
An Adaptive Approach for Implementing RTOS in
Hardware

Tetsuo Miyauchi1,a) Kiyofumi Tanaka1,b)

Abstract: In recent years, along with a growth of IoT (Internet of Things), many embedded devices are
equipped with processors/controllers, where a real-time OS (RTOS) is accommodated to make full use of
complicated functions of the devices. It is desired that RTOS runs fast with as small memory usage as pos-
sible since it is overhead from an application program’s viewpoint. Therefore, it is expected that providing
hardware for a part of RTOS processing reduces memory usage while it makes the processing fast. Under the
circumstances where several examples of hardware implementations of RTOS are found, we implement func-
tions of the µITRON[12] specification in FPGA hardware. In addition, we propose an approach to adapting
it to applications’ requirement.

Keywords: RTOS, adaptive approach, µITRON, FPGA

1. Introduction

Along with the popularization of IoT (Internet of Things),

micro processors are more than ever being embedded in lots

of appliances, which have complicated functions with com-

munication. In order to implement micro processors in var-

ious things, cost is one of the most important factors. For

reducing the cost, it is desirable that processing resources

which software and hardware use should be reduced as much

as possible while functions to be provided and performance

are maintained.

From the viewpoint of embedded system development,

RTOS (Real-Time Operating System) is commonly used to

make developing a system with strict time constraint more

efficient. As using RTOS makes it possible to divide an ap-

plication software into multiple tasks and develop each task

separately, software module independency increases and par-

allel development and verification of tasks can be easily per-

formed. Additionally, hardware abstraction, synchroniza-

tion and communication functions through kernel objects,

and real time scheduling can be utilized. That makes it

possible to expedite a system development in a short pe-

riod.

Nevertheless, as an RTOS kernel itself is just overhead for

an application program, the smaller footprints of an RTOS

kernel mean the better implementation and it is desirable

that execution time is short enough.

µITRON4.0 specification is one of the most commonly

used RTOS specifications [12]. As an RTOS kernel which

follows µITRON4.0 specification is in most cases provided

as a library, only specified system calls which are actually

used in an application program are linked with the applica-

1 Japan Advanced Institute of Science and Technology, Asahidai
1-1, Nomi, Ishikawa, 923–1292, Japan

a) t-miyauc@jaist.ac.jp
b) kiyofumi@jaist.ac.jp

tion program, which means that processor memory space for

a program code is not wasted with object codes of unused

system calls. Still, lots of software resources are used for

typical operations such as queue operation and task control

block operation, which are commonly used in various RTOS

kernel functions. Essentially, these operations should use

less memory space and the execution time should be as fast

as possible.

It is expected that Implementing RTOS functions in hard-

ware can make it possible to reduce software code size and

shorten system call execution time. In our approach,

RTOS kernel functions for µITRON4.0 specification are im-

plemented in an FPGA. Compared with a full software

RTOS, we aim at reducing software code size and execution

time.

While there are several studies for implementing RTOS

functions in hardware as described in the next section, char-

acteristics of our approach are: building RTOS functions

with error checking in FPGA hardware, removing error

checking functions in RTOS system calls if possible and

deleting hardware functions for unused system calls. We

show that this approach can be implemented in an FPGA

and evaluate the number of hardware resources used in an

FPGA, software code sizes, and execution time for system

calls, when the system is adapted to an application program

so that unused functions are eliminated.

The organization of this paper is as follows. In the

next section, related works for hardware implementations

of RTOS are shown. In Section 3, we describe the features

of the hardware structure and software structure of our im-

plementation. Section 4 shows results of evaluation in terms

of the number of hardware resources, software sizes and exe-

cution time of system calls, and discuss the results. Finally,

we summarize this paper and issues for the next step in

Section 5.

ⓒ 2018 Information Processing Society of Japan

組込みシステムシンポジウム2018
Embedded Systems Symposium 2018

44

ESS2018
2018/8/31

2. Related Work

As cost reduction is an important issue for embedded

systems, it is desirable that the system code size includ-

ing RTOS and used hardware resources should be as small

as possible to lower the total cost. Implementing RTOS as

hardware to reduce the amount of the software code size and

improve the execution efficiency has been studied in several

decades.

