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Abstract: A personal identification method has been developed for searching for a specific person among other peo-
ple that fuses iris and periocular features using AdaBoost. It effectively integrates scores for many features using an
AdaBoost configuration in which feature selection corresponds to weak classifier selection. We found three interesting
facts of evaluation. First, evaluation using up to eight features showed that identification accuracy increased with the
number of features used. The lowest equal error rate (EER) was 1.3% when eight features were used, and the highest
identification rate was 94.1% when eight features were used. Second, the advantage of the proposed method over a
weighted sum method increased with the number of features used. The difference in EER was 1.1% when eight fea-
tures were used due to the generation of a nonlinear decision boundary, and the difference in the identification rate was
1.8% when eight features were used, again due to the generation of a nonlinear decision boundary. Finally, using an
effective combination of information from both eyes further improved the accuracy (the difference in EER between the
four-feature case and the eight-feature case was 0.7%, and the difference in identification rate between the four-feature
case and the eight-feature case was 4.6%).
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1. Introduction

Biometrics based on physical or behavioral characteristics has
the advantage of not requiring people to carry anything around or
remember passwords and can be used to identify people in a wide
range of fields. In particular, iris biometrics has a very high level
of accuracy. However, it requires a high-quality iris image, which
means that it has to be captured at a very short distance, which is
highly intrusive on the person being identified and increases the
burden and limits the action of users. A less intrusive approach
would be to capture iris images with identification equipment sit-
uated further away, but this is liable to result in poor-quality im-
ages and lower identification accuracy.

A method that combines iris biometrics with periocular bio-
metrics (identification based on images of the area surrounding
the eye) has been proposed. Images of the iris and the region
surrounding the eye are obtained simultaneously from a greater
distance such as about 2 to 3 meters, and periocular biometrics is
used to compensate for the loss of iris biometrics accuracy that
results from acquiring images from a greater distance. This in-
creased distance reduces the burden on the person to be identi-
fied.

Previous research on the fusion of iris and periocular features
falls short in three ways. First, many features can be used for
recognition. In iris biometrics, Daugman’s iris code is mainly
used for recognition. However, periocular biometrics can use
many features, and the features used determine the effectiveness
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of recognition. Each periocular feature has particular advantages
and disadvantages. For example, the local binary pattern (LBP)
feature is robust against lighting variation but fragile against ge-
ometric transformation. Previous research did not provide a sys-
tematic method to find the effective combination of many fea-
tures. Second, to the best of our knowledge, scores from both
sides of the face (those from left iris and left periocular region
and those from right iris and right periocular region) have not
been integrated. It should be possible to improve identification
performance by using the best combination of features from both
sides. Third, a weighted sum is often used to integrate the iris
and periocular feature scores. However, the greater the number
of features used, the more complicated the decision boundary on
the score map. Weighted sum simply creates a linear decision
boundary. We have developed a personal identification method
that overcomes these shortfalls and is thus well suited for search-
ing for a specific person among other people. It is based on the
fusion of iris and periocular features using AdaBoost [1].

The rest of this paper is organized as follows. In Section 2,
we summarize related work, and in Section 3, we describe our
proposed feature fusion method. We describe our evaluation in
Section 4 and present the results in Section 5. In Section 6, we
discuss the results of our evaluation, and in Section 7, we sum-
marize the key points and mention future work.

2. Related Work

2.1 Iris Biometrics
Daugman’s iris code is commonly used in iris biometrics.

However, it requires a high resolution image of an iris. The lower
the image resolution, the lower the recognition accuracy [2], [3].
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2.2 Periocular Biometrics
In periocular biometrics, a variety of features are used for

recognition. Table 1 summarizes the features used for periocular
biometrics. A variety of features have been used for a variety of
data sets. However, the features that are effective for recognition
have not been determined. Moreover, each feature has particu-
lar advantages and disadvantages. For example, LBP is robust
against lighting variation but fragile against geometric transfor-
mation while scale invariant feature transformation (SIFT) is in-
variant to scale and rotation. The features used are experimentally
selected by the researchers.

