
Electronic Preprint for Journal of Information Processing Vol.26

Regular Paper

Performance Improvement Techniques in Tightly Coupled
Multicore Architectures for Single-Thread Applications

Keita Doi1,†1 Ryota Shioya2,a) Hideki Ando2,b)

Received: September 22, 2017, Accepted: March 6, 2018

Abstract: Current multicore processors achieve high throughput by executing multiple independent programs in par-
allel. However, it is difficult to utilize multiple cores effectively to reduce the execution time of a single program.
This is due to a variety of problems, including slow inter-thread communication and high-overhead thread creation.
Dramatic improvements in the single-core architecture have reached their limit; thus, it is necessary to effectively use
multiple cores to reduce single-program execution time. Tightly coupled multicore architectures provide a potential
solution because of their very low-latency inter-thread communication and very light-weight thread creation. One such
multicore architecture called SKY has been proposed. SKY has shown its effectiveness in multithreaded execution of
a single program, but several problems must be overcome before further performance improvements can be achieved.
The problems this paper focuses on are as follows: 1) The SKY compiler partitions programs at a basic block level,
but does not explore the inside of basic blocks. This misses an opportunity to find good partitioning. 2) The SKY
processor always sequentializes a new thread if the forking core in which it is supposed to be created is busy. How-
ever, this is not necessarily a good decision. 3) If the execution of register communication instructions among cores is
delayed, the other register communication instructions can be delayed, causing the following thread execution to stall.
This situation occurs when the instruction window of a core becomes full. To address these problems, we propose the
following three software and hardware techniques: 1) Instruction-level thread partitioning: the compiler explores the
inside of basic blocks to find a better program partition. 2) Selective thread creation: the hardware selectively sequen-
tializes or waits for the creation of a new thread to achieve better performance. 3) Automatic register communication:
register communication is automatically performed by a small hardware support instead of using instruction window
resources. We evaluated the performance of SKY using SPEC2000 benchmark programs. Results on four cores show
that the proposed techniques improved performance by 4% and 26% on average (maximum of 11% and 206%) for
SPECint2000 and SPECfp2000 programs, respectively, compared with the case where the proposed techniques are not
applied. As a result, performance improvements of 1.21 and 1.93 times on average (maximum of 1.52 and 3.30 times)
were achieved, respectively, compared with the performance of a single core.

Keywords: multicore, single-thread performance

1. Introduction

Current multicore processors increase throughput by executing
multiple programs in parallel. Good scalability is achieved be-
cause the programs executed are independent. Transistor counts
on a single die increase according to Moore’s law. Thus, mod-
ern processors integrate increasingly large numbers of cores on a
single die, further increasing the throughput.

The breakdown of Dennard scaling where the clock frequency
does not scale even with advances in LSI technology makes it
necessary to use multiple cores to improve single program per-
formance. However, it is difficult to use even a small number
of cores to reduce the execution time of a single program. Fig-
ure 1 shows the performance improvement for four threads when
using four cores relative to a single thread. The programs are

1 Department of Electrical Engineering and Computer Science, Nagoya
University, Nagoya, Aichi 464–8603 Japan

2 Department of Information and Communication Engineering, Nagoya
University, Nagoya, Aichi 464–8603 Japan

†1 Presently with Okuma Corporation
a) shioya@nuee.nagoya-u.ac.jp
b) ando@nuee.nagoya-u.ac.jp

parallelized by Intel Composer XE *1. The benchmark programs
are selected from the SPEC2000 suite and are used for evaluation
in Section 4. “GM int” and “GM fp” are the geometric means
of the performance improvements for integer and floating-point
programs, respectively. The processor used for the evaluation is
an Intel Xeon E5-2670. The main memory size is 128 GB. As
shown in the figure, no performance improvement is observed for
the integer programs. For floating-point programs, a large perfor-
mance improvement is observed only in mgrid.