The literature [10] and [11] are studies for implementing

an RTOS based on µITRON specification in hardware, in

which a task scheduler and system calls such as semaphore

and eventflag are implemented.

In the literature [4], a dedicated processor and hardware

system, ARTESSO (Advanced Real Time Embedded Sili-

conSystem Operator), which provides the same RTOS func-

tions as those in a widely used software RTOS kernel, is

described. In the literature [6], in addition, the processor

core of this system is modified to an ARM core. Moreover,

in the literature [5], this system is enhanced to a multipro-

cessor system.

Similarly, in the literature [3], a system in which general

purpose RTOS functions with API interfaces and a dedi-

cated CISC processor are implemented in an FPGA is pro-

posed.

A method of constructing processor functions adapted to

an application program, called ASIP (Application-specific

instruction-set processor), is described in the literature [1]

and [2].

While studies for implementing RTOS functions in hard-

ware, such as the ones above, have been conducted for sev-

eral years, we have been studying to reduce runtime and

resource overhead by adapting RTOS kernel functions and

processor functions to an application program (in the liter-

ature [7] and [8]). As part of these researches, in this paper,

we demonstrate possibility of adapting RTOS hardware to

an application program for reducing code size of software

RTOS kernel and improving efficiency in executing system

calls. The proposed methods are evaluated in terms of hard-

ware resources used, the maximum frequency, and execution

time. This evaluation is performed by using an actual FPGA

board.

Since the method of implementing primitive RTOS kernel

operations is described in [9] in detail, we omit the way of

implementing them in this paper. We focus on how to im-

plement the RTOS kernel functions with error checking in

hardware and how to remove the error checking parts as a

result of analyzing application source codes. We also dis-

cuss the effect of reducing unused RTOS kernel functions

including error checking.

3. Implementation

3.1 Hardware Structure

Hardware structure which we have implemented is ex-

plained below. We have implemented principal functions of

the µITRON[12] standard profile specification. Fig 1 shows

Fig. 1 Processor structure with RTOS hardware.

a structure of a processor core and RTOS hardware circuit

we implemented. In the literature [9], we described effec-

tiveness of our implementation of RTOS primitive functions

such as RTOS queue operations. Fig 1 is cited from the

literature [9].

RTOS hardware proposed in this paper consists of not

only primitive functions but also all functions including er-

ror checking in system calls. Therefore, compared with

software-only RTOS implementation, execution time of an

RTOS system call can be reduced and the software code size

can be decreased.

Fig 2 shows an RTOS hardware structure. In this fig-

ure, the part of the “RTOS Hardware Core”, which is de-

scribed in detail in [9], is the fundamental functions related

to TCB (Task Control Block) queue operations. An RTOS

hardware operation command and data are delivered to the

“RTOS Hardware Wrapper” part by an software program

in a processor. RTOS hardware operation command is des-

ignated with a memory address of a memory reference in-

struction and an RTOS hardware operation is decided with

a pair of an address and data.

Interfaces between RTOS Hardware Wrapper and RTOS

Hardware Core, which is shown in Fig 2, are explained as

follows. RTOS Hardware Core has input signals and out-

put signals as shown in Table 1. CLK is the input clock

signal from the system. In this implementation, as CPU

operates at 50MHz, RTOS Hardware Core works with the

same clock cycle. RST indicates the reset signal from the

system. When RST signal is high, register values in RTOS

Hardware Core are initialized. Addr is an input command

for RTOS Hardware Core. Data is an input data for the

corresponding input command. When these signals are de-

livered from RTOS Hardware Wrapper to RTOS Hardware

Core, RTOS Hardware Core manipulates resources in RTOS

Hardware Core and the results are presented via the output

port, HighestTask. The main information in this output

signal is the highest task id which is generated after manip-

ulating RTOS resources.

Operations of RTOS Hardware Core are described in Ta-

ble 2. RTOS Hardware Wrapper issues these operations to

RTOS Hardware Core with several data (if any).

ⓒ 2018 Information Processing Society of Japan

組込みシステムシンポジウム2018
Embedded Systems Symposium 2018

45

ESS2018
2018/8/31

Fig. 2 RTOS Hardware Structure.

Fig. 3 Example of State Transition (sig sem).