2.3 Fusion of Iris and Periocular Features
As shown in Table 1, a weighted sum is often used for fusing

the iris and periocular features [4], [5], [6], [7], [8], [9], [10], [11].
The iris score and periocular score are represented as S iris and
S periocular. They are min-max normalized using

xnew =
xold − xmin

xmax − xmin
, (1)

where xmax is the maximum value in score set x, xmin is the min-
imum value in score set x, xold is the score before normalization,
and xnew is the score after normalization. The basic integration
score S is calculated using weights ω1 and ω2 for the iris score
and the periocular score:

S = ω1S iris + ω2S periocular, ω1 + ω2 = 1. (2)

The performance is optimized by adjusting ω1 and ω2, for ex-
ample, in the range 0.1 to 0.9 [6]. The performance is better with
fusion than with either iris or periocular modality alone [4], [5],
[6]. Tan et al. reported an identification rate for the iris features of
55% [4], for the periocular region features of 60%, and for fusion
of the iris and periocular features of 80%.

2.4 Problems with Previous Fusion Methods
As mentioned above, a variety of features have been used in

periocular biometrics. The recognition algorithm should auto-
matically select features that are effective in the combination with
the features from iris. It should also automatically select features
that are effective for the target data set, which includes images
affected by various factors, for example lighting conditions and
geometric distortion. If a weighted sum is used in the recognition
algorithm, the features must be selected in advance.

If both sides of the face are included in the image, more fea-
tures must be dealt with, which increases the number of dimen-
sions of the feature vectors. The greater the number of dimen-
sions, the more complicated the distribution of data for the gen-
uine and imposter. This results in a nonlinear boundary on the
score map to distinguish the genuine and imposter. A weighted
sum, on the other hand, simply creates a linear decision bound-
ary, so the distinction between the genuine and imposter may be
more difficult.

3. Proposed Method

3.1 Requirements
Three requirements were identified for our method. First, it

Table 1 Summary of related work.

Reference Dataset Periocular features
Fusion method of
iris and periocular

[12]
FRGC2.0

LBP
NA

[13]
HOG
SIFT

[14] UBIRIS.v2
GIST

NA
CLBP

[15]
FRGC

LBP+GEFE NA
FERET

[16] FRGC

LBP+LBP

NA

Walsh Masks+LBP
Law’s Masks+LBP
DCT+LBP
DWT+LBP
Force Field Transform+LBP

GaborFilter+LBP
Log Filter+LBP
SIFT, SURF

[17] FOCS
HOG

NAm-SIFT
PDM

[18]
CASIA v4

LBP
NA

-distance
m-SIFT
Local phase feature

[19] One’s own data
LBP

NAHOG
SIFT

[20] One’s own data
LBP

NAHOG
SIFT

[21] Transgender dataset

TPLBP

NA
LBP
HOG
SIFT

[22] One’s own data
LBP

NAHOG
SIFT

[4]

LBP

Weighted Sum
[5]

UBIRIS v2 HOG
FRGC DSIFT
CASIA v4 GIST
-distance LMF

[6] MBGC LBP Weighted Sum

[7]
Optimal Trade-off Synthetic

Weighted SumFOCS Discriminant Function (OTSDF)

Correlation Filter

[8] FOCS
LBP

Weighted SumSIFT
Gabor Wavelets

[9] One’s own data LBP+SRC Weighted Sum

[10] One’s own data BSIF+SRC Weighted Sum

[11] One’s own data PerioCode Weighted Sum

NA in fusion method column means recognition using only periocular fea-

tures.

must select effective features automatically because the periocu-
lar regions and irises from both sides of a face have many features,
each of which has particular advantages and disadvantages for a
target data set. Second, it must distinguish data for the genuine
from data for imposter even if the data has a complex distribution
in a high-dimensional vector space. Third, the tradeoff between
recognition accuracy and speed should be controllable to make
the method suitable for practical use.
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3.2 Using AdaBoost
To meet these requirements, we use the AdaBoost algo-

rithm [1], which is the most frequently used method for boosting
classification performance. It does this by using combinations of
weak classifiers. AdaBoost is effective for our purpose because it
has following merits.
• AdaBoost can create non-linear or piecewise linear decision

boundaries, which meets the second requirement.
• AdaBoost can reduce the number of errors exponentially by

increasing the number of weak classifiers used, thus control-
ling the trade-off between recognition accuracy and recogni-
tion speed by setting the number of weak classifiers, which
meets the third requirement.

In a typical AdaBoost configuration, each weak classifier uses
a feature vector that consists of all features. Each weak clas-
sifier must therefore use all features and cannot select effective
features. We use a different configuration-each classifier uses a
feature vector consisting of only one feature. This configuration
enables automatic selection of effective features by selecting the
corresponding classifiers, which meets the first requirement.

