
IPSJ SIG Technical Report

Vulnerability Is the Plan the Plan Is Death

Hiroki Kashiwazaki1,a)

Abstract: An author is a spider-like creature who has decided that, since he is intelligent, he will resist the instincts
which lead his species through an exceptionally violent life-cycle which they call “the Plan” – including a drop in
intelligence during “winter”. Last December, a certain university announced large-scale personal information leak
caused on several systems by several unauthorized accesses. Security advisory consulting companies order the univer-
sity to “strengthen governance in their own institutes”. This paper shows an aftermath of the personal information leak
incident in the university and how administration bureau deals with a lot of the vulnerability in the university.

1. Introduction
In order to promote the activities of the organization smoothly,

various tasks were computerized (to be informatization). Com-
puterized works are provided by an information service, and the
information service means an application operating on a standard
OS or server software. There are no vulnerable-free OS, server
software, and applications, and as soon as the vulnerability is dis-
closed, it must respond promptly. However, in the stack structure
where the server software is on the OS and the application is on
the server software, modification and change of the lower stack
may affect the upper stack. In order to keep the SLA above a
certain level, it may be necessary to test whether the stacks above
the software is affected before updating the software. The time
required for this test depends on the size of the stack at the higher
level, and the test procedure is not specified, and the increase in
the time required for the test shows nonlinearity. Meanwhile, the
number of staff who operate and manage the information service
is constant (sometimes decreases) unfortunately.

Especially in modern information systems, applications do not
simply operate on server software, but applications run using var-
ious frameworks that depend on more various libraries, and co-
operation with other services such as databases (Fig. 1). In this
way, the time required for testing increases exponentially, and
eventually system administrators will think like this: “We do not
have to deal with vulnerabilities,” he says. This is, of course,
thought stops and delusions, but on the other hand, there is one
truth for this delusion. The truth is that “how quickly we respond
to vulnerabilities and countermeasures after they are published is
a matter of risk assessment?”. If this evaluation cannot be done
quantitatively, who on the earth can blame the poor system ad-
ministrator mentioned above?

Anyway, what is the necessity of vulnerability management?
The primary significance is that the defense power against attacks
from malicious third parties increases. But that’s not all. It is also

1 Cybermedia Center, Osaka University, Ibaraki, Osaka, 567–0047, Japan
a) reo@cmc.osaka-u.ac.jp

operating system

hardware

conservative
structure of

application systems
modern structure of
application systems

server
software

application

operating system

hardware

server
software

applicaiton
framework

libraries

libraries

other server
(i.e. database)

application

Fig. 1 A comparative diagram of conservative and modern structure of ap-
plication systems

meant to suppress the speed of spread of infection when invaded
inside by some method. It is also significant as circumstantial evi-
dence to deny the doubt of infection spread. There are some cases
with no obvious physical evidence that can deny doubts of spread-
ing infection. In the cases, circumstantial evidence is important.
In December 2017, a Japanese university announced large-scale
personal information leak. According to open information, the
leak was caused on several systems by several unauthorized ac-
cesses. The university also announced that secondary damage
was not confirmed and leaked information did not include patient
information of a medical hospital in the university. Also in the in-
cident, circumstantial evidence played an important role to make
things happen.

Meanwhile, there are also problems of structure of the organi-
zation. In an organization with a simple tree structure, the head-
quarter of the organization can issue a command in a top-down
manner and subordinate organizations must follow it. However,
in an organization with complicated mesh networks like univer-
sity organizations, it is preferable for the author to promote au-
tonomous behavior by showing rationality, rather than by com-
mands or prerogatives, to govern the organization. In this paper,
the author show the improvement of the vulnerability checking
mechanism at a certain university and the results thereof.

ⓒ 2018 Information Processing Society of Japan 1

Vol.2018-IOT-42 No.7
2018/6/28

IPSJ SIG Technical Report

2. Method
There are various kinds of vulnerability checking software and

services. In this section, the author introduces the representative
vulnerability checkers.

2.1 Nessus
Nessus*1 is a proprietary vulnerability scanner developed by

Tenable Network Security*2. It is free of charge for personal use
in a non-enterprise environment*3. Features of Nessus are shown
below.
• Customize reports to sort by vulnerability or host, create

an executive summary or compare scan results to highlight
changes.

• Broad asset coverage and profiling (Network devices (Ju-
niper, Check Point, Cisco, Palo Alto Networks), printers,
storages, Virtualization environments (VMware ESX, ESXi,
vSphere, vCenter, Microsoft, Hyper-V, Citrix Xen Server),
various OS (Windows, OS X, Linux, Solaris, FreeBSD,
Cisco iOS, IBM iSeries), Databases (Oracle, SQL Server,
MySQL, DB2, Informix/DRDA, PostgreSQL, MongoDB),
Cloud (Salesforce, Amazon Web Services, Microsoft Azure
and Rackspace).

