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Abstract: The race for larger and deeper neural networks are leading researchers, vendors and practitioners to re-
think architectural design decisions taken decades ago in hope to improve performance. Among these decisions,
reducing the numerical format is thought to be one of prime candidates to increasing performance. Unfortunately,
modern hardware has limited support for this, and the impact of modifying floating-point formats and its size remains
shrouded in mystery. To help investigate what the effects of varying the precision during deep-learning training are,
first an architecture using reconfigurable hardware needs to be developed. Through this work, we seek to accelerate
arbitrary precision deep-learning training using Field-Programmable Gate-Arrays by leveraging the Intel FPGA SDK
for OpenCL. We present our design decision and the future outlook of our framework, and quantitively describe its
resource consumption and inferrence performance on modern FPGAs.

1. Introduction
The present paper describes our efforts toward a customized

and generalized framework for design-space exploration using al-
ternative numerical floating-point formats through FPGAs.

The recent explosion in artificial intelligence – in particular
that of deep neural networks based on back-propagation – has
triggered a storm in the introduction and creation of specialized
compute devices. Commercial platforms such as Microsoft’s
BrainWave [3], Google’s TPUs [4], and Fujitsu’s DLU [5] are
all examples of specialized circuitry dedicated to low-power,
high performance deep-learning (DL) training and/or inference.
Meanwhile, existing general-purpose manufacturers are empow-
ering their architecture with custom floating point units that trade
precision for performance, such as Intel’s Knights-Mill [6] and
NVIDIA’s Volta-100 [7]. It is clear that artificial intelligence and
deep-learning will have a prioritized presence in modern archi-
tecture – today and in the near future.

In the pursuit for faster and more energy efficient deep-learning
architecture, there is a need to critically review long-standing ar-
chitectural design decisions taken by computer architects decades
ago. One of the oldest design decision concerns the represen-
tation of real-valued numbers, otherwise known as the floating-
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point representation. The IEEE-754 floating-point representa-
tion is one of the few relics that remain unchanged in comput-
ing today. Reducing the size of the floating-point representation
can have dramatic (and positive) impacts on the performance:
more compute per unit silicon, more compute per unit band-
width, and lower power consumption. Several alternatives to the
IEEE-754 format are indeed emerging, such as Microsoft’s deep-
learning format [3], Intel’s FlexPoint [8], Google’s custom TPU
format [9], and Posits [10].

However, exploring the space around IEEE-754 floating-point
representations and its alternatives pose a significant engineering
problem: hardware and software infrastructure is to tightly cou-
pled to the IEEE-754 standard that changing any part of it incurs a
high engineering overhead. One alternative is to simulate alterna-
tive floating-point representations in software, for example using
soft-float or MPFR libraries [11], but the resulting performance is
often several magnitudes lower than hardware implementations,
limiting the size of the study conducted. Furthermore, simulating
alternative numerical formats in software are incapable of using
any compiler optimizations, nor can they leverage the vector in-
struction often crucial to reach application performance in mod-
ern processors. Porting the full software infrastructure stack is
possible (and inevitable), but is a non-trivial effort that requires
changes to the compiler, standard libraries and (possibly) the
Application-Binary-Interface (e.g. calling convention).

A better way to explore floating-point representation is to lever-
age Field-Programmable Gate-Arrays (FPGAs). An FPGA is a
device consisting of several millions of re-programmable look-
up tables (LUTs) that together with programmable routers give
a very malleable silicon substrate second only in performance to
Application-Specific Integrate Circuits (ASICs). Modern FPGAs
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can be clocked at several hundreds MHz, and contain enough
compute to rival even Graphics-Processing Units (GPUs), mak-
ing them ideal to study architectural design choices. Further-
more, with the recent growth in popularity of High-Level Syn-
thesis (HLS) tools, programming these devices can be as simple
as writing C/C++ code, and delegate the software to hardware
transformation effort to the compiler.

In this paper, we contribute with:

• Proposed design for a generalized FPGA training architec-
ture targeting variable numerical formats, and

• Preliminary evaluation and analysis of core computation pat-
terns for inference with respect to performance and resource
utilization

The remainder of our paper is structure in the following way:
Section 2 positions our work against other work, similar efforts.
Section 3 gives a background to machine learning and FPGAs,
and describes our proposed architecture. Section 4 overviews our
experimental methodology, and is followed by our preliminary
results in Section 5. We conclude in Section 6.

