EHMMBPFSHYEFE 70775324 Vol.11 No.2 31 (June 2018)

RRBE

T— LY A Fa— L EAERIZE B
SRR LA v T 1 VR

R T

2018F1A16HER

BAEMS E FREOEBLICB W T, BT L ITRBIL L 72T — F2 W@ OREEIER T 5 2

WEERD., TUY I v arya—- FOEREAOIMEIcE b R E=7 1 v 7 ZEKORELT
HOBEBEENPMLCETCWS, LRV E=T 14 v 7 RBAED, Fa -V A P TEICRLEE £
T4y EREEDLYE, A VA PTEORIEHL LA VT4 VIR AT 2L TRIFERORW
I—=FPERTEL DAL AMOENT VS, LiL, PSR HHEIN TV AEEIT DR 7 ¢ —
KNy 7 Cld, BEEA T4 VIERTLHOREICBWTHEEO 32—V 4 FEsRoTEHRE XH§ 5
CENTEY, REICHHMZI - FE2ERLTLIV, IhERELT L1239 —BED JIT a2 /51
VBB 72D, ASBETIE, ZOMERSEET L EAEEICEN TR RELTHRE LT, 7V
7 MEEEFER L2V ATF Y TEDORI T 4 — RNy 7 #RET L, ZHIZED, HEOa— VA M
KORERE XBITTREL 2 VIO A » T4 VEFICBWT I — U4 A M L 72 BERE Hwas 2 &
WTE, EHu bt L 75, AFE%E Mozilla Firefox @ JavaScript LR SpiderMonkey (2
FERL, F)VE—T4 v 7 RBEOI— VI A b T EDRBEADBPTREIEZ R T2 & 2012, &IK
MAOREALO A REME R RN L, B X O THOBRE S ICOWTHIIT 5.

Efficient Function Inlining with Callsite Local Type Information

Tooru FuJisawal:®)

Presented: January 16, 2018

JIT compilers generate type-specialized code to improve performance of dynamically typed programming
languages. As production code becomes huge and abstract, optimization of polymorphic functions gets in-
creasingly important. If a polymorphic function can be considered monomorphic at each callsite, inline
expansion specialized for types appeared in each callsite is known to generate efficient native code. Nev-
ertheless, traditional compilation techniques with function-wise type feedback cannot distinguish types in
different callsites, so unnecessarily generic code is often generated, which requires an extra JIT compiling tier
to optimize inlined code. To address this issue, in this presentation, we propose an compilation technique
with object-structure-aware per-signature type feedback which distinguishes type information from different
callsites. This technique is applicable to existing implemntation. Functions are inlined with type information
specialized for the callsite in the first stage of JIT compilation, promoting further optimizations. We have
implemented our method in Mozilla Firefox’s JavaScript engine, SpiderMonkey. We discuss the applicability
of our method for polymorphic functions. Our evaluation shows that, despite the simple implementation,
the proposed method enhanced performance of benchmarks.

bORERY LA I R
Department of Electrical and Electronic Engineering, De-
partment of Information and Communication Engineering,
The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
) arai@eidos.ic.i.u-tokyo.ac.jp

© 2018 Information Processing Society of Japan

31



