured Power/Time Variation of HPCG 

 

 

Fig. 3 Measured Power/Time Variation of STREAM 

 

Table 3 Specification of Kyushu University Subsystem-A 

The Number of Nodes 2000 

Processor 
Intel Xeon Gold 6154 (Skylake-SP) 

(3.0 GHz, 18 core）× 2 / node 

Memory DDR4-2666 192 GB / node 

Measurement Tool Intel RAPL 

Table 4 Benchmark Testing Information 

Benchmark Problem Size & Parallelism 

HPCG 

Problem Size 1: X=104, Y=104, Z=104 

1 processes (36 cores/36 threads for each) 

Problem Size 2: X=128, Y=192, Z=128 

1 processes (36 cores/36 threads for each) 

STREAM 

Problem Size 1: 86GB 

1 processes (36 cores/36 threads for each) 

Problem Size 2: 144GB 

1 processes (36 cores/36 threads for each) 

 

number of nodes. Hence, we evaluated the node level variation 

on two many-nodes systems with two different measuring tools. 

The first one is the system-A of Kyoto University (Camphor), 

with Cray-Pat, and the second one is the subsystem-A of 

Kyushu University (ITO), with Intel RAPL. 

 Benchmarks 

  Two benchmarks were used for scaling the performance and 

power variation on processors and memories. One is High 

Performance Conjugate Gradients (HPCG) [16], the other one is 

STREAM [17]. 

  HPCG is designed as a complement to High Performance 

LINPACK (HPL) to create a new metric for ranking HPC 

systems and was exploited by Top 500 Supercomputer Site from 

November 2017. It mainly carries out sparse matrix-vector 

multiplication, vector updates etc., which is the so-called 

computational intensive program. STREAM measures 

sustainable memory bandwidth, and carries out simple vector 

kernel computation. Different from HPCG, STREAM is a 

memory intensive program. 

  In the System-A of Kyoto University, we simply used them to 

evaluate the node level heterogeneity, and in Subsystem-A of 

Kyushu University, we also evaluate whether the type of 

benchmarks and their problem sizes influence the variation. 

 System-A of Kyoto University (Camphor) 

Table 1 shows the specification of this system. Each node has 

only one socket that incorporated with one latest Intel Xeon Phi 

series coprocessor, code name Knights Landing (KNL). Table 2 

shows the benchmarking information. We executed those 

benchmarks in single node mode, and measured execution time 

and power consumption by Cray-Pat performance tool kit. Due 

to the job scheduling policy of the system, only 414 samples for 

HPCG, and 341 samples for STREAM were measured even 

though there are 1800 nodes. 

Fig. 2 shows the measurement results of HPCG. The x-axis 

stands for samples, which refers to each measured node. The left 

y-axis is the power variation, and the right y-axis is the time 

degradation, both are the comparison to the best case (i.e. the 

least power or time consuming node). Power stands for 

Processing Element Power. Both power consumption and time 

expenditure are varying among nodes. When executing HPCG, 

the power variation reaches 15% and the time degradation of 

most of the nodes is under 8%. 

  Fig. 3 shows the measurement results of STREAM. Similar 

with HPCG, the power variation of STREAM also reaches a 

high level (almost 12%) varying among nodes. However, the 

time degradation of most of the nodes is around 3%, which 

implies that the execution time of most of the nodes is closed. 

 Subsystem-A of Kyushu University (ITO) 

  Table 3 shows the specification of this system. Different with 

the system-A of Kyoto University, the node of subsystem-A of 

Kyushu University has two sockets, and each socket 

incorporates one Intel Xeon Gold 6154 processor. The 

evaluation is also carried out by utilizing HPCG and STREAM. 