2. Related Work
Field-Programmable Gate-Arrays (FPGAs) have extensively

been used to probe and explore various architectural design de-
cisions, including those of deep-learning. The large majority of
existing work limits themselves to inference, primarily due to
the simpler design layout (little intermediate data needs storing).
Levering FPGAs has allowed researchers to decrease the number
of bits allocated to the numerical representation, going as far as
inferring popular networks such as AlexNET [15] using as few
as single bit [22, 23] (binary) weights. Inferring networks that
use few bits to represents weights (called Quantized Neural Net-
works [24]) requires subtle yet necessary changes to the train-
ing phase [16, 17, 24]. Lately, modern deep-learning frameworks
are having support for reduced precision training, some driven by
leading FPGA vendors such as Xilinx [14]. Dicecco et al. [21]
are working on a framework similar to ours that trains neural
networks using FPGAs while modifying the numerical format.
Their work primary focus on the IEEE-754 format and convolu-
tion layers where-as we aspire to include alternative format such
as posits [10]. Using posits in deep-learning was intended the fo-
cus of Langroudi et al. [12]’s work; however, they only compared
the performance against fixed-point and only stored the weights
as posit (the computation was still done using IEEE-754).

FPGAs are not unique to vary the numerical precision of deep
neural networks, and several ASICs have been produced for quan-
tized neural networks. Most of these focus only on inference (for
embedded deployment) for low-power embedded domains; these
include YodaNN [18], BinaryEYE [19] and ChipMunk [20];
these ASICs were shown to consume up to two magnitudes lower
power compared to similar FPGA solutions.

Commercially most vendors do support some form of reduced
precision mode. Intel’s Knight’s Mill [6] architecture replaces
one of the AVX-512 vector units of Knight’s Landing with a
Vector Neural Network Instruction (VNNI) unit, capable of per-

forming dot-products in a mixed IEEE-754 16-bit and 32-bit
mode. A similar process (reduced precision multiplication, full
precision accumulation) is also applied in NVIDIA’s Volta-100
line GPUs. These mixed-precision units drastically improve the
Artificial-Intelligence compute capabilities (AI-FLOPs) of mod-
ern systems, trading silicon resources for increased compute with
arguably small impact on training performance. Vendors also
embrace drastically different formats, notably in Intel’s NER-
VANA [13] (likely where FlexPoint [8] is used) and Google’s
TPU [9] (which have more bits in the exponent compared to the
mantissa).

3. A FPGA-based NN Framework
3.1 Field-Programmable Gate-Arrays

FPGAs can be used for a great variety of things, from accelerat-
ing computational algorithms to implementing a hardware design
before taping out full chip. They are devices that can belong to
the class of fine-grained reconfigurable devices.
FPGAs are made up of a reconfigurable fabric. The fabric they
are made up of consists of vast arrays of switches and other rout-
ing hardware to connect all the functional elements, like multi-
pliers, block RAMs and LUTs, in any way possible. The LUTs
can be used to implement any mathematical function, like ad-
dition, multiplication, boolean functions and more. This makes
them very suitable for the research described in this paper. It
gives total freedom to design a hardware implementation to ex-
plore algorithms in a hardware setting without having to resort to
software simulations and the performance limitations that follow
from those.

The usual FPGA work-flow consists of writing in a hardware
description language, synthesizing the design and finally place
and routing the design onto the FGPA resources. This is a lengthy
process and complex designs written in hardware description lan-
guages are hard to maintain. In this work we will focus on using
the OpenCL interface to the FPGA. OpenCL is a framework spec-
ified by the Khronos Group*1 in 2009, to work with all kinds of
processors, accelerators and other heterogenous compute devices,
in recent years the FPGA vendors have made efforts to make it
easier to leverage FPGA resources by computer scientists and not
only hardware designers. Now OpenCL is one of the ways to
leverage high level synthesis. High-level synthesis takes a design
specification in a high level language like C or in this case the
modified version of C99 that is used for OpenCL kernels and cre-
ates an RTL design description for this design automatically after
which the normal work-flow for synthesis, and place and route is
resumed.

3.2 Neural Networks
An Artificial Neural Network (ANNs) is a system inspired by

the biological nervous system – a system built around the con-
cepts of neurons as the main computational agents. Figure 1 illus-
trates an example of a typical “deep” neural network: a network
that consists of a input layer, and output layer, and a number of
hidden layers in-between. The number of hidden layers in mod-

*1 Specification available at: https://www.khronos.org/opencl/
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Fig. 1 The basics of artificial “deep” neural networks, showing the input (a)
layer, the hidden (b) layer, and the output (c-d) layer.

