
CDNにおける近傍ノードのコンテンツによる検索木の分散構成に基
づく効率的コンテンツ検索手法

スレスタ　サンブ† 小林 亜樹† 山岡 克式† 酒井 善則†

† 東京工業大学大学院理工学研究科集積システム専攻
〒 152-8552 東京都目黒区大岡山 2-12-1-S3-67

E-mail: †shambhu@net.ss.titech.ac.jp, ††{koba,yamaoka,ys}@ss.titech.ac.jp

あらまし コンテンツ配信ネットワーク (CDN)における重要な問題の一つとしてコンテンツ検索の問題があ

げられる。しかし,従来の分散型コンテンツ検索手法はコストの高いフラッディングに基づいているかコンテ

ンツ配置アルゴリズムに制約をおいた上で効率的探索を可能とするものが多い。そこで,本稿では近傍ノード

のコンテンツによる検索木の分散構成に基づく効率的コンテンツ検索手法を提案する。提案手法の重要な特徴

はコンテンツ配置アルゴリズムに依存しないという点である。本稿では提案手法を説明し,従来のコンテンツ

検索アルゴリズムと性能の比較を行うことによって提案手法は検索時に生じるトラフィックを少なく保ちなが

らもコンテンツ発見確率の向上に効果的であることを示す。

An Efficient Content Location Algorithm for CDN based on

Distributed Construction of Search Tree from Contents of Proximal

Nodes
Shambhu SHRESTHA†, Aki KOBAYASHI†, Katsunori YAMAOKA†, and Yoshinori SAKAI†

† Dept. of Communications and Integrated Systems, Graduate School of Science and Engineering,
Tokyo Institute of Technology

2-12-1-S3-67, Ookayama , Meguro-ku, Tokyo 152-8552, Japan
E-mail: †shambhu@net.ss.titech.ac.jp, ††{koba,yamaoka,ys}@ss.titech.ac.jp

Abstract One of the most important issues in Content Distribution Networks (CDN) is
the algorithm for searching the contents. The existing distributed content location sys-
tems for CDNs are either dependent upon inefficient flooding techniques or on methods
imposing a restriction on content placement algorithms. In this paper, we propose an
efficient content location algorithm for CDNs based on distributed construction of search
tree using the contents of proximal nodes. One of the important characteristics of our
algorithm is its independence on the content placement algorithm. We describe our algo-
rithm, compare it with the existing content location algorithms and show its effectiveness
in increasing the success rate of queries while maintaing the traffic generated very low.

1. Introduction

Recent years have seen a huge raise in the size of
contents transmitted over the Internet because of
the increasing popularity of audio/video contents.
Content Distribution Networks (CDNs) are being

considered as a platform for distributing such con-
tents. CDNs are content distribution platforms
which aim to achieve efficient network use, fault
tolerancy, load distribution, among others, by dy-
namically placing and replicating contents at op-

— 1 —

研究会temp
テキストボックス
社団法人　情報処理学会　研究報告
IPSJ SIG Technical Report

研究会temp
テキストボックス
2005－DBS－137（Ⅰ）（28）
　　　2005／7／13

研究会temp
テキストボックス
－207－

timal locations within the network. A detailed
discussion about CDNs and the issues related to
it are given in [1].

In this paper, we consider distributed CDNs,
where there are no central or hierarchical group
of servers to manage the CDN and everything
is done in an entirely distributed fashion. Dis-
tributed CDNs resemble Peer-to-Peer(P2P) net-
works a lot since both are internetworks of nodes
with equal roles and capacities and provide a plat-
form for storing, sharing and retrieving data in a
distributed manner. CDNs are distinguished from
P2P networks in the following way: the number
of nodes joining and leaving the network per unit
time is negligible in CDNs whereas it cannot be
ignored in P2P networks.

Two of the most important issues in CDN are :
1. Content placement and replication algo-

rithm.
2. Content location algorithm.

The former deals with the placement and repli-
cation of contents in the CDN so as to optimize
metrics such as average latency of content re-
trieval, network traffic or load distribution among
servers under certain constraints (e.g. capacity of
a server) . The latter, on the other hand, deals
with the problem of searching a content within
the CDN. The scalability and performance of a
distributed CDN depends highly on the content
location algorithm deployed. It should be noted
that searching a content in CDN is not a trivial
problem since the location and number of replicas
of a content is not fixed, which is in sharp contrast
to the WWW where a content is always bound to
a particular server.