3.3 Methods of Training and Testing
[Training]
B is the number of boosting rounds. J is the number of features

used.
( 1 ) Initialization of weights

The number of imposter data samples is much larger than
that of genuine data samples. Sample weights D1(t) are used
to treat the genuine and imposter data equally:

D1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1/number of genuine data samples
(for genuine data sample weight)
1/number of imposter data samples
(for imposter data sample weight)

(3)

The sum of the weights is normalized to 1 (
∑M

t=1 D1(t) = 1).
M represents the number of training data samples.

( 2 ) Training of weak classifier
i. Steps ii. to vi. are processed for each round b =

1, 2, · · · , B.
ii. The following process is done for the features j = 1 to

j = J.
For training data samples t = 1 to t = M, identification
is performed using the t-th data sample xt. The j-th weak
classifier wcb j is calculated using xt. The error rate εb j of
the training samples is calculated using

εb j =
∑

t:yt�wcb j(xt)

Db(t), (4)

where yt is the correct class.
The weak classifier is designed using

wcb j(xt) =

⎧⎪⎪⎨⎪⎪⎩
+1 if p · FVj(xt) > p · θ
−1 otherwise,

(5)

where FVj(xt) is the value of the j-th feature for the t-th
sample, and p is a variable that determines the inequality
direction by comparing the feature value and the threshold

θ (p takes a value of +1 or −1). The p can be used to change
the inequality orientation by using the position relationship
of the genuine samples and the imposter samples in the fea-
ture space. If p = 1, wcb j(xt) = +1 when FVj(xt) > θ. And
wcb j(xt) = −1 when FVj(xt) ≤ θ. If p = −1, wcb j(xt) = +1
when FVj(xt) ≤ θ. And wcb j(xt) = −1 when FVj(xt) > θ.
The θ and p are calculated such that the error rate is mini-
mum.

iii. Weak classifer hb = wcbq and corresponding feature q

are selected such that

hb = argmin
wcb j

εb j, (1 ≤ j ≤ J). (6)

That is, hb(xt) is selected such that the error rate (εb j given
by Eq. (4)) is minimum.
q is the feature selected such that the error rate εb j is min-
imum in J features. q is the feature selected in each round
of AdaBoost training.

iv. When feature q is selected, the error rate is put in εbq.
Next, αb is calculated using

αb =
1
2

log

(
1 − εbq

εbq

)
. (7)

αb is weight (degree of confidence) of each feature (weak
classifier).

v. The sample weight is renewed using

Db+1(t) = Db(t) exp (−αtyihb(xt)) . (8)

For a correctly identified sample, Db+1(t) = Db(t) exp(−αt).
For an incorrectly identified sample, Db+1(t) =

Db(t) exp(αt).
vi. The weights of the samples are normalized so that the
sum of the weights is 1.

( 3 ) Construction of strong classifier
The strong classifier H(xt) is given by

H(xt) =
B∑

b=1

αbhb(xt). (9)

[Testing]
Testing is done using the strong classifier, which uses hb(xt)

and αb calculated in the training phase.

4. Evaluation

4.1 Overview
An overview of the experiment used for evaluation is shown in

Fig. 1. We first extracted iris and periocular region features from
images of left and right eyes. We then used iris code calculated
using Daugman’s algorithm for the iris biometrics. We used the
LBP, histogram of oriented gradients (HOG), and SIFT features
for the periocular biometrics because they are widely used for
periocular biometrics. We used them to calculate the similarity
scores between two images. Next, we performed AdaBoost train-
ing and created a strong classifier. We then evaluated the identifi-
cation accuracy by using the test data. Finally, we compared the
proposed method with a weighted sum method (performed using
min-max normalization).
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Fig. 1 Outline of experiment.

Fig. 2 Example preprocessed images.

4.2 Preprocessing
We detected the left and right eye areas by using the OpenCV.

The pupil of each eye was detected using the Hough transform.
The center of the pupil was automatically relocated to the center
of the image, and the image was clipped to a size of 600×400
pixels. Example preprocessed images are shown in Fig. 2.

4.3 Iris Biometrics
For Daugman’s iris recognition algorithm, we used OSIRIS

V.4.1 [23]. The matching score was obtained by calculating the
Hamming distance.