• Detect viruses, malware, backdoors, hosts communicating
with botnet-infected systems, known/unknown processes,
web services linking to malicious content.

• Compliance auditing: FFIEC, FISMA, CyberScope, GLBA,
HIPAA/ HITECH, NERC, SCAP, SOX.

• Configuration auditing: CERT, CIS, COBIT/ITIL, DISA
STIGs, FDCC, ISO, NIST, NSA, PCI.

Nessus consists of two main components; nessusd, the Nes-
sus daemon, which does the scanning, and nessus, the client,
which controls scans and presents the vulnerability results to the
user. Later versions of Nessus (4 and greater) utilize a web server
which provides the same functionality as the client. In typical
operation, Nessus begins by doing a port scan with one of its
four internal portscanners (or it can optionally use AmapM*4 or
Nmap*5) to determine which ports are open on the target and then
tries various exploits on the open ports. The vulnerability tests,
available as subscriptions, are written in NASL (Nessus Attack
Scripting Language), a scripting language optimized for custom
network interaction.

The Nessus Project was started by Renaud Deraison in 1998
to provide to the Internet community a free remote security scan-
ner[1]. On October 5, 2005, Tenable Network Security, the com-
pany Renaud Deraison co-founded, changed Nessus 3 to a pro-
prietary (closed source) license. The earlier versions appear to
have been removed from the official website since then. The
Nessus 3 engine is still free of charge, though Tenable charges
100 USD/month per scanner for the ability to perform configura-

*1 https://www.tenable.com/products/nessus/nessus-

professional
*2 https://www.tenable.com/
*3 For enterprise use, you should call the reseller such as TOYO Corpora-

tion.
*4 https://www.amap.no/
*5 https://nmap.org/

tion audits for PCI, CIS, FDCC and other configuration standards,
technical support, SCADA vulnerability audits, the latest network
checks and patch audits, the ability to audit anti-virus configura-
tions and the ability for Nessus to perform sensitive data searches
to look for credit card, social security number and many other
types of corporate data.

In July 2008, Tenable sent out a revision of the feed license
which will allow home users full access to plugin feeds. A pro-
fessional license is available for commercial use*6.

2.2 OpenVAS
The Nessus 2 engine and a minority of the plugins are still

GPL, leading to forked open source projects based on Nessus
like OpenVAS (Open Vulnerability Assessment System, origi-
nally known as GNessUs)*7. OpenVAS is a software framework
of several services and tools offering vulnerability scanning and
vulnerability management. The framework is part of Greenbone
Networks’ commercial vulnerability management solution from
which developments are contributed to the Open Source commu-
nity since 2009. The actual security scanner is accompanied with
a regularly updated feed of Network Vulnerability Tests (NVTs),
over 50,000 in total. All OpenVAS products are Free Software.
Most components are licensed under the GNU General Public Li-
cense (GNU GPL).

The Open Vulnerability Assessment System (OpenVAS) is a
framework of several services and tools. The core of this SSL-
secured service-oriented architecture is the OpenVAS Scanner.
The scanner very efficiently executes the actual Network Vulnera-
bility Tests (NVTs) which are served via the OpenVAS NVT Feed
or via a commercial feed service. The OpenVAS Manager is the
central service that consolidates plain vulnerability scanning into
a full vulnerability management solution. The Manager controls
the Scanner via OTP (OpenVAS Transfer Protocol) and itself of-
fers the XML-based, stateless OpenVAS Management Protocol
(OMP). All intelligence is implemented in the Manager so that
it is possible to implement various lean clients that will behave
consistently e.g. with regard to filtering or sorting scan results.
The Manager also controls a SQL database (sqlite-based) where
all configuration and scan result data is centrally stored. Finally,
Manager also handles user management includiung access con-
trol with groups and roles.

Different OMP clients are available: The Greenbone Security
Assistant (GSA) is a lean web service offering a user interface
for web browsers. GSA uses XSL transformation stylesheet that
converts OMP responses into HTML. OpenVAS CLI contains the
command line tool “omp” which allows to create batch processes
to drive OpenVAS Manager. Another tool of this package is a Na-
gios plugin. Most of the tools listed above share functionality that
is aggregated in the OpenVAS Libraries. The OpenVAS Scanner
offers the communication protocol OTP (OpenVAS Transfer Pro-
tocol) which allows to control the scan execution. This protocol is
subject to be eventually replaced and thus it is not recommended
to develop OTP clients*8.