ern neural networks can be very large: AlexNet (2012) [15] has
eight, VGG16 (2014) [25] has 16 layers, GoogleNet (2014) [26]
has 22 layers, and ResNet (2016) [27] has 152 layers. The trend
seems to favor larger and deeper neural networks. The input layer
of a neural network (in our example, a classifier) contains the
(possibly pre-processed) inputs, such as images (for image recog-
nition), words (in natural language processing), or motifs (in
graph processing). In our humble example, the input is an image
of an apple, where each pixel has an all-to-all connection to the
hidden layer– a so-called dense layer. The dense-layer (or fully-
connected layer) is the most basic of all layers, and nearly all
(e.g. convolution) layers are derived from it. Each layers consists
of a number of neurons – the main compute agent of the network.
Each edge that connects to a particular neuron is called a synapse,
and comes with a weight (wi, j) in the figure, where i is the in-
dex of the neuron. The neuron integrates the weights (Fig. 1:b)
of all input synapses, adds a local bias, and applies an activa-
tion function to compute the output of the neuron. The activation
function varies between networks, but commonly used activation
functions include: the sigmoid ( f (x) = 1

1+e−x ), the rectifier (ReLu,
f (x) = max(0, x)), or hyperbolic tangent ( f (x) = tanh(x)). In
Fig. 1:b (and commonly in image processing network), the sim-
ple and compute-inexpensive ReLu activation function is used in
the hidden-layers of the network. The final layer of our classifier
neural network is an output layer, Fig. 1:c. In the output layer, the
activation function is often a softmax (Fig. 1:d), which scales all
outputs such that their sum equals one.

Inferring (predicting) using a deep neural network is done by
connecting the input to what is to be predicted, and sequentially
activating each layer – from the front to the back of the network –
and propagating the output of each layer into the next. This effort
is called forward propagation. Training the network is done in
a similar but reverse fashion – errors are calculated at the output
and propagated backwards. At this point in time, our framework
focuses on forward propagation.

3.3 FPGA Neural Network Framework
We aspire to create a neural network framework that allows

design-space exploration with different numerical data formats.
Our framework, illustrated in Fig. 2, consists of a number of com-
ponents. We have chosen to rely on Python as the high-level fron-
tend for our framework. It is through Python that a user creates
networks, selects inputs, and decides what data formats to use.
Once a particular configuration is selected, our framework gen-
erates data-type oblivious training and inference code that tar-
gets Intel’s OpenCL SDK for FPGAs. By data-type oblivious
we mean that all operations associated with any particular data-
type representation remain unresolved at the point of creation, as
they will not depend on any of the native data-types or function-
ality of the OpenCL language. Instead, our Python framework in-
vokes a data-type selector, which automatically generates a low-
level hardware description language (HDL) library that contains
commonly used operators for the selected data-type. Once the
Register-Transfer Level (RTL) library has been generated, it is
merged with the data-type oblivious OpenCL template to yield
the final description, which now can be synthesized using EDA
tools and used. Invisible to the user, our host runtime system han-
dles all communication, invocation and control over the FPGA
from the host side.

The present paper focuses on the IEEE-754 part of inference,
where training and alternative data-types are on-going and future
work. Although we do have a posit [28] generator ready to be
used, it has yet to be integrated into our flow.
3.3.1 Design overview

Figure 3 shows an overview of the system. The backwards
kernels are a work in progress, so for now we leverage external
frameworks for training. The backwards kernels are the kernels
that calculate the error and back propagate the error while updat-
ing the weights and biases in the network used during training.
The host code – written in Python – does one forward kernel call
for every layer during inference. Finally it does a final softmax
kernel call to get the final prediction. For performance this could
obviously be done on the host, given the limited size of most final
layers, but performance is not the main goal of this effort. The
main goal is to simplify changing the numerical format, and thus
all the calculations need to be done in that format, and an FPGA is
better at accommodating this without a huge performance impact.
3.3.2 Design details

All weight matrices are transposed in memory, this to optimize
the memory access pattern of the matrix-matrix multiplication.
The main inference is performed using an blocking implementa-
tion of the matrix multiplication. First a block is fetched from
the matrices containing the activations and weights and is placed
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in the block RAM on the FPGA. The computation result is also
stored on the block RAM, before a routine writes it back to global
memory. The block RAM has a much lower latency than the
global memory. This increases the throughput by a significant
margin, almost 3× in a naive implementation. Block RAM is
equivalent to the shared or local memory of contemporary GPUs.

The OpenCL SDK from Intel used for this design tries
to pipeline loops in single work item kernels, as opposed to
NDRange kernels (that are more truthful to the SIMT paradigm).
To get maximum performance the aim is to get an initiation inter-
val of one. That is to say that a new loop iteration is scheduled
every clock cycle. To get this to work on the inner most loop –
one that is essentially a reduction – an array is used to store the
output of every iteration in separate locations, which enables the
loop to be fully unrolled. For the loops surrounding the inner
most loop, serial data-dependencies are to be avoided whenever
possible, so different loop iterations are fully data-independent.
For the outermost loop that processes one block this behavior is
not possible, since the output block is written to multiple times.
Multiple different blocks can theoretically be processed on the
FPGA should space allow for it. Future revisions of this frame-
work will also include a training phase, and we thus postponed
further parallelization efforts until the kernel is complete.
3.3.3 Design decisions