4.4 Periocular Biometrics
We normalized the images by referring to Tan’s method [4]

while maintaining the iris radius.
For periocular identification, we normalized each pre-

processed image. First, scale factor S f = rnorm/riris was
obtained; riris is the iris radius, and rnorm is the radius after
normalization. Each image was normalized using the bicubic

method to achieve an image size of S f (600 × 400 pixels). As
a result of this normalization, the iris radius was equal to rnorm.
Then, the center of the iris was shifted to the center of the image,
and the image size was cropped again to 6rnorm × 4riris [4]. An
rnorm value of 64 was used in accordance with the size of the
polar coordinate display images in OSIRIS. Therefore, the size
of a normalized image was 384 × 256.

Next we extracted the LBP, HOG and SIFT features as the fea-
tures to be used. The advantages of these features are summarized
as follows.
• LBP

LBP is robust against lighting variation. We obtained the
LBP for the entire image after applying a Gaussian filter
with a standard deviation σ = 4.0 to the image. The LBP
pixels were then partitioned into 96 blocks of 0.5rnorm ×
0.5rnorm [12], [13]. Next, a brightness histogram was calcu-
lated for each block and quantized into eight values. These
8 values were then concatenated into a 768-dimensional fea-
ture vector. The matching score was obtained by calculating
the Manhattan distances.

• HOG
HOG is robust against lighting variation and geometric trans-
formation. We obtained the HOG for the entire image
after applying a Gaussian filter with a standard deviation
σ = 4.0. The HOG pixels were then partitioned into 96
cells of 0.5rnorm × 0.5rnorm. We normalized the image size
with a block of 3 × 3 cells by shifting one cell. The num-
ber of normalizations based on this block size was 10 × 6
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Table 2 Combinations of features.

No Eye Features Total no. of features

1 either iris (iris code) and periocular (LBP) 2
2 either iris (iris code) and periocular (HOG) 2
3 either iris (iris code) and periocular (SIFT) 2
4 either iris (iris code) and periocular (LBP, HOG, SIFT) 4
5 both iris (iris code) and periocular (LBP, HOG, SIFT) 8

either:either right eye or left eye; both: both right eye and left eye

= 60. Next, the normalized cells were concatenated into a
4860-dimensional feature vector. The matching score was
obtained by calculating the Manhattan distances.

• SIFT
SIFT is invariant to scale and rotation. The preprocessed im-
ages were subjected to histogram equalization to emphasize
the contrast, and the SIFT key points of each image were
detected. The SIFT feature extraction and description of
OpenCV were used to calculate the scores. However, some
key points were corresponded incorrectly. We compared the
Euclidian distance dist1 between the closest key points to
the Euclidian distance dist2 between the second-closest key
points. The key points that did not meet the following con-
dition were removed.
dist1 < dist2 × 0.75
We corresponded the only nearest key point to meet above
requirement. The matching score S was obtained using
S = N × 1∑N

j=1 d j

N

, where N represents the number of corre-

sponding points between the images and d j represents the
distance between the j-th corresponding points between the
images.

4.5 Combinations of Features
We evaluated five combinations of features, as shown in Ta-

ble 2.

4.6 Experimental Dataset
We obtained eye images from the CASIA-Iris-Distance

database [24]. The images had been taken at a distance of 3 me-
ters using a near-infrared camera. We used images for 122 people.
All images were of the naked eye (without eyeglasses). For each
person, we used eight images (four for training and four for test-
ing). The training and testing datasets thus each contained 488
images (122 × 4). The number of matching pairs in each dataset
was 488C2 = 118,828 (genuine - genuine: 4C2 × 122 people =
732; genuine - imposter: 118,096). We calculated the iris and
periocular matching scores of these pairs. Then we applied the
proposed method and the weighted sum method. We performed
this experiment 70 (8C4) times with different training and testing
images and averaged the results.

5. Results

Table 3 shows the equal error rate (EER) and identification rate
for each feature for the proposed method. The EER is the value
when the False Accept Rate (FAR) and False Reject Rate (FRR)
are equal. The EER and receiver operating characteristic (ROC)
curve show the accuracy of 1:1 matching (matching between in-
put and a particular template), and the identification rate shows

Table 3 EER and identification rate for each feature.