*6 https://en.wikipedia.org/wiki/Nessus_(software)
*7 http://www.openvas.org/
*8 urlhttp://www.openvas.org/software.html

ⓒ 2018 Information Processing Society of Japan 2

Vol.2018-IOT-42 No.7
2018/6/28

IPSJ SIG Technical Report

2.3 Vuls
Vuls is Vulnerability scanner for Linux/FreeBSD, agentless,

written in golang*9. Developers of Vuls think that system ad-
ministrators have to perform security vulnerability analysis and
software update on a daily basis and the basis can be a burden.
To avoid downtime in production environment, it is common for
system administrator to choose not to use the automatic update
option provided by package manager and to perform update man-
ually. This leads to the following problems.
• System administrator will have to constantly watch out

for any new vulnerabilities in NVD(National Vulnerability
Database) or similar databases.

• It might be impossible for the system administrator to mon-
itor all the software if there are a large number of software
installed in server.

• It is expensive to perform analysis to determine the servers
affected by new vulnerabilities. The possibility of overlook-
ing a server or two during analysis is there.

Vuls is a tool created to solve the problems listed above. It has
the following characteristics.
• Informs users of the vulnerabilities that are related to the

system.
• Informs users of the servers that are affected.
• Vulnerability detection is done automatically to prevent any

oversight.
• Report is generated on regular basis using CRON or other

methods. to manage vulnerability.

2.4 Tenable.io
Tenable.io is a modern vulnerability management platform*10.

According to the datasheet, it brings clarity to security of the or-
ganization and compliance posture through a fresh, asset-based
approach that accurately tracks resources of the organization and
vulnerabilities, while accommodating dynamic assets like cloud
and containers. it can maximize visibility and insight and effec-
tively prioritizes the vulnerabilities, while seamlessly integrating
into environment of the organization. Key benefits of the products
are shown below.
• Eliminates blind spots: Tenable.io delivers the most compre-

hensive visibility into traditional and modern assets, such as
cloud, mobile, containers and web applications.

• Focuses effort with vulnerability state tracking: Tenable.io
puts the vulnerabilities you care about – those that are new,
active or resurfaced – front and center so you can focus your
efforts on things that really matter.

• Improves productivity through a streamlined user experi-
ence: With a modern, intuitive user interface and guided
in-application messaging, Tenable.io effectively leads you
through both common and complex tasks.

• Maximizes value via simplified integrations: Tenable.io in-
cludes pre-built integrations with complementary systems,
like password vault, patch management and Mobile Device
Management (MDM) solutions.

• Improves ROI with an elastic asset licensing model: Ten-

*9 https://github.com/future-architect/vuls
*10 https://www.tenable.com/products/tenable-io

Fig. 2 Diagram of Tenable.io

able.io offers a first-to-market assetbased licensing model
that consumes just a single license unit per asset.

The platform includes Nessus data sensors for active and agent-
based scanning and passive traffic listening, as well as an API and
SDK for those who want to automate the sharing of Tenable.io ca-
pabilities and vulnerability data, or build on the Tenable.io plat-
form. Built on the Tenable.io platform are a growing number
of applications that solve today’s toughest security challenges,
including vulnerability management, container security and web
application scanning – making it easy to start with one application
and upgrade to others as requirements grow. This combination
of applications, data sensors and automation delivers maximum
coverage and provides continuous visibility into assets and vul-
nerabilities – so you can take better-informed action to protect
what matters most (Fig.2).

In order to establish governance in the organization of the
mesh structure, the author considered that respective vulnerabil-
ity checking to each asset is necessary, not uniform vulnerability
check. For that purpose, it is insufficient to be able to do with
the web user interface for executing the vulnerability check, and
that programmable operation is also required. Also, top-down in-
structions in the organization of the mesh structure, such as “in-
stalling agents on the all servers”, etc, may create distrust of the
organization that ordered it. For this reason, passive vulnerability
scanning must be performed at the beginning of the vulnerabil-
ity check environment construction. The product that meets these
requirements was Tenable.io.

3. Design and implemetation
At the early stage after introducing Tenable.io to the university,

the operations of scanning vulnerability are executed manually
with the web interface. But manual operation occurred some mis-
takes and its human cost is pretty large. By using Tenable.io API,
the author have been making and publishing an object-oriented
design of Tenable.io by Ruby*11 correspond to Tenable.io API de-
sign*12. According to the class library, a large part of operations
was changed to be programmable and programmable procedure
could reduce the human cost.

