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Reconfiguration of Satisfying Assignments for CSP

Tatsuhiko Hatanaka1,a) Takehiro Ito1,b) Xiao Zhou1,c)

Abstract: Constraint satisfaction problem (CSP) is a well-studied combinatorial problem, in which we are asked to
find an assignment of values to given variables so as to satisfy all of given constraints. We study a reconfiguration
variant of CSP, in which we are given an instance of CSP and two satisfying assignments, and asked to determine
whether one assignment can be transformed into the other by changing a single variable assignment at a time, while al-
ways remaining satisfying assignment. This problem generalizes several well-studied reconfiguration problems such as
Boolean satisfiability reconfiguration, vertex coloring reconfiguration, homomorphism reconfiguration. In this report,
we study the problem from the viewpoints of polynomial-time solvability and parameterized complexity.
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1. Introduction
Recently, the framework of reconfiguration [23] has been ex-

tensively studied in the field of theoretical computer science. This
framework models several “dynamic” situations where we wish
to find a step-by-step transformation between two feasible solu-
tions of a combinatorial (search) problem such that all interme-
diate solutions are also feasible and each step respects a fixed
reconfiguration rule. This reconfiguration framework has been
applied to several well-studied combinatorial problems. (See sur-
veys [25], [30], [34].)

1.1 Our problem
We study a reconfiguration variant of the well-known con-

straint satisfaction problem (CSP, for short). CSP can be defined
as a problem on hypergraphs.

A hypergraph G is a pair (V, E), where V is a set of vertices and
E is a family of non-empty vertex subsets, called hyperedges. A
hypergraph G is r-uniform if every hyperedge consists of exactly
r (≥ 1) vertices. Sometimes, a 2-uniform hypergraph G is sim-
ply called a graph and each hyperedge of G is called an edge.
An edge {v, w} is sometimes denoted as vw or wv for notational
convenience.

Let G = (V, E) be a hypergraph. Let D be a set, called a do-
main; each element of D is called a value and we always denote
by k the size of a domain. In CSP, each hyperedge X ∈ E has a
set C(X) of mappings from X to D, called a constraint (of X). An
arity of a constraint C(X) of X is exactly |X|, and we call C(X) an
r-ary constraint, where r = |X|. Let f : V → D be a mapping.
For a hyperedge X ∈ E, we say that f satisfies a constraint of X
if f |X ∈ C(X) holds, where f |X is the restriction of f on X. f is
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a solution if it satisfies all constraints. An instance of constraint
satisfiability is a triple (G,D,C) consisting of a hypergraph G,
a domain D, and a constraint assignment to hyperedges over D.
Then, the problem asks whether there exists a solution or not.
Constraint satisfiability includes many combinatorial problems
as its special cases, such as Boolean constraint satisfiability,
r-ary constraint satisfiability, (list) homomorphism, and (list)
coloring.

We then define a reconfiguration variant of constraint satisfi-
ability, that is, constraint satisfiability reconfiguration.

Let f and f ′ be two solutions for I = (G,D,C). We define the
difference dif( f , f ′) between f and f ′ as the set {v ∈ V(G) : f (v) ,
f ′(v)}. We now define the solution graph S (I) for I as follows.
V(S (I)) is the set of all solutions for I, and two solutions f and
f ′ are connected by an edge if and only if |dif( f , f ′)| = 1. A walk
in S (I) is called a reconfiguration sequence. Two solutions f
and f ′ are reconfigurable if and only if there exists a reconfigura-
tion sequence between them.

An instance of constraint satisfiability reconfiguration (CSR
for short) is a 5-tuple (G,D,C, fs, ft), where (G,D,C) is an in-
stance of constraint satisfiability, and fs and ft are two solutions
to (G,D,C), called initial and target solutions. Then, the prob-
lem asks whether fs and ft are reconfigurable or not. Similarly,
we define, for each special case X of constraint satisfiability, X
reconfiguration as a special case of CSR where (G,D,C) is an
instance of X. We use the following abbreviations:
• BCSR for boolean constraint satisfiability reconfigura-
tion [18];

• r-CSR for r-ary constraint satisfiability reconfiguration
for each integer r [18];

• (L)HR for (list) homomorphism reconfiguration [35]; and
• (L)CR for (list) coloring reconfiguration [4].