Content placement algorithms and content lo-
cation algorithms are not necessarily independent
as there are certain efficient content location algo-
rithms, discussed in Section 2., which require con-
tents to be distributed in a particular way. The
main goal of our research is to develop efficient
content location algorithm that do not impose any
restriction on the content placement algorithm de-
ployed in the CDN.

2. Previous Works

Gnutella [2] uses breadth first search (BFS) of
network for content location. This method, also
known as flooding (or broadcasting), searches for
a content in all the nodes within HTL hops from
the node initiating the query. While very simple,
flooding generates a large number of messages per
query, most of which end up in failure and as a
result, inflict a huge load upon the network.

Local Indices [3], Probabilistic Search Protocol
(PSP) [4], Adaptive Probabilistic Search (APS)
[5] improve upon flooding by introducing certain
kind of index on each node where information
or hints about content location is stored. This
makes it possible to selectively forward a query
at each node or find a content faster, which helps
to decrease the traffic produced by a query. Lo-
cal Indices and PSP increase the success rate of
a query but the traffic generated by a query, al-
though smaller, is still comparable with flooding.
Besides, each of them require a node to maintain
a huge index or search history. APS deploys ran-
dom walkers to search the network, which helps
to decrease the traffic per query considerably but
at the cost of decreased success rate. Quantita-
tive analysis about the performance of these algo-
rithms will be presented in section 6.

Chord [6], CAN [7], Tapestry [8] are searching
algorithms based upon Distributed Hash Ta-
bles(DHT). They provide infrastructures for ef-
ficient content location by maintaining a struc-
tured overlay network over the physical network.
A major disadvantage of these methods, however,
is that each of them requires a content to be stored
in a particular node (analogous to hash tables
where keys with same hash value are stored in
same bucket). This makes them inappropriate
for CDNs, where the location of contents changes
dynamically according to some content placement
algorithm. By storing pointer to a content instead
of a content itself at designated nodes, it might
be possible to adapt these methods for CDNs but
the request for a particular content will always
have to be routed to the node responsible to store

— 2 —

研究会temp
テキストボックス
－208－

the pointer for the content. This leaves the vari-
ous problems with WWW, such as fault-tolerancy,
unresolved. In addition to that, there remains is-
sues about locality of a search too — i.e. a search
for a content might be routed to any node within
the CDN, even though the content resides in the
neigborhood of the node initiating the query.

3. Our Model

We consider a CDN of N interconnected nodes
(or servers). The distance between 2 nodes A and
B, Distp(A,B), is the number of links (or edges)
on the shortest path between them. Each content
served by the CDN has r̄ replicas in the average
and an unique content ID (abbr. CID), which is a
bit string of m bits . Throughout this paper, the
CID of a content will be treated as a positive inte-
ger equal to the decimal value of the CID. A con-
tent will be represented by a pair (c,X), where c

is the CID of the content and X is the node that
stores this content. We define, Cid((c,X)) = c

and Node((c, X)) = X.
There are M(= 2m) unique contents in the

CDN — i.e. there exists at least one replica
of a content with a given CID. Thus, the to-
tal number of contents in the CDN is Mr̄ and
we suppose that these are distributed among the
N nodes. Let, {c0, c1, . . . , ct−1}(∀i < j, 0 <=
ci < cj <= M − 1) be the CIDs of the con-
tents in any node, A (this set will be denoted
by C(A)). Then, the Region of Responsibility of
(ci,A), denoted by RoR((ci,A)), is defined as:
RoR((ci,A)) ≡ [ci, (ck−1+M) mod M]I , where
k = (i + 1) mod t and, for a, b ∈ ZM

（1）,

[a, b]I ≡
{

Set of integers in [a, b] a <= b

[b, M − 1]I ∪ [0, a]I a > b

Furthurmore, for a, b ∈ ZM , we define,

Distl(a, b) ≡ |[a, b]I | − 1

to be the distance of b from a. It should be noted
that this definition of distance does not obey the
commutative law – i.e. Distl(a, b) and Distl(b, a)
are not necessarily equal.

（1）：ZM = {0, 1, . . . , M − 1}.

To clarify these definitions, we will consider an
example where m = 4 or M = 16, C(A) =
{5, 9, 10, 13}. In this case, RoR((9,A)) =
[9, 9]I = {9}, RoR((13,A)) = [13, 4]I =
{13, 14, 15, 0, 1, 2, 3, 4}, Distl(13, 4) = 7 and
Distl(4, 13) = 9.