In addition, different problem sizes in HPCG and STREAM also 

be applied to see its impact on variation. Table 4 shows the 

benchmark testing information. In the system-A of Kyoto 
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・HPCG – 104 104 104(XYZ) ・HPCG – 128 192 128(XYZ) 

・STREAM – 144G ・STREAM – 86G 

 

Fig. 5 Package and Memory Energy Variation 

 

 

・HPCG – 104 104 104(XYZ) ・HPCG – 128 192 128(XYZ) 

・STREAM – 144G ・STREAM – 86G 

 

Fig. 4 Package and Memory Power Variation 

University, we only measured a small part of nodes. In this 

system, we measured all of them. Another change in this testing 

is that PE power was divided into package power and memory 

power for scaling respective power variation. 

 Power 

Fig. 4 shows the measured power of each workload. The 

x-axis refers to nodes, which is sorted by average power 

(average value of all the four workloads) in ascending order. 

The y-axis stands for package or memory power. 

The data of package power illustrates that for STREAM 

benchmark, those nodes consume less power when executing 

problem size 1, most of them also consume less power when 

executing problem size 2. However, drawing from the 

measurement result of HPCG benchmark, it becomes different, 

those nodes consume less power when executing problem size 1, 

they do not always consume less power when executing problem 

size 2. 

Comparing the data of package power, the memory power is 

more stable, in other words, those nodes consume less power 

when executing one workload, they also consume less power 

when executing other workloads. 

 Energy 

  Power only stands for instantaneous expenditure, a more 

important quota which we concerned is, considering execution 

time as a factor, how much energy a node consumes when 

executing a specific workload. 

Fig. 5 shows the measurement of package and memory energy 

consumption. The x-axis stands for nodes (ordered by average 

energy consumption), and the y-axis stands for variation, which 

is shown in the percentage of the energy consumption of each 

node comparing with average energy consumption of all the 

nodes. 

  In the previous package power variation figure, when a node 

executes different workloads, it may show different inclinations, 

which can  be named within-node variation. On the other hand, 

we can find the inclination (i.e. those nodes consume less energy 

when executing one workload, most of them also consume less 

energy when executing other workloads) when looking into the 

total energy consumption within the execution period. Thus it is 

memory energy variation. 

  Most of the data are around the average value of energy 

consumption. For example, the orange data (HPCG – 128 192 

128(XYZ)) is within the range of its average ±10%. 

A more interesting phenomenon is that the variation level of 

package energy consumption depends on the benchmark and its 

problem sizes. For instance, the orange data (HPCG – 128 192 

128(XYZ)) shows that the maximum variation is almost 18% 

(from 90% to 108%) and other benchmarking data only shows 

10% variation (from 93% to 103%). Moreover, these data may 

illustrate that the package energy variation of computational 

intensive workloads is greater than that of memory intensive 

workloads.  

  Even though it is obvious that the variation level of package 

energy consumption is depended on the workloads, however, the 

memory energy variation is different. To some degree, all the 

benchmarking data shows almost 40% variation (from 80% to 
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120%). 

  With this knowledge, we can consider a node level 

heterogeneity aware scheduling policy, for example, the most 

straightforward method is scheduling those low power 

consuming nodes precedentially, to achieve probable energy 

saving. 

4. Technique 

  Resource management technique and HPC scheduler have a 

long history and have been well developed for HPC systems, 

which are growing much more gigantic than ever before. Those 

techniques are important for increasing systematic efficiency.  

In this chapter, we design a node heterogeneity aware 

resource management heuristic and compare its function with 

two different heuristics. The first comparison target decides 

execution nodes randomly (like the scheduler in the systems of 

Kyoto University), and the second one selects execution nodes 

by node-id (like the Kyushu University systems). 

4.1 Hierarchy Pool 

  Based on our introduction in chapter 3, if we increase the 

usage probability of low power consuming nodes and avoid 

passing jobs to those high power consuming nodes, we can 

achieve probable power saving in some degree. 

  Differ from other node pool management methods, we 

manage nodes in hierarchy pools. This heuristic is based on the 

testing result which has been shown in chapter 3, and the pool 

arrangement is shown in Fig. 6. 