Table 3 shows output data for each operation. To refer

to these output data, several data such as task id are input

with respect to the operation in advance.

As the RTOS Hardware Wrapper part works with a state

machine, the next state is decided by the current status of

Table 1 Inputs and Outputs of RTOS Hardware Core.

I/O Signal Size(bits) Description
In CLK 1 Clock
In RST 1 Reset Signal
In Addr 32 Command for RTOS

Hardware Core
In Data 32 Data for the

command
Out HighestTask 32 Output from RTOS

Hardware Core
(Mainly used for
getting
the highest task id)

Table 2 Operations for RTOS Hardware Core (input).

Operation Input data
Connect a task to ready queue Task id, Task priority
Remove a task from ready queue Task id, Task priority
Change a task priority Task id, Task priority
Refer to a task state Task id
Refer to the first waiting task Semaphore id
for a semaphore
Connect a task to a semaphore Task id, Semaphore id
waiting queue
Remove a task from a semaphore Task id, Task priority,
waiting queue Semaphore id
Refer to the first waiting task Eventflag id
for an eventflag
Connect a task to an eventflag Task id, Task priority
Remove a task from a eventflag Eventflag id
Remove a task from any waiting queue Task id

Table 3 Operations for RTOS Hardware Core (output).

Operation Output data
Refer to the first priority task Task id
Refer to a task state Task status
Refer to the first waiting task Task id
for a semaphore
Refer to the first waiting task Task id
for an eventflag

the RTOS hardware. For example, sig sem() system call

runs with state transition as Fig 3.

RTOS hardware waits for an issue of a system call in

WAIT state. Software sets RTOS system call parameters

and issues a system call to RTOS hardware. Issue of an

RTOS system call is performed with a write access to a mem-

ory address which is assigned to issue of an RTOS hardware

system call.

When the RTOS hardware detects write access to this ad-

dress, it transits to CHECK state, which is the next state.

In CHECK state, system call parameters are checked for va-

lidity. When a parameter error is found, a proper error code

is set and the hardware transits to the END state.

In END state, an error code is passed to a processor core

as an output from the RTOS hardware. Software can get

an error code from the RTOS hardware by reading the error

code passed from the RTOS hardware.

When the parameter error checking is cleared with no er-

rors, in the case of sig sem() system call, whether there is

a task queued in the semaphore waiting queue is checked in

SEMHEAD state, then the state transits to SEMDEQUEUE

state. In case that any task is not queued in the semaphore

waiting queue, if the semaphore count exceeds the maximum

semaphore count, E QVOR is set to the error code and the

ⓒ 2018 Information Processing Society of Japan

組込みシステムシンポジウム2018
Embedded Systems Symposium 2018

46

ESS2018
2018/8/31

hardware transits to END state. On the other hand, if the

semaphore count does not exceed the limit, the semaphore

count is increased and the hardware transits to END state.

In case that a task is found in the semaphore waiting queue,

the corresponding task is deleted from the semaphore wait-

ing queue and the state transits to RDYENQUEUE state.

In RDYENQUEUE state, a command to RTOS Hardware

Core is issued and the TCB of a designated task is registered

to a ready queue with RTOS Hardware Core.

Registration of a TCB is finished in one clock cycle in

the queue structure of RTOS Hardware Core. Detail of the

registration mechanism is described in the literature [9].

After that, the state of RTOS hardware transits to the

next state, HIGHEST. In HIGHEST state, a task ID of the

highest-priority task queued in the ready queue is acquired.

Finally, the state of RTOS hardware transits to END

state. When a system call returns without error, E OK is

passed to a processor as an output from RTOS hardware.

With using this mechanism, software detects the normal re-

turn from RTOS hardware.

3.2 Software Structure

Table 4 shows interfaces between hardware and software.

The software reads from or writes to the addresses in the ta-

ble. “R” in the column “R/W” indicates that a value read

from the corresponding address is a return value from the

hardware. On the other hand, the addresses for “W” are

written to so that the system call number and other param-

eter values are delivered to the hardware.

Table 4 Addresses for RTOS systemcalls.