4. Proposed Method

In this section, we will explain the proposed al-
gorithm in detail. Our method operates in the
following 4 stages:

4. 1 Learning Phase

In this phase, each content, (c,A), gathers in-
formation about the contents whose CID lies in
RoR((c,A)). This information, which will be de-
noted by Rall((c,A)), is the set of contents whose
CID lie in RoR((c,A)) and have replica(s) in a
node within h hops of A — i.e. Rall((c,A)) =
{(ci,Ai)|ci ∈ RoR((c,A)), Distl(A,Ai) <= h}
This information can be collected, for example,
by querying every node within h hops. Each ele-
ment of Rall((c,A)) will be called a reference.

4. 2 Selection Phase

If tmax is the maximum number of contents that
can be stored in a node, then the average size of
RoR((c,A)) is M

tmax
= O(M)（2）. Thus, the size of

Rall((c,A)) can be of O(M). In real CDNs, where
M can be very large, having a content maintain a
table of this size might pose a threat to the scal-
ability of the system.

To ensure scalability, we select only nr(c,A)
references out of Rall((c,A)) according to an al-
gorithm, described below, and require (c,A) to
store them. The set of the selected references
will be denoted by Rsel((c,A)). In our algorithm,
nr(c,A) ≈ log2(|RoR((c,A))|). Hence, the aver-
age number of references to be maintained by a
content becomes log2(

M
tmax

) = O(log(M)).
Now, we explain our algorithm for selecting

nr(c,A) references from Rall((c,A)). For the sake
of clarity, ror will be used to denote |RoR((c,A))|.
We partition RoR((c,A)) into s subsets : {Pi|i ∈
Zs}, where s = dlog 1

α
(ror)e for some α ∈ (0, 1),

in the following way:

（2）：When tmax has an upper bound.

— 3 —

研究会temp
テキストボックス
－209－

P0 = [c, bd(1)− 1c mod M]I

Pj = [bd(j) + 1c mod M, bd(j + 1)− 1c mod M]I

(1 <= j < s)

Here,

d(x) = c + αs−xror

As an example, we will consider the case
when M = 128, C(A) = {2, 34, 51, 76, 125}.
Here, RoR((2,A)) = [2, 33]I and thus, ror =
32. If we take α = 0.5, then s = 5.
Hence, the partition of RoR((2,A)) will be
{[2, 3]I , [4, 5]I , [6, 9]I , [10, 17]I , [18, 33]I}.

Each reference in Rall((c,A)) has its CID in one
of the subsets Pi. For each subset Pi, we choose at
most min(|Pi|, Nr(Pi)) references whose CIDs lie
in this subset and add it to Rsel((c,A)). Here,

Nr(Pi) = d(θi

Sum
) log2(ror)e

θi = ((
β

α
)s−i − 1)|Pi|

β = 1− log2(ror)
ror

Sum =
s−1∑
i=0

θi

The basic idea behind this algorithm will be ex-
plained in section 5. If we think of a content (c,A)
and the references held by it in Rsel((c,A)) as be-
ing connected, then we get a logical network of the
contents, after this phase.

4. 3 Dissemination Phase

In the Selection Phase, each content(c,A)
selected certain number of references from
Rall((c,A)) and added it to Rsel((c,A)). In this
phase, the remaining references – i.e. those in
Rall((c,A))−Rsel((c,A)), are forwarded to refer-
ences in Rsel((c,A)) and then discarded by (c,A).
The basic idea is that the references which are
not important for one content might be impor-
tant to other contents to which the references are
closer（3）.

For the sake of convenience, we suppose that
RoR((c,A)) = [c, d]I , where c <= d（4）. Suppose,

（3）：In the sense of Distl(·, ·).
（4）：The algorithm is exactly the same when d < c; only the

notations become complicated.

Rall((c,A)) = {(c0, A0), (c1, A1), · · · , (cl−1, Al−1)},
(∀i ∈ Zl, ci ∈ [c, d]I and ∀i ∈ Zl−1, ci < ci+1)

Rsel((c,A)) = {(cx0 , Ax0), (cx1 , Ax1), · · · , (cxk−1 , Axk−1)},
(∀i ∈ Zk, cxi ∈ Rall((c,A)) and ∀i ∈ Zk−1, cxi < cxi+1)

Ri((c,A)) = {cj |cj ∈ Rall((c,A)), cxi < cj < cxi+1},
(i ∈ Zk−1)

Rk−1((c,A)) = {cj |cj ∈ Rall((c,A)), cxk−1 < cj}

Now, content (c,A) forwards Ri(i ∈ Zk) to
reference (cxi

, Axi
), and discards Rall((c,A)).