There are a variety of reasons for this poor performance im-
provement. Matrix-operation-based scientific applications can
be successfully parallelized in many cases. In contrast, gen-
eral applications are often difficult to parallelize, owing to ir-
regular data dependencies, complex control flows, and difficult
memory aliases. Also, communication among the cores must be

*1 Intel Composer XE is a successor to the Intel C++ Compiler, and is
known to have a high capability for sophisticated optimizations. The
aggressiveness of the parallelization can be specified using a compiler
option. Unfortunately, however, aggressive parallelization does not nec-
essarily achieve better performance when using this compiler. We select
the most suitable aggressiveness by attempting to compile each bench-
mark program with variations.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 1 Performance improvements for four threads relative to a single thread
using Intel Composer XE.

performed via the memory. This long-latency communication
means that the compiler selects only program partitioning with
few inter-thread dependences per thread length. Therefore, the
compiler tends to partition the program into coarse-grain threads
with either zero or few data dependencies. Furthermore, although
the memory context is shared among cores, the register context
must be copied to the forking core when a thread is created, and
this task is time-consuming. Again, this makes the compiler se-
lect only coarse-grain threads, losing many of the benefits of par-
allelization with fine-grain threads.

Tightly coupled multicore architectures have been proposed
to improve single-program execution performance [4], [9], [12],
[14], [18], [21], [23], [25]. These architectures commonly sup-
port inter-core register communication via a bus connecting
cores. Binaries are usually generated for these architectures by
their own parallelizing compiler. Low-latency inter-core commu-
nication and light-weight thread creation allow the compiler to
partition a program into fine-grain threads, even if there are many
inter-thread data dependences. Dramatic improvements to single-
thread performance through single-core improvements, including
increasing the clock frequency, are difficult. Therefore, tightly
coupled multicore architectures, such as SKY [9], are now worth
reconsidering. The main feature of SKY is non-blocking inter-

core register communication, which allows instruction-level par-
allelism (ILP) and thread-level parallelism (TLP) to be exploited
without interfering with each other. Using the automatic paral-
lelization compiler for SKY, a program is partitioned into fine-
grain threads at a basic block level, and the single-program exe-
cution performance is improved.

Although SKY has achieved a relatively high performance
level, several problems must be overcome for further performance
improvement. In this paper, we solve the following problems:
(1) The SKY compiler misses an opportunity to find good par-

titioning for high performance because partitioning is at a
basic block level and the compiler does not explore the in-
side of basic blocks.

(2) The conventional SKY processor sequentializes a new thread
to be created if the core where the new thread is supposed to
be created is busy. However, this misses another opportunity
for achieving higher performance because it can be benefi-
cial if the thread creation process waits for the forking core
to become idle.

(3) If the execution of inter-core register communication in-
structions is delayed, the other register communication in-
structions can be delayed, causing the following thread ex-
ecution to stall. This situation occurs when the instruction

window of a core becomes full.
The present paper proposes the following solutions for each

problem:
(1) Instruction-level partitioning: The compiler attempts to

search for a better partitioning boundary inside a basic block.
In this process, instructions are reordered if necessary.

(2) Selective thread creation: The hardware dynamically selects
between the options of sequentializing a new thread or wait-
ing for the forking core to become available to achieve better
performance.

(3) Automatic register communication: We prepare support
hardware to execute register communication instructions.
This hardware automatically sends registers without using
instruction window resources. Because the instruction win-
dow is not used, the instruction window never becomes full
due to register communication instructions, allowing the fol-
lowing instruction to be executed.

We evaluated the effectiveness of the three optimizations de-
scribed above using SPEC2000 benchmark programs. The re-
sults of execution on four cores show that the proposed optimiza-
tions improve the performance by 4% and 26% on average (max-
imum of 11% and 206%) for integer and floating-point programs,
respectively.

The remainder of this paper is organized as follows. Section 2
gives an overview of the SKY architecture and its automatic par-
allelizing compiler. The three problems and our proposed solu-
tions are described in Section 3, and evaluation results are pre-
sented in Section 4. Related work is discussed in Section 5, and
our conclusions are given in Section 6.