One of the main choices with the largest impact on imple-
mentation is whenever to keep all weight matrices in memory
transposed. During inference this is very beneficial, as it makes
most reads sequential. In early stages of development it sped up
the kernel performance by a factor of 3. During training, using
stochastic gradient descent, this can be a problem though, since
the weight matrix should now be transposed back for the most ef-
ficient memory access patterns. But since the arithmetic density
of the training process is higher, the effect might be slightly less
pronounced. Another decision was to execute the outermost loop,
the one that loops through all the layers, to the host. This loop
cannot be pipelined due to a serial data-dependency, so it makes
more sense to execute this loop on the host CPU. This saves space
on the FPGA and simplifies the hardware design.

4. Methodology
4.1 Experimental Platform

The software versions and hardware configuration are shown in
respectively Table 1 and Table 2. All kernels were compiled with
the flags “-O3 -fp-relaxed”. “-O3” is an optimization flag,
configuring the compiler to enable resource-driven optimizations.
The “-fp-relaxed” flag gives the compiler some more freedom
with the order of operations using a balanced tree hardware im-
plementation, this gives about a 10–15 % performance benefit.

Table 1 Used software versions

Software Version

Python v3.6.3
Keras v2.2.0
TensorFlow v1.8.0
Intel Quartus v17.1.0
Intel OpenCL v1.1

Table 2 Test hardware

Hardware Configuration

Intel i7-3930K 3.20 GHz
DDR3 RAM 1333 MHz Dual Channel
Arria 10 (×1) Nallatech 510T

4.2 Test Networks and Inputs
The used example networks are multi-layer perceptrons

(MLPs). This means that all layers are arrays of neurons and ev-
ery neuron is connected to every neuron in the next layer. These
layers are often called “Dense” layers. The first data set used was
MNIST [1], MNIST is a collection of 28×28 gray scale images of
hand written arabic numerals. So the data set provides 784 inputs.
The structure of the sample MNIST network is shown in Fig. 4.
In total a three layer network plus the input layer, or three sets of
weight matrices and bias vectors. The data set was trained using
the first 60 000 images from the MNIST data set. The last 10 000
images are used as the test data set.

The second data set used was CIFAR-10 [2], CIFAR-10 is a
collection of 32×32 color images divided into 10 classes, provid-
ing 3072 inputs. The structure of the sample CIFAR-10 network
is shown in Fig. 5. The data set was trained using the first 50 000
images from the data set. The last 10 000 images were used as the
test data set. All training was done using a batch size of 128. We
implemented the CPU code based on NumPy’s array.dot function.

5. Results
The host (NumPy based) code benchmarked at 60 GFLOPS

for straight-forward inference of the first network and about 160
GFLOPS for the second network. A first naive implementation
on the FPGA clocked in at about 2.5 GFLOPS for this problem
size. Transposing the weight matrix sped up the kernel to around
7.5 GFLOPS. The results for the different final FPGA kernels are
shown in Table 3.

Table 3 FPGA Kernel performance

Block size GFLOPS MNIST GFLOPS CIFAR-10

64×64 17.8 18.9
16×16 4.3 4.4

The performance is memory-bound for these kernels. How-
ever, given our experience with alternative numerical formats
(most notably posits [28]), we do not expect performance to be
degraded when changing numerical format.

5.1 FPGA Resource Utilization
The kernel resource utilization is shown in Table 4. The main

limiting factor is the available block RAM. To stop the calcula-
tion of extra padding lines in the matrices, the block size should
be a multiple of most of the layer sizes. Larger block sizes would
exhaust the block RAM on the used FPGA device. The next logi-
cal size up from 64 would be 84 (3×28) would use to much of the
block RAM already. This is because there are three block buffers
and the relationship between block size and used block RAM is
square.
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Table 4 FPGA Hardware utilization for different block sizes

Block size Logic DSPs RAMs Fmax

64×64 33 % 10 % 68 % 172.8 MHz
16×16 17 % 3 % 30 % 209.16 MHz

5.2 Inferrence Performance
The MNIST network test set accuracy after training on the

CPU using Keras is 97.9 %. And the CIFAR-10 accuracy after
training is 47.9 %. The FPGA gets slightly different floating point
results due to rounding differences but is matches the accuracy.

6. Conclusion
We have introduced and described our efforts to create a

general-purpose deep-learning framework for design space ex-
ploration of numerical formats. While still in the early stages,
we have focused on generality. We have shown interoperability
with Keras, where we can train weights offline and import them
into our framework with little effort. We evaluated the perfor-
mance and resource consumption of our design on the FPGAs,
and made sure that the inferred accuracy is correct. We are cur-
rently working on implementing the training phase, as well as the
choice of numerical format to be used in both the inference and
training part of our framework.
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