Relationships between problems are illustrated in Fig. 1(a).
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Fig. 1 (a) Relationships between problems. Each dotted line between X
(lower) and Y (upper) means that X is a special case of Y. (b) Re-
lationships between graph parameters. cw, mw, tw, pw, td, vc, bw
and n are the cliquewidth, the modular-width, the treewidth, the path-
width, the tree-depth, the size of a minimum vertex cover, the band-
width and the number of vertices of a graph, respectively. Each arrow
α → β means that α is stronger than β, that is, if α is bounded by a
constant then β is also bounded by some constant.

1.2 Known and related results
There are many literatures which study special cases of CSR

and their shortest variants. In the shortest variant, we are given
an instance with an integer ℓ, and asked whether there exists a
reconfiguration sequence of length at most ℓ ≥ 0. We here state
only the results from the viewpoint of the computational com-
plexity.

One of the most well-studied special cases of CSR is
BCSR [5], [12], [18], [27], [28], [29], [33]. Gopalan et al. [18]
gave a computational dichotomy for BCSR with respect to a set S
of logical relations which can be used to define each constraint;
the problem is PSPACE-complete or in P for each fixed S. It
is also known that the problem is PSPACE-complete even if S
is equivalent to monotone Not-All-Equal 3-SAT (i.e., each con-
straint is a set of surjections) and a “variable-clause incidence
graph” is planar [12]. For the shortest variant, a computational
trichotomy is known; the problem is PSPACE-complete, NP-
complete or in P for each fixed S [29]. Bonsma et al. [5] proved
that the shortest variant is W[1]-hard when parameterized by ℓ
even if S is equivalent to Horn SAT.

Another well-studied spacial case is CR [1], [2], [4], [5], [6],
[7], [13], [14], [15], [16], [17], [19], [20], [21], [26], [31], [32],
[36]. A dichotomy with respect to k is known for CR; it is
PSPACE-complete for k ≥ 4 and bipartite planar graphs [4] but
in P for k ≤ 3 [15]. We note that the second tractability result
can be extended for LCR. Moreover, it is known that the problem
remains PSPACE-complete even if k is a fixed constant for sev-
eral graph classes such as line graphs (for any fixed k ≥ 5) [32],
bounded bandwidth graphs [36], and chordal graphs [21]. On
the other hand, several polynomial-time algorithms are known
for subclasses of chordal graphs such as k′-trees, trivially perfect
graphs, split graphs [21], and (k−2)-connected chordal graphs [6].
For the shortest variant parameterized by ℓ, some intractability
results are known; it is W[1]-hard [5] and does not admit a poly-
nomial kernelization when k is fixed unless the polynomial hier-

Table 1 Computational complexities with respect to the size k of a domain.

k ≥ 4 k = 3 k = 2
CSR PSPACE-c. PSPACE-c. PSPACE-c.
3-CSR PSPACE-c. PSPACE-c. PSPACE-c. [18]
2-CSR PSPACE-c. PSPACE-c. [Thm. 1] P [Thm. 3]
LHR PSPACE-c. P [Thm. 2] P
LCR PSPACE-c. P [15] P
HR PSPACE-c. P [35] P
CR PSPACE-c. [4] P P

Table 2 Computational complexities for graphs with pathwidth at most two.
The result marked with * is ours but omitted from this report.

pw = 2 pw = 1
CSR PSPACE-c. PSPACE-c.
3-CSR PSPACE-c. PSPACE-c.
2-CSR PSPACE-c. PSPACE-c.
LHR PSPACE-c. PSPACE-c. [*]
LCR PSPACE-c. [20], [36] P [20]
HR PSPACE-c. [36] P [36]
CR P [21] P

archy collapses [26].
As a generalization of CR, LCR is studied well [20], [22], [24],