Now, let’s say that a content (cr, Ar) receives
a set of references R forwarded by other con-
tent. If Rsel((cr, Ar)) = {cr0 , cr1 , · · · , cru−1} and
nr(cr, Ar) is the maximum number of references
that can be stored by (cr, Ar), we do the following
for all r ∈ R:

1. If Cid(r) /∈ RoR((cr, Ar)), forward {r}
to the content, cf in C(Ar) for which Cid(r) ∈
RoR((cf , Ar)).

2. If r ∈ Rsel((cr, Ar)), do nothing.
3. If Cid(r) ∈ RoR((cr, Ar)) and u <

nr(cr, Ar), Rsel((cr, Ar)) = Rsel((cr, Ar)) ∪ {r}.
4. If Cid(r) ∈ RoR((cr, Ar)) and u >=

nr(cr, Ar), find the content rf in Rsel((cr, Ar))
for which Distl(Cid(rf), Cid(r)) is the minimum.
If Cid(rf) = cr, do nothing, otherwise for-
ward {r} to rf . Since, Distl(Cid(rf), Cid(r)) <

Distl(cr, Cid(r)), this will end after a finite num-
ber of forwardings.

4. 4 Searching Phase

Once, the previous 3 phases are completed, the
actual searching can be done. If q is the CID of
the content to be searched, our searching algo-
rithm works as follows:

1. When a node, A receives a query, it for-
wards it to the content, (c,A) ∈ C(A) for which
q ∈ RoR((c,A)).

2. When a content, (c,A) receives the
query: If q /∈ RoR((c,A)), the query is forwarded
to A else, if c = q, the query ends in success
otherwise (c,A) searches for the reference rf in
Rsel((c,A)) for which Distl(Cid(rf), q) is the min-
imum. If c = Cid(rf), the query ends in failure
otherwise the query is forwarded to rf .

— 4 —

研究会temp
テキストボックス
－210－

N
u
m
b
e
r

o
f

Q
u
e
r
i
e
s

A
r
r
i
v
i
n
g

a
t

c

λ = Number of Queries Received by a
content from the node containing it.

c c+αs-1M/t c+αjM/t c+αM/t c+M/t CID Space

(β/α)λt/M

λt/M

(β/α)s-1λt/M

(θs-1-j/θs−1)λt/M

Hl= Number of logical hops

travelled by the query.

Hl=0

Hl=1

Hl≥s-1

Fig. 1 Estimation of number of queries for a content in

RoR((c,A))

5. Discussions

As described in the section 4. 4, in our searching
algorithm, each content forwards a query, q to a
reference which is closer to it. When a query is
passed from one content to another, we say that
the query travels one Logical Hop(Hl). Suppose,
each node, A holds t contents so that the average
size of RoR((c,A)) is M

t
. If each content is equally

likely to be queried, then the λ queries that are
received by (c,A) from the node containing it (i.e.
when Hl = 0) will be distributed among the con-
tents in [c, c + M/t]I equally, as shown in Fig. 1.
Since, (c,A) contains log2(M/t) （5） references, a
fraction of these queries are resolved and the re-
maining fraction, β(= 1 − log2(M/t)

M/t
) of queries is

forwarded to other contents.
When a query is forwarded by (ci,Ai) to

(cj,Aj), if we can ensure that Distl(cj, q) <

αDistl(ci, q) where α ∈ (0, 1), the query will con-
verge to a content closest to it exponentially fast.
In other words, the query, which has travelled
Hl = j logical hops, should lie within [c, c +
αjM/t]I , as shown in Fig. 1, so that it converges
to the closest content in about log 1

α
(M/t) logical

hops. When the queries follow this kind of conver-
gence, contents in various subsets of RoR((c,A))
receive various number of queries with contents
closer to c receiving more queries than those far
from it. This is the reason behind partition-

（5）：Because, ror = M/t in this case.

ing RoR((c,A)) and selecting various number of
references from each subset depending upon the
importance of each subset, as explained in sec-
tion 4. 2.

To summarize, in our method, each content
takes part in the process of creating a distributed
search network, based upon the contents of neigh-
boring nodes. Each content stores only a part of
that network and decides locally where to route
a query. With the addition of an initial cost of
building the distributed index, a huge decrease in
the the number of useless traffic generated by a
query can be achieved. In the next section, we
present the results of our simulation to measure
and compare the performance of our method with
existing methods.