Address R/W Operation
0xffff0008 R Read RTOS return code
0xffff0100 W Issue RTOS systemcall
0xffff0104 W Set RTOS systemcall 1st parameter
0xffff0108 W Set RTOS systemcall 2nd parameter
0xffff010c W Set RTOS systemcall 3rd parameter
0xffff0110 W Set RTOS systemcall 4th parameter
0xffff0114 W Set RTOS systemcall 5th parameter
0xffff0120 R Read RTOS return parameter

Before the software issues a system call, it writes the pa-

rameter values to the same number of addresses (starting at

0xffff0104) as the number defined for the system call. After

all the parameters are set, the software invokes the system

call.

A system call is issued by writing the system call num-

ber to the corresponding address (0xffff0100). This makes

the system call start by changing the state of the hardware.

Then, the software reads from the address for a return code

(0xffff0008) so that it checks completion of the processing

and receives a task number of the highest priority task and

a return value from the system call. That is, the most sig-

nificant bit of the read value indicates the completion of

the RTOS hardware, and the lower bytes contain a highest-

priority task number and a return code. This is a busy-

waiting procedure where, after the software writes the sys-

tem call number to the address for “Issue RTOS systemcall”

(0xffff0100), it repeatedly reads from the address for “Read

RTOS return code” (0xffff0008) until it finds the most sig-

nificant bit of 1. Then, it gets the lower bytes as a return

code, and proceeds to the following processing.

Some system calls return not only a return code but

the other results through call by reference. For example,

wai flg() returns a flag pattern through an address which

a parameter specifies. In this case, the result is obtained

by reading from the address dedicated to call by reference

(0xffff0120).

Figure 4 is a flow in the software-side processing (wrapper

function) for act tsk(). Other system call functions follow a

similar flow.

Fig. 4 Systemcall Software flow.

Figure 5 shows a part of sig sem() system call, which

is a software-side wrapper function. In this code,

a parameter is set at line 1 through the dedicated ad-

dress defined as “RTOSPARAM1”, and the hardware pro-

cessing starts at line 2 by setting the system call number

(“CODE SIG SEM”) to the corresponding address defined

as “RTOSSYSCALL”. Lines 5 to 6 perform busy waiting

for completion of the RTOS hardware, where the most sig-

nificant bit of the return code is checked. Then, the task

ⓒ 2018 Information Processing Society of Japan

組込みシステムシンポジウム2018
Embedded Systems Symposium 2018

47

ESS2018
2018/8/31

number of the highest-priority task (“highesttask”) and a

return code (“errorcode”) are extracted from the read value

at lines 8 and 9, respectively. (Bits 23 to 16 contain the

highest-priority task number and bits 7 to 0 are for a return

code.) The system-call processing finishes by returning the

return code, after task switching, if necessary (from line 11

to 26).

sig sem (excerpt)� �
1: RTOSPARAM1 = semid;

2: RTOSSYSCALL = CODE_SIG_SEM;

3:

4: /* When RTOS HW finish, bit:31 is on */

5: while (((rtosreturn = PRIHIGHEST)

6: & 0x80000000) == 0);

7:

8: highesttask = ((rtosreturn >> 16) & 0xff);

9: errorcode = (rtosreturn & 0xff);

10:

11: if (errorcode == 0) {

12:

13: if (highesttask == 0) {

14:

15: /* No task switch */

16: return(E_OK);

17: } else {

18:

19: /* Task switch */

20: RunTask(highesttask);

21: return(E_OK);

22: }

23: } else {

24:

25: /* Error case */

26: return((ER)errorcode);

27: }� �
Fig. 5 Example of system call wrapper (sig sem).

4. Evaluation

The processor core and RTOS hardware described in Sec-

tion 3 are implemented in an FPGA. We used an FPGA

device of Xilinx Spartan-6 (XC6SLX16CSG324C) [14] and

the evaluation board of Digilent NEXYS3 [15]. The proces-

sor core runs at 50MHz in the FPGA and executes MIPS

instruction set [13]. As described in Section 3.2, the RTOS

hardware is accessed and controlled by reading from/writing

to the specified memory addresses.

We used TOPPERS Kernel Test Suites [16] for applica-

tion programs, and confirmed the behavior of the software

implementation and hardware implementation of the RTOS

kernel.