[32], [36]. The problem is PSPACE-complete even if k is a con-
stant for graphs with pathwidth two [36], while it is polynomial-
time solvable for graphs with pathwidth one [20]. Osawa et
al. [32] showed the PSPACE-completeness for line graphs and
any fixed k ≥ 4. Hatanaka et al. [22] gave fixed-parameter al-
gorithms for LCR parameterized by k + mw and for the shortest
variant parameterized by k+vc. In contrast, they also showed that
the problem is W[1]-hard when parameterized only by vc.

HR is also well-studied as a generalization of CR. Several lit-
eratures investigated HR from the viewpoint of graph classes [8],
[9], [10], [11], [35], [36].

Finally, we refer to the shortest variant of general CSR. Bon-
sma et al. [5] gave a fixed-parameter algorithm for the shortest
variant parameterized by k + r + ℓ, where r is the maximum arity
of a constraint. This implies that shortest variants of BCSR and
2-CSR are fixed-parameter tractable when parameterized by r+ ℓ
and k + ℓ, respectively. They also showed that the problem is in-
tractable if at least one of {k, r, ℓ} is excluded from the parameter.

1.3 Our contribution
In this report, we investigate the complexity of CSR and its

spacial cases, especially 3-CSR, 2-CSR, (L)HR and (L)CR, from
several viewpoints.
1.3.1 The size of a domain

We first classify the complexity of the problems for each fixed
size k of a domain in Section 3. The known and our results are
summarized in Table 1.
1.3.2 Graph parameters

Since an instance of 2-CSR includes a graph (2-uniform hyper-
graph), several graph parameters are naturally defined for such an
instance. We extend the notion of graph parameters to CSR by
taking a “primal graph.” The primal graph P(G) of a hypergraph
G is a graph such that V(P(G)) = V(G) and two distinct vertices
are connected by an edge if they are contained in the same hyper-
edge of G. Then, we define any graph parameter of a hypergraph
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Table 3 Parameterized complexities with respect to k plus graph parameters. The result marked with * is
ours but omitted from this report.

Parameter k +mw k + td k + vc k + bw
CSR PSPACE-c. FPT [Thm. 5] FPT [Thms. 6, 7] PSPACE-c.
3-CSR PSPACE-c. FPT FPT PSPACE-c.
2-CSR PSPACE-c. [*] FPT FPT PSPACE-c.
LHR FPT [Thm. 4] FPT FPT PSPACE-c.
LCR FPT [22] FPT FPT PSPACE-c.
HR FPT FPT [36] FPT PSPACE-c.
CR FPT FPT FPT PSPACE-c. [36]

G as the parameter of its primal graph P(G).*1 Then we can draw
Tables 2 and 3 from this viewpoint. The relationships between
graph parameters are summarized in Fig. 1(b); tractability (resp.,
intractability) result propagates downward (resp., upward).

We omit several proofs and theorems from this report.

2. Preliminally
2.1 Hypergraphs and mappings

Let G be a hypergraph, and let v ∈ V(G) be a vertex. We denote
by N(G, v) the set {w ∈ X \ {v} : v ∈ X ∈ E(G)} of vertices which
are adjacent to v. For a vertex subset V ′ ⊆ V(G), we denote
N(G,V ′) :=

∪
v∈V ′ N(G, v) \ V ′.

Two hypergraphs G and G′ are isomorphic if there exist two
bijections ϕ : V(G) → V(G′) and π : E(G) → E(G′) such that
π(X) = {ϕ(v1), ϕ(v2), . . . , ϕ(vr)} ∈ E(G′) holds for each hyperedge
X = {v1, v2, . . . , vr} ∈ E(G). (See Fig. 2.) For a hypergraph G
and a vertex subset V ′ ⊆ V(G), we define the subhypergraph of
G induced by V ′ as the hypergraph G′ such that V(G′) = V ′ and
E(G′) = {X ∩ V ′ : X ∈ E(G), X ∩ V ′ , ∅}. We denote by G[V ′]
the subhypergraph of G induced by V ′ for any vertex subset V ′.
(See Fig. 3.) We use the notation G \ V ′ to denote G[V(G) \ V ′].