In this heuristic, three pools were prepared, and arrange nodes 

by their power efficiency (Pe). From upper to lower is High 

Efficiency Node Pool (Pool 1), General Node Pool (Pool 2), and 

Low Efficiency Node Pool (Pool 3). It can be expressed, as: 

 

)3 (Pool )>P2 (Pool )>P1 (Pool P eee  

 

When the scheduler intends to start a new job, Pool 1 will be 

firstly checked. If those nodes in Pool 1 are all unavailable, or 

the number of nodes is not enough, those nodes in Pool 2 will be 

chosen. This policy is also applied between Pool 2 and Pool 3. 

When nodes are chosen, they will be put into a corresponding 

pool in Exclusive Pool, and when it finishes execution, it will 

return to its primary pool in Free Pool. Inside each pool, nodes 

are chosen randomly. With this resource management, those 

nodes which are high power efficiency node will be exploited 

before others that are low power efficiency node. 

4.2 Pool Size 

  Another problem should be considered is how to decide the 

pools’ size. The target of many HPC system centers is to 

reinforce the function of systems as much as possible, systems 

are launched almost the whole years, and whenever it will reach 

a minimum usage. However, most of the time, systems are not 

fully loaded (i.e. 100% usage). 

  Hence, over a period of time, the usage of one system is 

between its lowest usage (UL) and highest usage (UH). We can 

set the size of pools, as: 

 

LU1PoolSize =) (  

LH-U)=U2Size(Pool  

HU-%100)=3Size(Pool    

 

  This is a clear thought that all the nodes in Pool 1 will be in 

execution status when the system is active since within this 

period, the usage of system is greater than UL. And for those 

nodes in Pool 3, they are avoided to be selected for completing 

workloads,  which is because those nodes in Pool 2 will not be 

exhausted when usage is under its peak. 

 

 

Fig. 6 Hierarchy Node Pool Management 

 

5. Simulation & Result 

  In this chapter, we will introduce our simulation and how 

much energy can be saved through applying our resource 

management technique. We utilized the system-A of Kyushu 

University (ITO) to carry out this simulation. However, it is 

impossible for a user to revise the real scheduler of a 

supercomputer, hence, we made a multi-node scheduling 

simulator and used it to evaluate our proposition. 

5.1 Simulator 

There already exist many simulators in the world and did 

contribution to science for many researchers. While most of 

those simulators have two factors that may lead to impact on our 

result. The first reason that accounts for this is they not only 

simulate a scheduler and its interior elements, but also simulate 

the hardware (like the processor, cache, memory etc.), and the 

second one need to be guaranteed is more important that many 

of them only schedule workloads, without actually executing 

those workloads or just execute workloads on the simulated 

hardware (the execution result is modeled). Our research focus 

on the hardware and its process variation, for reflecting them, 

the workloads should be actually executed on real nodes, and 

that is what our creation can do. 

 Structure 

  This simulator is created by utilizing the widely used parallel 

computing architectures MPI and OpenMP. There are mainly 

three components in this simulator, Resource Management 

Kernel (RMK), Workload Simulator (WLS), and Compute Node 

Kernel (CNK). The structure of it is shown in Fig. 7. 
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Table 5 Workload Information 

Workloads Execution Times 

FFT2D (problem size 3600): 

36 processes (1 core/1 thread for each) 
6102 

FFT2D (problem size 7200): 

36 processes (1 core/1 thread for each ) 
25050 

 

 

Fig. 8 Node Usage of The System-A of Kyoto University 

 
Fig. 7 Simulator Structure 

 
 Resource Management Kernel (RMK)  

  The RMK mainly contains Scheduler, Job Queue, and Node 

Pool. The Scheduler handle the submissions from WLS and 

push them into corresponding Job Queue if they are accepted. 

When there are waiting jobs in Job Queue, the Scheduler will 

select execution nodes from Node Pool, and then pass jobs 

through MPI communication, certainly, the precondition is that 

there are available nodes.  

 Workload Simulator (WLS) 

  The WLS is applied to generate workloads. When the WLS is 

launched, it reads workloads information from setup file, and 

other things that needed to be prepared are only executables. 