Feature
EER (%) Identification rate (%)

left right left right

iris 7.6 7.5 60.6 62.1

periocular
LBP 8.0 9.3 70.1 65.3
HOG 9.1 8.4 60.7 60.3
SIFT 6.6 6.0 65.7 70.0

that of 1:N matching (matching between input and all templates).
The identification rate is the percentage of instances in which a
person is correctly classified as belonging to the input person’s
template.

Identification rate =
number of person data classified correctly

total number of person data
× 100[%] (10)

Since our objective here is to present a recognition method in-
tegrating many features from both eyes by using AdaBoost and
to demonstrate its effectiveness quantitatively, we evaluated its
effectiveness by comparing its EER with those when two features
(lines 1, 2, and 3 in Table 4) and four features (line 4 in Table 4)
were used. We also compared its EER with the EERs when the
weighted sum was used as the algorithm for integrating the score.

Table 4 shows the EER and identification rate for each feature
combination for both the proposed method using AdaBoost and
the weighted sum method. The EERs when two features (lines
1, 2, and 3 in Table 4) were used were better than when one fea-
ture (Table 3) was used. The EER when four features (line 4 in
Table 4) were used was better than when two features (lines 1,
2, and 3 in Table 4) were used. The EER when eight features
(line 5 in Table 4) were used was better than when four features
(line 4 in Table 4) were used and when two features (lines 1, 2
and 3 in Table 4) were used. The EERs when AdaBoost and two
features were used were slightly better than when the weighted
sum and two features were used. This advantage became larger
when four features were used. It became still larger when eight
features were used. The EER when AdaBoost and eight features
were used was the lowest in Table 4. An EER of 1.3% when Ad-
aBoost and eight features were used is roughly equivalent to the
EERs of other approaches [29] and reasonable value here.

Since our objective here is to present a recognition method in-
tegrating many features from both eyes by using AdaBoost and
to demonstrate its effectiveness quantitatively, we evaluated its
effectiveness by comparing its identification rate with those when
two features (lines 1, 2, and 3 in Table 4) and four features (line
4 in Table 4) were used. We also compared its identification rate
with the identification rates when the weighted sum was used as
the algorithm for integrating the score.

The identification rates when two features (lines 1, 2, and 3 in
Table 4) were used were better than when one feature (Table 3)
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Table 4 EER and identification rate for each feature combination for proposed and weighted sum meth-
ods.

Features combination
EER (%) Identification rate (%)

AdaBoost Weighted sum AdaBoost Weighted sum

left right left right left right left right

1. iris+periocular region (LBP) 3.9 3.8 4.2 4.2 80.1 79.5 82.4 80.9
2. iris+periocular region (HOG) 4.7 4.1 4.8 4.2 76.4 77.9 78.0 79.8
3. iris+periocular region (SIFT) 2.8 2.6 2.7 2.4 82.5 84.5 86.1 88.0

4. iris+periocular region (LBP,HOG,SIFT) 2.2 2.0 2.7 2.4 89.5 89.2 91.0 89.9
5. iris+periocular region (LBP, HOG, SIFT) [left+right] 1.3 2.4 94.1 92.3

Fig. 3 ROC curves.

Fig. 4 CMR curves.

was used. The identification rate when four features (line 4 in
Table 4) were used was better than when two features (lines 1, 2,
and 3 in Table 4) were used. The identification rate when eight
features (line 5 in Table 4) were used was better than when four
features (line 4 in Table 4) were used and when two features (lines
1, 2, and 3 in Table 4) were used. The identification rate when
AdaBoost and eight features were used was better than when the
weighted sum and eight features were used. The identification
rate when AdaBoost and eight features were used was the highest
in Table 4.

Figure 3 shows the ROC curves. The vertical axis represents
the FRR, and the horizontal axis represents the FAR. The per-

formance of the proposed method when eight features (line 5 in
Table 4) were used was better than when two or four features were
used. It was also better than that of the weighted sum method for
all combinations.

Figure 4 shows the cumulative match characteristic curves.
The vertical axis represents the cumulative match rate (CMR),
and the horizontal axis represents the number of candidates
(rank). Given that the person is genuine for a range of candi-
date rankings up to rank N (an integer equal to or greater than 1),
a cumulative match characteristic curve represents recognitions
deemed successful. For example, N = 1 means an identification
rate as shown in Tables 3 and 4 while N = 2 means that not only
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Fig. 5 Training and testing errors.

the first-ranked candidate but also the second-ranked candidate
are considered to be the genuine. The performance of the pro-
posed method when eight features (line 5 in Table 4) were used
was better than when two or four features were used. It was also
better than that of the weighted sum method for all combinations.