We denote by BA the set of all mappings from A to B for any
sets A and B. Let ϕ ∈ BA and ϕ′ ∈ BA be two mappings. For any
subset A′′ of A, we denote by ϕ|A′′ the restriction of ϕ on A′′; that
is, ϕ|A′′ is a mapping from A′′ to B such that ϕ|A′′ (a) = ϕ(a) for any
a ∈ A′′. We say that ϕ and ϕ′ are compatible if ϕ|A∩A′′ = ϕ

′|A∩A′′

holds.

2.2 Constraint satisfiability
We first formally define several special cases of constraint sat-

isfiability. Boolean constraint satisfiability is a special case of
constraint satisfiability where a domain has size two. For an
integer r, r-ary constraint satisfiability is a special case of con-
straint satisfiability where all constraints are of arity at most r,
that is, all hyperedges have size at most r.

Let (G,D,C) be an instance of constraint satisfiability. We
define the constraint C(G) of G as the union of all constraints,
that is, C(G) =

∪
X∈E(G) C(X). For a mapping g ∈ C(G), the range

Ran(g) of g is X ∈ E(G), where g ∈ C(X) ⊆ DX . For a vertex
v ∈ V(G), a list L(v) of v is the set {i ∈ D : ∃g ∈ C(G), g(v) = i};
notice this is consistent with the notion of lists introduced in
the definition of list homomorpism. A Boolean vertex is a ver-
tex v ∈ V(G) with |L(v)| ≤ 2, and a non-Boolean vertex is

*1 For example, when we refer to the treewidth of a hypergraph G, it means
the treewidth of its primal graph P(G). Note that P(G) = G if G is
2-uniform.

a vertex v ∈ V(G) with |L(v)| > 2. Let X and X′ be hyper-
edges in E(G) such that |X| = |X′|. We say that C(X) is triv-
ial if C(X) = DX . For a bijection ϕ : X → X′, we denote by
C[ϕ](X) the set {g ◦ ϕ−1 : g ∈ C(X)} ⊆ DX′ of mappings from X′

to D, where ◦ means the composition of mappings. Intuitively,
C[ϕ](X) is a “translation” of C(X) into a constraint of X′ via a
bijection ϕ. For example, assume that C({v1, v2, v3}) contains a
mapping g such that (g(v1), g(v2), g(v3)) = (1, 3, 4). If a bijec-
tion ϕ : {v1, v2, v3} → {u1, u2, u3} maps v1, v2, v3 to u2, u1, u3, re-
spectively, then C[ϕ]({v1, v2, v3}) contains a mapping g′ such that
(g′(v1), g′(v2), g′(v3)) = (g ◦ ϕ−1(u1), g ◦ ϕ−1(u2), g ◦ ϕ−1(u3)) =
(g(v2), g(v1), g(v3)) = (3, 1, 4).

Let (G,D,C) be an instance of 2-constraint satisfiability.
Without loss of generality, we assume that G is connected,
|V(G)| ≥ 2, and D = {0, 1}. Moreover, we can assume that G
is 2-uniform as follows. If G contains a size-one hyperedge {v},
there must exist a size-two hyperedge (i.e., an edge) vw ∈ E(G)
from the assumption. Then, we remove {v} from E(G) and replace
C(vw) with the set of all solutions satisfying C({v}) and C(vw);
this modification does not change the set of solutions. For any
vw ∈ E(G), we sometimes identify a mapping g : {v, w} → D with
a vector (g(v), g(w)) ∈ D2. Therefore, a constraint C(vw) can be
considered as a subset of D2.

3. Computational complexity with respect to k
In this section, we classify the complexity of the problems for

each fixed size k of a domain.