6. Simulation Results

To determine the effectiveness of the proposed
method and to compare its performance with ex-
isting methods, we carried out a simulation in
Java VM.

We performed the simulation in a CDN with 256
nodes arranged in a (16× 16) 2D-Mesh. The ca-
pacity of each node was set to 10 contents. Each
content has a 10 bits long CID with a total of
1024 unique contents in the CDN. The number of
replicas of contents were determined with a Zip-
fian distribution (parameter = 0.6). We generated
a query set of 220 queries. For each query, a node
to initiate it was chosen uniformly and a CID of
the content to search, was chosen randomly (Zip-
fian distribution of parameter 0.6)（6）. The follow-
ing algorithms were used to process the queries at
each node:

1. Probabilistic Search Protocol(PSP). [4]
2. Adaptive Probabilistic Search(APS). [5]
3. Flooding.
4. Proposed Method.
5. Local Indices. [3]

Table 1 summarizes the important parameters
of the simulation.

A search was carried out with all the queries

（6）：The number of replicas of a content and the number of

queries for it are proportional.

— 5 —

研究会temp
テキストボックス
－211－

Table 1 Parameters of the simulation.

Network Topology 16× 16 2D-Mesh

N 256

Contents per Node 10

Replica Distribution Zipf (0.6)

Query Distribution Zipf (0.6)

m 10

M 1024

Directory Cache Size (PSP) 0.1M

Broadcast Probability (PSP) 1

Neighbor Index Size (APS) 0.05M

α (Proposed Method) 0.6

Radius of Index (R) (Local Indices) 1 to 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
uc

ce
ss

 R
at

e

Number of Hops

Number of Hops vs Success Rate (Comparison of Various Searching Methods)

PSP
APS

Flooding
Proposed

Local Indices(R=5)

Fig. 2 Comparison of success rate of queries.

in our query set with varying HTL（7） values of
queries for methods (1), (2), (3), (5) and vary-
ing h values (Ref. 4. 1) for the proposed method.
For every 213 queries, an average of success rate
and traffic generated per query was calculated for
each method. This was done to detect the steady
state of PSP and APS, since both of them require
certain time to arrive at a steady state.

A comparison of the success rates of queries for
various searching algorithms is depicted in figure
2. The horizontal axis represents the h value for
the proposed method and HTL value of queries
for other methods. For the sake of fairness, re-
sults for R = 5 is used for Local Indices since the
index to be maintained by a node becomes larger
for higher value of R. The values of the the steady
state are used for PSP and APS while an overall
average of averages are used for other methods.

（7）：Hops to Live

 1

 10

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
ra

ffi
c

pe
r

Q
ue

ry
 (

lo
gs

ca
le

)

Number of Hops

Number of Hops vs Traffic per Query(Comparison of Various Searching Methods)

PSP
APS

Flooding
Proposed

Local Indices(R=5)

Fig. 3 Comparison of traffic per query.

It can be seen that the success rate of a query
can be significantly increased using the proposed
method. For example, if a success rate above 0.8
is required, we can apply the proposed method
with h = 4 while a query with HTL >= 10 is re-
quired by most of the other searching algorithms,
which results in a huge increase in the gener-
ated traffic, as shown later on. This is mainly
because of the Dissemination Phase of our algo-
rithm where we disseminate the information gath-
ered by each content from its neighborhood to
various other contents, over the logical network of
contents, formed after the Selection Phase. This
makes it possible to transmit the local information
of a content to a content farther away without re-
lying on costly flooding techniques.

Figure 3 shows a comparison of the traffic gen-
erated by each query. The traffic generated when
a query is transmitted through one physical link is
considered as unity. The traffic generated by PSP,
APS, Flooding and Local Indices all increase con-
siderably with the HTL value of the query. APS
deploys random walkers instead of flooding mes-
sages. So, the traffic generated by it is relatively
less but the success rate is also smaller. In the
proposed method, each query produces only one
message which follows a single path on the logical
network of contents. This helps to largely reduce
the number of wasteful traffic as can be verified
from the figure.

In general, there is a tradeoff between the suc-
cess rate and the the traffic generated by a query.

— 6 —

研究会temp
テキストボックス
－212－

To evaluate them aggregately, we introduce a met-
ric, the Efficiency of a searching algorithm, which
is defined as

Efficiency =
Success Rate of Query

Traffic Generated per Query
Figure 4 shows a comparison of the efficiency

of the various searching algorithms. It should be
noted that apart from the traffic generated per
query, there are various other factors that affect
the success rate. For example, in the proposed
method and Local Indices, each node produces a
huge traffic to build the initial index. Since, this is
an one-time process, it should not be such a big
problem for the CDN. Similarly, APS and PSP
require certain time to reach to the stable state.
Again, since this happens only once initially, it is
not analyzed here in detail.