The training and testing errors when using eight features are
plotted in Fig. 5. The vertical axis represents the EER, and the
horizontal axis represents the number of weak classifiers. A solid
line represents the training error and a dotted line represents the
testing error. The figure shows that recognition time and recog-
nition accuracy can be controlled flexibly in accordance with the
application because recognition accuracy can be controlled by ad-
justing the number of weak classifiers.

6. Discussion

6.1 Features Selected by AdaBoost
The feature corresponding to the weak classifier with the low-

est error rate is selected in each round of AdaBoost training. The
features selected by AdaBoost in each round when eight features
were used are listed in Table 5. The features for which the single-
feature recognition accuracy (see Table 3) was high were prefer-
entially selected. The weights of the features selected in the early
rounds were larger than those selected in the later rounds. This
indicates that automatic feature selection using AdaBoost is an
effective approach. For fusion of the left eye and right eye fea-
tures, the features extracted from the left and right images were
selected interchangeably. This means that it is effective to fuse the
left and right eye features because the features extracted from the
left and right images were used to improve recognition accuracy.

6.2 Decision Boundary
We investigated the decision boundaries generated by the Ad-

aBoost and weighted sum methods. The score map and deci-
sion boundary for the iris and periocular region (LBP feature) are
shown in Fig. 6. The vertical axis represents the scores output
by the classifier using the LBP feature of the periocular region.
The horizontal axis represents the scores output by the classifier
using iris feature. The blue points represent the scores for the
genuine, and the red points represent those for imposter. The de-
cision boundaries are shown for the EER. The distributions of
the scores overlap, and the decision boundary between genuine
and imposter is nonlinear. However, the decision boundary for
the weighted sum method is linear while that for AdaBoost is
nonlinear. This means that the decision boundary for AdaBoost
more clearly identifies the scores for the genuine. The proposed

Table 5 Features selected by AdaBoost.

Round Feature selected Feature weight (α)

1 right SIFT 1.39
2 left iris 1.05
3 right iris 0.97
4 left SIFT 0.80
5 right HOG 0.62
6 left LBP 0.46
7 right SIFT 0.47
8 left SIFT 0.44
9 right iris 0.41

10 left SIFT 0.40

Fig. 6 Score map and decision boundary for iris and periocular region (LBP
feature).

method is thus better than a weighted sum method for identifying
the genuine.

6.3 Factors Affecting Iris and Periocular Recognition
In this subsection, we describe the factors to affect iris and pe-

riocular recognition.
Iris recognition can be affected by contact lenses. Recently,

the use of contact lens becomes more prevalent. While contact
lenses are generally used to correct eyesight as a replacement
for glasses, they are increasingly being used for cosmetic rea-
sons. For example, the texture and color of the iris region can be
changed by wearing a thin textured lens. A study on the effect of
color contact lenses on the performance of iris recognition [25]
showed that the use of a color cosmetic lens changes the appear-
ance and texture of the eye in both the visible and near-infrared
spectrum. This suggests that both transparent (prescription) and
color cosmetic lenses (textured) significantly affect recognition
accuracy.

A method proposed for reducing the effect of color contact
lens [25] uses a lens detection algorithm to first reject cases in
which there are obfuscated iris patterns. Only cases in which
there is no lens or there is only a transparent lens are accepted.
This method improves iris recognition performance. Lens detec-
tion algorithms were proposed [26]: one uses iris edge sharpness
and the other uses textural features based on a co-occurrence ma-
trix.

Periocular recognition can be affected by make-up, which has
many variations. These variations include differences in color,
texture, and application method. Cosmetics are commonly used
to cover facial flaws and to make the wearer look more attrac-
tive. Unlike digital enhancement, make-up actually changes the
wearer’s physical appearance. A previous study [27] showed that
make-up was listed as misleading for other features. When a sub-
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ject changed the make-up, recognition was harder.
Mitigating the effect of make-up is essential. Make-up can

be used to impersonate someone else or change one’s appear-
ance. Face recognition must thus take into account the effect of
make-up. Hu et al. proposed using canonical correlation analysis
(CCA) to mitigate the effect of make-up by learning the meta sub-
space [28], which can maximize the correlation of feature vectors
belonging to an individual. This approach should be helpful in
mitigating the effect of make-up in periocular recognition.