Theorem 1 2-CSR is PSPACE-complete for bipartite planar
graphs even if k = 3.

In contrast to Theorem 1, there exist polynomial-time algo-
rithms for more restricted cases. We first show that the problem
becomes tractable when restricted to LHR and k = 3.

Theorem 2 LHR can be solved in polynomial time if k = 3.

We next show that 2-CSR becomes tractable if k is reduced
from three to two.

Theorem 3 2-CSR can be solved in polynomial time if k = 2.

Proof. We reduce the problem to bijunctive BCSR, which is
solvable in polynomial time [18]. Bijunctive BCSR is a special
case of BCSR where D = {0, 1} and there exists a 2-CNF formula
ϕ(v1, . . . , vr) such that C({v1 . . . , vr}) is exactly the set of all sat-
isfying assignments of ϕ for every hyperedge {v1 . . . , vr} ∈ E(G).
Let I = (G,D,C, fs, ft) be a given instance of 2-CSR where G
is a graph and D = {0, 1}. We now show that for every edge
vw ∈ E(G) there exists a 2-CNF formula ϕ(vw) such that C(wv) is
exactly the set of all satisfying assignments of ϕ. For each i ∈ D
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Fig. 2 Two isomorphic hypergraphs G and G′ under the bijections ϕ and π.
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G[{v2, v3, v4}]

Fig. 3 A graph G and the subhypergraph G[{v2, v3, v4}] induced by
{v2, v3, v4}.

and u ∈ {v, w}, we denote by ui a literal u if i = 0 or ū if i = 1.
Then we define a 2-CNF formula ϕ(v, w) as follows:

ϕ(v, w) =
∧

(a,b)∈D2\C(vw)

(va ∨ wb).

Notice that a clause (va ∨ wb) corresponds to a set D2 \ {(a, b)}.
Therefore, ϕ(v, w) corresponds to the set∩

(a,b)∈D2\C(vw)

D2 \ {(a, b)} = D2 \ (D2 \ C(vw)) = C(vw)

as required. □

4. Fixed-parameter algorithm with respect to
graph parameters

We give the following theorems in this section.

Theorem 4 LHR is fixed-parameter tractable when parame-
terized by k +mw.

Theorem 5 CSR is fixed-parameter tractable when parame-
terized by k + td.

In this report, we only give an idea of our kernelization algo-
rithm, which compresses an input hypergraph into a smaller hy-
pergraph with keeping the reconfigurability. We note that this
is the extension of the lemma given in [22] to obtain a fixed-
parameter algorithm for LCR parameterized by k+mw. The main
idea is to “identify” two subgraphs which behave in the same way
with respect to the reconfigurability.

We now formally characterize such subhypergraphs and ex-
plain how to identify them. Let I = (G,D,C, fs, ft) be an in-
stance of CSR. For each vertex v ∈ V(G), we define A(v) as
a pair ( fs(v), ft(v)) consisting of the initial and the target value
assignments of v. Let V1 and V2 be two non-empty vertex sub-
sets of G such that |V1| = |V2|, and V1 ∩ V2 = ∅. Assume that
N(G,V1) = N(G,V2) = W. Let H1 = G[V1], H2 = G[V2],
H′1 = G[V1 ∪W] and H′2 = G[V2 ∪W].

Definition 1 Two induced subhypergraphs H1 and H2 are
identical if there exist two bijections ϕ : V(H′1) → V(H′2) and
π : E(H′1)→ E(H′2) which satisfy the following four conditions:
(1) H′1 and H′2 are isomorphic under ϕ and π.

v1

v2

v3

H1 = G[V1]

φ(v1)

φ(v2)

φ(v3)

H2 = G[V2]

w2 = φ(w2) w3 = φ(w3)

G[W ]

Fig. 4 An example of two subhypergraphs H1 and H2 of G which satisfies
the conditions (1) and (2). We draw each hyperedge of size two as
a solid line, and omit the bijection π : E(H′1) → E(H′2) since it is
uniquely defined from ϕ : V(H′1) → V(H′2). If A and C satisfy the
conditions (3) and (4), H1 and H2 are identical.