 Compute Node Kernel (CNK) 

  The CNK is very simple, it only receives workloads from 

RMK’s scheduler and completes it. After finishing the execution, 

a signal will be sent to RMK via MPI communication. 

 Execution 

  When the simulator is launched, only one node will become 

the Master, the others will be treated as Slaves. The Master 

Node is decided by the setup file, judging from MPI rank or 

hostname. RMK and WLS will be launched on the Master node, 

the others launch CNK. 

5.2 Workload 

  In chapter 3, we obtained the node benchmarking data by 

utilized HPCG and STREAM. In our simulation, we used 

2D-Fast Fourier Transformation (FFT2D) [18] to carry out 

evaluation. For evaluating our creation in a real case, the node 

usage is an important element. Thus, if the usage is always very 

low or high, it cannot reflect the effect. Furthermore, if the 

usage is always 100% (like someone attempt to exhaust all of 

the nodes), scheduling will not produce many effects. 

  For simulating a real case, we traced node usage of the 

System-A of Kyoto University, and its data is shown in Fig. 8. 

This system carries out job exclusive mode (i.e. one node can 

only execute one job), generally, its usage is higher than those 

systems that carry out job busy mode (i.e. one node may execute 

multiple jobs at the same time). Drawing from the usage tracing 

figure, within the period that shows in the x-axis, the node usage 

ranges from 65% ~ 80%. The workloads information is shown 

in Table 5. 

5.3 Result 

  Table 6 shows the comparison of our creation with other node 

select heuristics. Random is the so-called heuristic that decides 

execution nodes randomly, and Sequence selects nodes by their 

node-id order. Within the period of simulation, the maximum 

usage of our simulation reaches 67%. 

Our result clearly shows that whether compare with Random 

or Sequence, the Hierarchy resource management heuristic 

enhances not only package power efficiency, but also memory 

power efficiency. Within the period of simulation, this heuristic 

can achieve 0.640% energy saving when comparing with 

Random, and 1.346% energy saving when comparing with 

Sequence. These effects and workloads are highly reasonable 

dependent in two respects. The first reason that accounts for this 

is the node usage. The node level heterogeneity scale of 

available nodes is greatly based on the number of nodes in free 

pool, higher node usage implies less available nodes, which also 

means low heterogeneity scale. Another reason is the type of 

workloads. This results from the reason that we have described 
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in chapter 3, the heterogeneity scale not only depends on the 

hardware property of nodes, but also has relation with 

workloads. 

  Although, in this simulation, this technique only achieves 1% 

level saving now, it shows contribution in two aspects. Firstly, it 

reduces power consumption, without causing time degradation 

(the time variation is less than 0.1%). Secondly, reducing the 

power consumption of compute nodes also implies the power 

reduction in the cooling system, since less heat is generated by 

the heat effect. Thus, when we put our sight on the whole 

system, it can be a great contribution for those systems that cost 

more than 100 million dollars per year. 

 

Table 6 Enhancement ─  

The Comparison of Hierarchy and others 

 Time 
Package 

Power 

Memory 

Power 

Total 

Power 

Total 

Energy 

vs. 

Random 
< 0.1% 0.748% 0.341% 0.602% 0.640% 

vs. 

Sequence 
< 0.1% 1.555% 0.951% 1.339% 1.346% 

 

6. Conclusions 

  In this paper, we take process variation and technology 

problems of hardware into consideration and verified how much 

impact they have on performance and power. The competition of 

the top HPC systems becomes more and more vehement, and 

gigantism of systems will not end, hence, the node level 

heterogeneity should be aware. Our research focus on the node 

level performance/power heterogeneity and make advantage of 

this knowledge to achieve probable power saving in HPC 

systems.  

  This paper also introduces a simulator and presents its 

structure and evaluation on job exclusive mode. In this mode, 

1% level power saving was achieved under the FFT2D testing 

with a maximum usage 67%. More tests will be carried out to 

evaluate its functions. Moreover, we intend to extend it with job 

busy mode. Most of the systems that carry out job busy mode 

have less usage, thus we attempt to make better effects on those 

systems. 
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