4.1 Results

Table 5 shows the number of resources occupied by

the processor core and RTOS hardware and minimum pe-

riod/maximum clock frequency for the configuration with

error checking including five tasks, four semaphores, and

three eventflags. These numbers of resources are reported

by PlanAhead, the Xilinx development tool, and the values

shown in the column of “Usage (%) to All Resources” are

the rate of used resources with respect to all resources in

the FPGA (Xilinx Spartan-6 XC6SLX16CSG324C), which

is used for this implementation. “Minimum period” is the

minimum period of the clock signal of this implementation

in the FPGA and “Maximum frequency” is the value of the

corresponding clock frequency when the clock period is the

minimum one.

Table 5 FPGA Resources (Full)

of Used Usage (%)
Resources Resources to All Resources
Register 2076 11%
LUT 4699 51%
Slice 1444 63%
Minimum period 19.972ns
Maximum frequency 50.07MHz

In software implementation, an RTOS kernel for µITRON

is provided in the library form, and therefore only system

calls which are actually used are linked to the application bi-

nary. Similarly, our RTOS hardware implementation makes

it possible to select functions to be implemented in hardware

on a function basis such as semaphore and eventflag.

Table 6 shows the number of resources occupied and mini-

mum period/maximum clock frequency for the configuration

with error checking including five tasks, four semaphores,

and no eventflags.

Table 6 FPGA Resources (Semaphore w/ Error Check)

of Used Usage (%)
Resources Resources to All Resources
Register 1431 7%
LUT 3601 39%
Slice 1111 48%
Minimum period 18.583ns
Maximum frequency 53.813MHz

When static analysis of application program codes guar-

antees that some errors never occur, the hardware mecha-

nisms for the corresponding code fragments of dynamic error

checking can be eliminated*1. In Table 7, the resource usage

and minimum period/maximum frequency for the configura-

tion without error checking, with five tasks, four semaphore,

and no eventflags.

Next, excluding semaphores, the results for the configu-

ration including five tasks and three eventflags with error

checking is shown in Table 8

*1 The analysis for error-checking in the software implementation
is described in detail in [8].

ⓒ 2018 Information Processing Society of Japan

組込みシステムシンポジウム2018
Embedded Systems Symposium 2018

48

ESS2018
2018/8/31

Table 7 FPGA Resources (Semaphore w/o Error Check)

of Used Usage (%)
Resources Resources to All Resources
Register 1405 7%
LUT 3538 38%
Slice 1085 47%
Minimum period 17.655ns
Maximum frequency 56.641MHz

Table 8 FPGA Resources (Eventflag w/ Error Check)

of Used Usage (%)
Resources Resources to All Resources
Register 1969 10%
LUT 4430 48%
Slice 1369 60%
Minimum period 19.915ns
Maximum frequency 50.213MHz

Then, excluding semaphores, the results for the configura-

tion including five tasks and three eventflags without error

checking is shown in Table 9

Table 9 FPGA Resources (Eventflag w/o Error Check)

of Used Usage (%)
Resources Resources to All Resources
Register 1967 10%
LUT 4330 47%
Slice 1369 60%
Minimum period 19.956ns
Maximum frequency 50.11MHz

For reference, Table 10 shows the resource usage and min-

imum period/maximum frequency for only a processor core

(without the RTOS hardware).

Table 10 FPGA Resources (w/o RTOS Hardware)

of Used Usage (%)
Resources Resources to All Resources
Register 770 4%
LUT 1529 16%
Slice 497 21%
Minimum period 16.6ns
Maximum frequency 60.241MHz

Table 11 shows the sizes of binary codes of system calls

and common routines. “Soft Only” means the software-

implemented RTOS kernel. “With Hard” means the pro-

posed implementation where the main processing for the

RTOS kernel is preformed by the hardware. As shown in

the code for sig sem system call in Section 3.2, since the

main processing is covered (or hidden) by the RTOS hard-

ware, the size of the software-side system call (wrapper) is

reduced. From the table, it is confirmed that the hardware

implementation reduces the code sizes of all system calls and

common functions.