(2) for every vertex v ∈ W, ϕ(v) = v;
(3) for every vertex v ∈ V1, A(v) = A(ϕ(v)), that is, fs(v) =

fs(ϕ(v)) and ft(v) = ft(ϕ(v)); and
(4) for every hyperedge X ∈ E(H1), C(π(X)) = C[ϕ̂](X), where

ϕ̂ = ϕ|X .

See Fig. 4 for an example.

We next define another instance I′ = (G′,D,C′, f ′s , f ′t ) as fol-
lows:
• G′ = G \ V2;
• f ′s = fs|V(G′) and f ′s = fs|V(G′); and
• for each X ∈ E(G′), C′(X) = {g|X : g ∈ C(G),Ran(g) \ V2 =

X}.
Intuitively, I′ is obtained by restricting all components (hyper-
graphs, mappings in constraints, and two solutions) of I on
V(G) \ V2. We say that I′ is obtained from I by identifying H1

with H2.

Then, we have the following lemma, which says that I and I′
are equivalent with respect to the feasibility.

Lemma 1 Let f ′ : V(G′) → D be a mapping from V(G′) to
D. Then, f ′ is a solution for (G′,D,C′) if and only if there exists
a solution f for (G,D,C) such that f ′ = f |V(G′).

We now give the following key lemma, which says that I and
I′ are equivalent with respect to even the reconfigurability.

Lemma 2 (Reduction rule) Let I and I′ be instances of
CSR defined as above. Then, I′ is a yes-instance if and only
if I is.

5. Vertex cover
In this section, we consider the size vc of a minimum ver-

tex cover. Note that Theorem 5 implies CSR is fixed-parameter
tractable when parameterized by k + vc. We strengthen it as fol-
lows.

Theorem 6 The shortest variant of CSR is fixed-parameter
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tractable when parameterized by k + vc.

Theorem 7 There exists a fixed-parameter algorithm for
CSR parameterized by k + vc which runs in time O∗(kvc).

5.1 Proof of Theorem 7
In order to prove the theorem, we first introduce the notion of

a “contracted solution graph”, which was first introduced in [3]
and used in several literatures such as [6], [20].

Let I = (J , fs, ft) be an instance of CSR, where J =

(G,D,C), and let P be a partition of the vertex set of the solution
graph S (J). The contracted solution graph (or CSG for short)
CSG(J ,P) is defined as follows. The vertex set V(CSG(J ,P))
is exactly P; we call each vertex of the CSG a node. Each pair
of distinct nodes (i.e., sets of solutions) P, P′ ∈ P are adjacent
in the CSG if and only if there exist two solutions f ∈ P and
f ′ ∈ P′ such that f f ′ ∈ E(S (J)). In other words, CSG(J ,P)
is obtained by contracting a (possibly disconnected) subgraph of
S (J) induced by each set P ∈ P into one node. A partition P

is proper if every set P ∈ P induces a connected subgraph of
S (J). Since the contraction of a connected subgraph maintains
the connectivity of a graph, we have the following proposition.

Proposition 1 Let I = (J , fs, ft) be an instance of CSR,
where J = (G,D,C), and let P be a proper partition of
V(S (J)). Then, I is a yes-instance if and only if there exists
a walk between Ps and Pt in CSG(J ,P), where fs ∈ Ps and
ft ∈ Pt. Moreover, the above condition can be checked in time
polynomial in |P |.

Therefore, we first define a proper partition P such that |P |
depends only on k + vc, and then give an algorithm constructing
the CSG and specifying the nodes corresponding to fs and ft.
5.1.1 Defining a proper partition

Let I = (J , fs, ft) be an instance of CSR, where J =

(G,D,C). Assume that P(G) has a vertex cover C of size at most
vc. For each solution f ∈ V(S (J)), we define [ f ] = { f ′ : f |C =
f ′|C}. Then, we define P = {[ f ] : f ∈ V(S (J))}; that is, P is
the set of the equivalence classes under the equivalence relation
“their restrictions on C are the same”. Clearly, P is a partition of
V(S (J)) and |P | is bounded by the number of mappings from
C to D, that is, |P | ≤ kvc.