6.4 Additional Experiment
6.4.1 Evaluation and Results

To provide more evidence for the effectiveness of the proposed
method, we conducted the same experiments using the CASIA-
Iris-Lamp dataset.

Using the experimental processing described in Section 4,
we obtained human eye images from the CASIA-Iris-Lamp
database [24]. Multiple images of each person had been taken
using a near-infrared camera with a lamp close to the person ei-
ther turned on or turned off. We used images of the naked eye
(without eyeglasses) for 408 people. For each person, we used
eight images (four for training and four for testing). The train-
ing and testing datasets thus each contained 1,632 images (408 ×
4). The number of matching pairs in each dataset was 1632C2 =

1,330,896 (genuine - genuine: 4C2 × 408 people = 2,448; gen-
uine - imposter: 1,328,448). We calculated the iris and periocular
matching scores for these pairs and then applied the proposed
method and the weighted sum method. We performed this ex-
periment 20 times with different training and testing images and
averaged the results.

Table 6 shows the EER and identification rate for each feature
for the proposed method. Table 7 shows the EER and identifi-
cation rate for each feature combination for both the proposed
method using AdaBoost and the weighted sum method. The
EERs when AdaBoost and two features (lines 1, 2, and 3 in Ta-
ble 7) were used were better than when one feature (Table 6) was
used. The EER when AdaBoost and four features (line 4 in Ta-
ble 7) were used was better than when AdaBoost and two features
(lines 1, 2, and 3 in Table 7) were used. The EER when AdaBoost

Table 6 EER and identification rate for each feature (CASIA-Iris-Lamp).

Feature
EER (%) Identification rate (%)

left right left right

iris 8.5 9.4 61.6 58.9

periocular
LBP 15.0 18.8 28.8 24.0
HOG 17.8 21.2 23.5 18.5
SIFT 8.0 9.2 56.4 49.4

Table 7 EER and identification rate for each feature combination for proposed and weighted sum meth-
ods (CASIA-Iris-Lamp).

Features combination
EER (%) Identification rate (%)

AdaBoost Weighted sum AdaBoost Weighted sum

left right left right left right left right

1. iris+periocular region (LBP) 2.8 2.6 2.9 3.3 84.1 84.2 78.2 77.3
2. iris+periocular region (HOG) 3.2 3.1 3.6 3.5 81.3 81.5 72.2 75.3
3. iris+periocular region (SIFT) 1.7 1.7 1.7 1.7 90.2 90.2 90.1 91.2

4. iris+periocular region (LBP, HOG, SIFT) 1.6 1.6 1.9 2.4 91.5 91.2 88.5 86.1
5. iris+periocular region (LBP, HOG, SIFT) [left+right] 0.6 1.2 97.2 92.5

and eight features (line 5 in Table 7) were used was better than
when AdaBoost and four features (line 4 in Table 7) were used
and when AdaBoost and two features (lines 1, 2, and 3 in Ta-
ble 7) were used. The EERs when AdaBoost and two features
were used were slightly better than when the weighted sum and
two features were used. This advantage became larger when four
features were used. It became still larger when eight features were
used. The EER when AdaBoost and eight features were used was
the lowest in Table 7. We think that LBP and HOG provided
a poor performance in the additional experiment because images
from the CASIA-Iris-Lamp database had been taken using a near-
infrared camera.

The identification rate when AdaBoost and two features (lines
1, 2, and 3 in Table 7) were used were better than when one fea-
ture (Table 6) was used. The identification rate when AdaBoost
and four features (line 4 in Table 7) were used was better than
when AdaBoost and two features (lines 1, 2, and 3 in Table 7)
were used. The identification rate when AdaBoost and eight fea-
tures (line 5 in Table 7) were used was better than when AdaBoost
and four features (line 4 in Table 7) were used and when Ad-
aBoost and two features (lines 1, 2, and 3 in Table 7) were used.
The identification rate when AdaBoost and eight features were
used was better than when the weighted sum and eight features
were used. The identification rate when AdaBoost and eight fea-
tures were used was the highest in Table 7.