The number of resource types of Tenable.io API is 25. Re-
source types consist of agent-config, agent-exclusions, agent-
groups, agents, assets, audit-log, bulk-operations, editor, exclu-
sions, exports, file, filters, folders, groups, permissions, plugins,

*11 https://github.com/reokashiwa/tenable
*12 https://cloud.tenable.com/api

ⓒ 2018 Information Processing Society of Japan 3

Vol.2018-IOT-42 No.7
2018/6/28

IPSJ SIG Technical Report

policies, scanner-groups, scanners, scans, server, session, target-
groups, users, and workbenches. All of the resource types can
be separated into two types of API. The first is API with GET
method and another is with POST method. API with GET method
requires several parameters of HTTP. Both of GET and POST
method require X-ApiKeys that is combination of accessKey
and secretKey. The parameters can be described in a single
hash. The hash is expanded to the sequence of the combination
between a key and its value binding with “=”. Tenable.io API
with GET method can be described as a method that requires two
arguments, a path and the hash. A Ruby implementation of a
common method with GET method is shown below.� �
class TenableIO

def initialize(conf)

accessKey = conf[:accessKey]

secretKey = conf[:secretKey]

@x_apikeys = sprintf("accessKey=%s; secretKey=%s",

accessKey, secretKey)

@uri = URI.parse(conf[:uri])

end

def get(path, parameter_hash)

@uri.path = path

if parameter_hash

query = String.new

parameter_hash.each{|key,value|

query = query + sprintf("%s=%s&", key, value)

}

query.gsub!(/&$/,"")

@uri.query = query

end

https = Net::HTTP.new(@uri.host, @uri.port)

https.use_ssl = true

response = https.get(@uri.request_uri,

{’X-ApiKeys’ => @x_apikeys})

end� �
API with POST method require POST body. The POST body

also can be described in a single hash. POST body is sent con-
verted to JSON format*13. A Ruby implementation of a common
method with POST method is shown below.� �
def post(path, post_body_hash)

@uri.path = path

https = Net::HTTP.new(@uri.host, @uri.port)

https.use_ssl = true

request = Net::HTTP::Post.new(@uri.request_uri,

{’X-ApiKeys’ => @x_apikeys,

’Content-Type’ => ’application/json’})

request.body = post_body_hash.to_json

response = https.request(request)

end� �
There are no needs to implement all the resource types of Ten-

able.io because i.e. scanner can not be added adaptively. The
resource types and methods necessary for flexible scan of each
asset are as follows.
• editor
– list: Returns the template (scan type) list.
• folders

*13 https://www.json.org/

– list: Returns the current user’s scan folders.
• scanners
– list: Returns the scanner list.
• scans
– copy: Copies the given scan.
– create: Creates a scan.
∗ uuid: The uuid for the editor template to use.
∗ settings.name: The name of the scan.
∗ settings.enabled: If true, the schedule for the scan

is enabled.
∗ settings.text_targets: The list of targets to scan

(required).
– export_request: Export the given scan. Once requested,

the file can be downloaded using the export download
method upon receiving a “ready” status from the export sta-
tus method.

– launch: Launches a scan.
– list: Returns the scan list.
By implementations of these classes and their methods, a sam-

ple code to execute “basic scan” to IPv4 address “192.0.2.1” is
shown below. config is a configuration hash given by a local
configuration file.� �
editor = Editor.new(config)

scan_list = editor.list({’type’ => ’scan’})

templates = scan_list[’templates’]

templates.each{|template|

if template[’name’] == ’basic’

basic_scan_uuid = template[’uuid’]

end

}

scanners = Scanners.new(config).list({})[’scanners’]

scanners.each{|scanner|

if scanner[’name’] == ’scanner’

scanner_id = scanner[’id’].to_s

end

}

scans = Scans.new(config)

post_body_hash =

{"uuid" => basic_scan_uuid,

"settings" => {

"name" => ‘uuidgen‘.chomp,

"scanner_id" => scanner_id,

"enabled" => "true",

"launch" => "ON_DEMAND",

"text_targets" => "192.0.2.1",

"emails" => "reo@cmc.osaka-u.ac.jp",

}

}

response = scans.create(post_body_hash).body� �
4. conclusion

The author designed and implemented to check the vulnerabil-
ities in the organization of mesh structure. Ruby implementation
is now in-progress. Python implementation will start soon. Auto-
mated checking is future works.

References
[1] : Nessus Network Auditing, Second Edition, Syngress (2008).

ⓒ 2018 Information Processing Society of Japan 4

Vol.2018-IOT-42 No.7
2018/6/28