Table 11 RTOS Kernel Software Size (bytes)

Systemcall Soft Only With Hard Hard/Soft
act tsk 416 256 61.5%
chg pri 1008 272 27.0%
ter tsk 1248 640 51.3 %
rel wai 720 288 40.0%
sig sem 528 304 57.6%
wai sem 672 336 50.0%
pol sem 304 256 84.2%
set flg 704 368 52.3%
wai flg 864 464 53.7%
pol flg 432 336 77.8%
Soft Kernel 1280 0 0%
Common Routine 1184 1152 97.3%

Execution time for each system call is shown in Table 12.

For measurement of execution times, the processor core is

equipped with a hardware counter which increases by one

every clock cycle. Execution time is obtained by reading

the values of this counter at the entry and the exit points

of a system call and subtracting between them. Consider-

ing the processor core’s running clock frequency of 50MHz,

the obtained execution time in cycles is converted to that in

microseconds by multiplying it by the clock cycle time (pe-

riod) of 20 nanoseconds. Since execution of system calls can

involve task switching, the table includes execution times in

both cases with task switching and without it.

In Table 12, “×” in the column “Task switch” indicates

that the system call is executed and completed without task

switching. On the other hand, “◦” corresponds to the situa-

tion where the issue of the system call leads to task switch-

ing. In this case, execution time is the time from the issue of

the system call to the (re-)start of a task after task (context)

switching. From the table, it is confirmed that use of the

RTOS kernel hardware shortens execution times of system

calls compared to the software implementation.

Table 12 Execution Time for System Calls

Task Soft Hard
Syscall switch clock time clock time

@50MHz @50MHz
(µsec) (µsec)

sig sem × 115 2.3 98 2.0
sig sem ◦ 323 6.5 194 3.9
wai sem × 88 1.8 88 1.8
wai sem ◦ 351 7.0 184 3.7
pol sem × 88 1.8 76 1.5
set flg × 122 2.4 107 2.1
set flg ◦ 409 8.2 208 4.2
wai flg × 119 2.4 117 2.3
wai flg ◦ 375 7.5 205 4.1
pol flg × 119 2.4 105 2.1

Average w/o switch 108.5 2.2 98.5 2.0
w/ switch 364.5 7.3 197.8 4.0

4.2 Discussion

According to Table 5, the usage of hardware resources is

2,076 registers, 4,699 LUTs, and 1,444 slices which occupy

ⓒ 2018 Information Processing Society of Japan

組込みシステムシンポジウム2018
Embedded Systems Symposium 2018

49

ESS2018
2018/8/31

11%, 51%, and 63%, respectively, of the total capacities of

Xilinx Spartan-6 FPGA (XC6SLX16CSG324C), where the

number of tasks is five, that of semaphores is four, and that

of eventflags is three. On the other hand, Table 6 shows

that, when the numbers of tasks, semaphores, and event-

flags are five, four, and zero, the usage is reduced to 1,431

registers, 3,601 LUTs, and 1,111 slices, which are 7%, 39%,

and 48% of the capacities. Therefore, elimination of event-

flags reduces registers, LUTs, and slices by 31.1%, 23.4%,

and 23.1%, respectively, and improves the maximum fre-

quency by a factor of 1.07. The same trend can be found

from comparison between Table 5 and 8, in terms of pres-

ence of eventflags. From these results, reduction in hardware

resources and improvement of the maximum frequency are

expected by selecting only required RTOS functions.

From comparison between Table 6 and 7 in terms of error

checking, it is confirmed that removal of the error-checking

hardware contributes to resource reduction and higher fre-

quency.

In addition, it is shown in Table 11 that our hardware im-

plementation of RTOS, where main processing for RTOS is

performed by the hardware, makes the code sizes of system

calls 27.0% to 97.3% of those in the software-only imple-

mentation. Notice that the common processing functions

(1,280 bytes for Soft Kernel) among various RTOS system

calls, e.g., queuing operations for RTOS objects, is com-

pletely eliminated in the hardware implementation.

As for execution times of RTOS system calls shown in

Table 12, compared to the software implementation, the

hardware implementation takes 9.2% and 45.7% shorter ex-

ecution times in the cases with task switching and without

switching, respectively.

5. Conclusion

In this paper, we presented the hardware implementation

of an RTOS kernel based on µITRON 4.0, where functions of

system calls including error checking are built in an FPGA

hardware resources. In the system, the RTOS kernel func-

tions are invoked and used via memory reference instruc-

tions of a processor core with the MIPS instruction set.