Figure 7 shows the ROC curves. The vertical axis represents
the FRR, and the horizontal axis represents the FAR. The per-
formance of the proposed method when eight features (line 5 in
Table 7) were used was better than when two or four features were
used. It was also better than that of the weighted sum method for
all combinations.

Figure 8 shows the cumulative match characteristic curves.
The vertical axis represents the CMR (accuracy), and the hori-
zontal axis represents the number of candidates (rank). The per-
formance of the proposed method when eight features (line 5 in
Table 7) were used was better than when two or four features were
used. It was also better than that of the weighted sum method for
all combinations.

The training and testing errors when using eight features are
plotted in Fig. 9. The vertical axis represents the EER, and the
horizontal axis represents the number of weak classifiers. A solid
line represents the training error and a dotted line represents the
testing error. The figure shows that recognition time and recog-
nition accuracy can be controlled flexibly in accordance with the
application because the recognition accuracy can be controlled by
adjusting the number of weak classifiers.
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Fig. 7 ROC curves (CASIA-Iris-Lamp).

Fig. 8 CMR curves (CASIA-Iris-Lamp).

Fig. 9 Training and testing errors (CASIA-Iris-Lamp).

6.4.2 Effectiveness of Applying AdaBoost
The feature corresponding to the weak classifier with the low-

est error rate is selected in each round of AdaBoost training. The
features selected by AdaBoost when eight features were used are
listed in Table 8. The features for which the single-feature recog-

Table 8 Features selected by AdaBoost (CASIA-Iris-Lamp).

Round Feature selected Feature weight (α)

1 left SIFT 1.26
2 right iris 1.06
3 left iris 0.77
4 right SIFT 0.64
5 left LBP 0.50
6 right SIFT 0.32
7 left iris 0.31
8 right LBP 0.29
9 right HOG 0.29

10 left SIFT 0.28

nition accuracy (see Table 6) was high were preferentially se-
lected. The weights of the features selected in the early rounds
were larger than those selected in the later rounds. This indicates
that automatic feature selection using AdaBoost is an effective
approach. For fusion of the left eye and right eye features, the
features extracted from the left and right images were selected
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Fig. 10 Score map and decision boundary (CASIA-Iris-Lamp).

interchangeably. This improved EER and indentification rate,
meaning that fusing the left and right eye features is an effective
approach.

We investigated the decision boundaries generated by the Ad-
aBoost and weighted sum methods. The score map and deci-
sion boundary for the iris and periocular region (LBP feature) are
shown in Fig. 10. The vertical axis represents the scores output
by the classifier using the LBP feature of the periocular region.
The horizontal axis represents the matching scores output by the
classifier using the iris feature. The blue points represent the
scores for the genuine images, and the red points represent those
for the imposter images. The decision boundaries are shown for
the EER. The distributions of the scores overlap, and the deci-
sion boundary between genuine and imposter is nonlinear. How-
ever, the decision boundary for the weighted sum method is linear
while that for AdaBoost is nonlinear. This means that the deci-
sion boundary for AdaBoost more clearly identifies the scores for
the genuine images. The proposed method is thus better than a
weighted sum method for identifying genuine images.

7. Conclusion

Our proposed identification method for searching for a spe-
cific person among other people is based on fusion of the iris and
periocular features using AdaBoost. Effective features are au-
tomatically selected by defining a feature vector for each weak
classifier that consists of only one feature. This enables ef-
fective features to be selected by selecting effective classifiers.
Evaluation using eight features (iris left, iris right, periocular
region (LBP left, LBP right, HOG left, HOG right, SIFT left,
SIFT right)) in comparison with a method that uses a weighted
sum to integrate the scores revealed three interesting results.
First, the more features that were used, the more precise the iden-
tification due to selecting effective features. The lowest EER was
1.3% for eight features, and the highest identification rate was
94.1% for eight features. Second, the more features that were
used, the better the relative performance of the proposed method
(difference in EER of 1.1% for eight features; difference in iden-
tification rate of 1.8% for eight features) due to the generation
of a nonlinear boundary. Third, using an effective combination
of information from both eyes improved the accuracy (differ-
ence in EER between four-feature case and eight-feature case was
0.7%; difference in identification rate between four-feature case
and eight-feature case was 4.6%). Experiments conducted using
the CASIA-Iris-Lamp dataset provided more evidence for the ef-
fectiveness of the proposed method.

Future work includes evaluating the performance when the dis-

tance between the person and camera is variable.
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