In order to prove that P is proper, we introduce some notation.
Let S ⊆ V(G) be a vertex subset, and let h : S → D be a mapping
from S to D. We define the substitution SUB(J ; h) as an instance
(G′,D,C′) of constraint satisfiability such that:
• G′ = G \ S ; and
• for each X′ ∈ E(G′), C′(X′) = ∩X∈E′ G(X), where E′ =
{X ∈ E(G) : X \ S = X′} and G(X) = {g|X′ : g ∈ C(X),
h and g are compatible}

We have the following lemma.

Lemma 3 Let f ′ : V(G) \ S → D and f : V(G) → D be
two mappings such that f |V(G)\S = f ′. Then, f ′ is a solution
for SUB(J ; f |S ) = (G′,D,C′) if and only if f is a solution for
(G,D,C).

The following lemma implies that P is proper.

Lemma 4 Let P be a solution set in P such that f |C = h

holds for every f ∈ P. Then, S (J)[P] is connected.

5.1.2 Algorihm computing CSG
In order to give an algorithm computing CSG(J ,P) correctly,

we first show two claims.

Claim 1 Let h be a mapping from C to D. Then, CSG(J ,P)
has a node corresponding to h if and only if SUB(J ; h) =
(G′,D,C′) has a solution.

Claim 2 Let P1 and P2 be two nodes of CSG(J ,P), and let
h1 : C → D and h2 : C → D be mappings corresponding to P1

and P2, respectively. Then, P1P2 ∈ E(CSG(J ,P)) if and only if
both of the following conditions hold:
• |dif(h1, h2)| = 1; and
• SUB(J ; h1) and SUB(J ; h2) has a common solution f ′.

From Claims 1 and 2, we can construct the following algorithm
to compute CSG(J ,P) with nodes corresponding to fs and ft.
Phase 1 For each mapping h from C to D, check if SUB(J ; h)

has a solution. If so, create a node corresponding to h. For
each r ∈ {s, t}, if h = fr |C , it corresponds to fr.

Phase 2 For each pair of two nodes P1 and P2, check if the two
conditions of Claim 2 hold. If so, join them by an edge.

The correctness follows from Claims 1 and 2. The first phase
can be done in polynomial time for each mapping, because the
constructed instance SUB(J ; h) of constraint satisfiability con-
tains only 1-ary constraints. Since |DC | ≤ kvc, whole running
time of this phase is O∗(kvc). In the second phase, the second
condition of Claim 2 can be checked as follows. Let C1 and C2

are constraint assignments in the substitutions SUB(J ; h1) and
SUB(J ; h2). We now define for each X′ ∈ E(G′) a constraint
C′(X′) = C1(X′) ∩ C2(X′). Then, a solution for (G′,D,C′) is
also a solution for both of SUB(J ; h1) and SUB(J ; h2). Because
(G′,D,C′) is an instance of constraint satisfiability which con-
tains only 1-ary constraints, we can solve it in polynomial time.
Therefore, whole running time of this phase is O∗(kvc).

We thus completed the proof of Theorem 7. □

5.2 Discussions

We conclude this section by discussing hitting sets on hyper-
graphs, which is a well-known generalization of vertex covers on
graphs. Although a hitting set of a 2-uniform hypergraph is equiv-
alent to a vertex cover of the graph, such an equivalence does not
hold for general hypergraphs. Thus, it is worth considering the
complexity of CSR with respect to the size of a hitting set of a
given hypergraph. We have the following theorem, which im-
plies that a fixed-parameter algorithm for CSR is unlikely to exist
when parameterized by the size of a hitting set plus k.

Theorem 8 3-CSR is PSPACE-complete even for hyper-
graphs with a hitting set of size one and k = O(1).
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