The hardware-implemented RTOS functions are selectable

not only on a function basis but on a finer-unit basis, e.g.,

error-checking code fragment, which enables the system to

adapt to the application codes and reduce the usage of hard-

ware resources.

In the evaluation, it is confirmed that the hardware im-

plementation proposed in this paper can simplify the soft-

ware processing and reduce the size of software as well as

the execution times. In addition, the results show that the

proposed strategy can further reduce the hardware amount

according to the application program by providing only func-

tions/mechanisms required by it.

In the future, we extend the adaptation technique to au-

tomatic generation of both RTOS hardware and processor

functions.

References

[1] M. Imai, Y. Takeuchi, K. Sakanushi, N. Ishiura, Advantage
and Possibility of Application-domain Specific Instruction-
set Processor (ASIP), IPSJ Transactions on System LSI De-
sign Methodology Vol.3, pages 161–178, 2010.

[2] M. K. Jain, M. Balakrishnan, A. Kumar, ASIP Design
Methodologies: Survey and Issues, Proc of 14th Intl. Conf.
on VLSI Design, pp.76–81, 2001.

[3] A.B. Lange, K.H. Andersen, U.P. Schultz, A.S. Sorensen:
HartOS – a Hardware Implemented RTOS for Hard Real-
Time Applications, 11th IFAC, IEEE International Confer-
ence on Programmable Devices and Embedded Systems, Vol-
ume 45, Issue 7, pp. 207–213, 2012.

[4] N. Maruyama, T. Ishihara, H. Yasuura, An RTOS in Hard-
ware for Energy Efficient Software-based TCP/IP Process-
ing, IEEE 8th Symposium on Application Specific Processors
(SASP), 2010.

[5] N. Maruyama, T. Ichiba, S. Honda, H. Takada, A Hardware
RTOS for Multicore Systems,’ IEICE Transactions on In-
formation and Systems, D, Vol.J96-D, No.10, pp.2150–2162,
2013. (In Japanese)

[6] N. Maruyama, T. Ishikawa, S. Honda, H. Takada, K. Suzuki,
ARM-based SoC with Loosely coupled type hardware RTOS
for industrial network systems, the 10th Annual Workshop
on Operating Systems Platforms for　Embedded Real-Time
Applications, 2014.

[7] T. Miyauchi, K. Tanaka, Building Automatic Optimizing
Environment for Multicore processors, Embedded Systems
Symposium, pp.99–104 , 2015. (In Japanese)

[8] T. Miyauchi, K. Tanaka, Fine-Grained Configuration of
RTOS Adapted to Applications, Embedded Systems Sym-
posium, pp.73–81 , 2016. (In Japanese)

[9] T. Miyauchi, K. Tanaka, Building a Framework for an
Application-Adaptive Processor System on FPGA-based
SoC, The 21st Workshop on Synthesis And System Integra-
tion of Mixed Information technologies, pp.359-364, 2018

[10] H. Mori, K. Sakamaki, H. Shigematsu, Hardware Implemen-
tation of a real-time operating system for embedded control
systems, Tokyo Metropolitan Industrial Technology Bulletin
of Study No.8, pp55–58, 2005. (In Japanese)

[11] T. Nakano, A. Utama, M. Itabashi, A. Shiomi, M. Imai,
VLSI Implementation and Evaluation of a Real-Time Op-
erating System, IEICE Trans. Inf.&Syst. (Japanese Edition)
Vol.J78-D1 No.8, pp.679–686, 1995 (In Japanese)

[12] µITRON4.0 Specification Ver.4.01.00, ITRON Committee,
TRON ASSOCIATION.

[13] MIPSR⃝ Architecture For Programmers, Volume II-A: The
MIPS32R⃝ Instruction Set.

[14] ”Spartan6” [Online] Available http://www.xilinx.com/

products/silicondevices/fpga/spartan-6.html

[15] ”Digilent” [Online] Available http://store.digilentinc.

com/

[16] TOPPERS Kernel Test Suites “https://www.toppers.jp/
testsuites.html”

ⓒ 2018 Information Processing Society of Japan

組込みシステムシンポジウム2018
Embedded Systems Symposium 2018

50

ESS2018
2018/8/31