Apart from that, by requiring each node to
maintain a larger index, the success rate can be
improved because each node can hold extra infor-
mation which can be helpful for searching a con-
tent. Since this index might have to be kept on
the main memory of a node and its size also af-
fects the processing time of a query, it is necessary
to evaluate the size of the index to be maintained
by a node for these various searching methods.

Flooding doesn’t require a node to maintain any
extra index. PSP requires each node to maintain a
directory cache of the size equal to a fraction of to-
tal number of unique contents. Similary, APS also
requires each node to maintain an index for each
of the neighbor. In Local Indices, the total size
of the index is equal to the total number of con-
tents in nodes within R hops from a node. In the
proposed method, using the selection algorithm
explained in 4. 2, the number of references to be
stored by each content is reduced from O(M) to
O(log(M)).

The comparison of the index size of a node for
our simulation is given in Figure 5. The horizontal
axis represents R for Local Indices and h value for
the proposed method. For other methods which
are shown only in points, the index size is de-
pendent upon M and the horizontal axis doesn’t
have a meaning. Even though the index size of a
node in the proposed method depends only on M

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E
ffi

ci
en

cy
 (

X
 1

00
)

Number of Hops

Number of Hops vs Efficiency (Comparison of Various Searching Methods)

PSP
APS

Flooding
Proposed

Local Indices(R=5)

Fig. 4 Comparison of efficiency of searching methods.

 1

 10

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In
de

x
S

iz
e

(lo
gs

ca
le

)

Radius

Index Size of a Node(Comparison of Content Searching Algorithms)

PSP
APS

Flooding
Proposed

Local Indices

Fig. 5 Comparison of index size of a node.

and the number of contents in a node, the figure
shows slightly varying values of index size because
at smaller values of h each content, doesn’t have
enough references to store.

7. Conclusion and Future Works

In this paper, we proposed an efficient method
for content location in CDNs. Our method basi-
cally constructs a search tree from the contents
in the neighborhood in a distributed manner. We
evaluated our method in terms of success rate,
traffic generated by queries and index size of a
node. We compared our method with the exist-
ing content location algorithms and showed that
it is significantly more efficient than other meth-
ods in static conditions.

However, there are certain drawbacks in our
method. Our method generates a huge traffic in
the initial phase for creating an index. Besides,

— 7 —

研究会temp
テキストボックス
－213－

our method also makes an assumption that for
every bitstring of m bits, there exists a content
having it as the CID, which may not be a realis-
tic supposition.

We are working on extending our algorithm for
the cases when contents are dynamically added to,
removed from or moved within the CDN. The in-
tegrity of the logical network of contents needs to
be maintained when these events occur. We are
also planning to extend our algorithm to more
realistic cases e.g. without the previously men-
tioned assumption about the existence of contents
with every possible CID.

References

[1] Gang Peng. CDN: Content Distribution Net-
work. Research Proficiency Exam report,
Computer Science Department,SUNY at
Stony Brook, NY, USA, 2003.

[2] Gnutella. The Gnutella Protocol Specifica-
tion.
www9.limewire.com/developer/gnutella pro
tocol 0.4.pdf, 2004.

[3] B.Yang and H.Garcia-Molina. Improving
Search in Peer-to-Peer Networks. ICDCS,
2002.

[4] D.Menascé and L.Kanchanapalli. Probabilis-
tic Scalable P2P Resource Location Services.
ACM SIGMETRICS Performance Evalua-
tion Review, 2002.

[5] S.Tsoumakos and N.Roussopoulus. Adaptive
Probabilistic Search for Peer-to-Peer Net-
works. Technical Report CS-TR-4451, Uni-
versity of Maryland, 2003.

[6] I.Stoica et al. Chord: A scalable Peer-to-
peer Lookup Service for Internet Applica-
tions. Proc. of SIGCOMM, 2001.

[7] S.Ratnasamy et al. A Scalable Content Ad-
dressable Network. Proc. of SIGCOMM,
2001.

[8] B.Zhao et al. Tapestry: An Infrastructure for
Fault-tolerant Wide Area Location and Rout-
ing. Technical Report UCB/CSD-01-1141,
Computer Science Division, Univ. of Califor-
nia, Berkeley, 2001.

— 8 —

研究会temp
テキストボックス
－214－