2. Overview of SKY

This section provides an overview of SKY. Section 2.1 de-
scribes the multithreading model that is assumed in SKY. Sec-
tion 2.2 gives an overview of the hardware organization. Finally,
Section 2.3 explains the compiler used for SKY.

2.1 Multithreading Model
The multithreading model in SKY is not a general model, but

is constrained to a certain degree to simplify both the hardware
and the compiler. The model is similar to that used in the multi-

scalar architecture [21]. The features of this model are described
as follows.

First, a thread consists of a dynamically continuous instruc-
tion stream and not of the disjointed parts of a stream. As shown
in Fig. 2 (a), each thread is simply a single part of the dynamic
stream. Second, each thread is created sequentially, as shown in
Fig. 2 (b). Multiple threads are executed in parallel in an over-
lapping manner. Thread creation and termination are carried out
using special instructions called fork and finish, which are in-
serted by the compiler.

2.2 Hardware Overview
This section gives an overview of the SKY hardware. For fur-

ther details, see Ref. [9].
SKY has a multicore architecture; however, unlike conven-

tional multicores, each core is tightly coupled, to enable register

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 2 Multithreading model in SKY.

Fig. 3 SKY processor architecture.

communication using a unidirectional ring bus, as shown in
Fig. 3 (a). Although core architecture modification is required
for this tightly coupled architecture, the modifications needed are
very modest. Thus, migration from existing architectures is sim-
ple. In the explanation of this section, we assume use of the Intel
P6-type architecture [7] (i.e., reservation station-based architec-
ture) as a base core architecture.

If a fork instruction is executed in a thread on a particular
core, then a new child thread is created in its successor core in
the direction of the ring bus. Note that fork instructions are ex-
ecuted non-speculatively in terms of their control dependencies,
because rolling back thread creation as a result of a misspecula-
tion complicates the hardware.

The ring bus is responsible for inter-thread register commu-
nication. Any specific core can send register values only to its
successor core and can receive register values only from its pre-
decessor core. To send a register value to a non-adjacent core, the
cores that lie between the sending and receiving cores must relay
the communicating register. To support register communication,
each core contains two unique structures: a send unit and a sync

table. These are shown in Fig. 3 (b) and are highlighted with thick
lines. The send unit executes a special instruction called send,
which sends the source register value to the successor core. Phys-
ically, this unit simply drives it to the ring bus. The sync table

(see Fig. 11) is responsible for receiving registers. The sync table
also plays a central role in non-blocking register communication,
where an instruction that is waiting for a register value does not
block the execution of subsequent instructions. This allows in-
structions to proceed down the pipeline to be dispatched to the
reservation station and to wait to receive its register value. The
instruction waiting in the reservation station receives its register
value sent later using the existing forwarding mechanism. The
tag is supplied from the sync table at receive. The waiting in-
struction also obtains the tag from the sync table at decode. This
non-blocking feature does not prevent ILP from being exploited
within a thread to enable exploitation of TLP.

Rolling back register sending due to misspeculation also com-
plicates the hardware. Therefore, similar to the fork instructions,
send instructions are executed non-speculatively in terms of their
control dependencies.

2.3 Compiler Overview
This section overviews the compiler for SKY. The compiler

for SKY first partitions a program into multiple threads so that
the performance increase gained by executing these threads in
parallel is maximized. It then computes the inter-thread commu-
nication registers. The following three sections explain the three
steps in these compilation phases.
2.3.1 Finding Candidates for Program Partitions

We partition programs at a basic block level. This fine-grain
partitioning can potentially extract more parallelism from pro-
grams than the other levels (e.g., loop or function levels) accord-
ing to the limit studies of TLP [10], [13], [15], [16]. Note that
fine-grain partitioning at a basic block can flexibly exploit the op-
portunity at various levels. In other words, the basic block parti-
tioning can exploit parallelism among functions and among loop
iterations, as well as purely among basic blocks.

As a candidate for program partitioning, we focus on a control-

equivalent basic block pair, X and Y, where X and Y include a
fork instruction and child thread start point, respectively [20].
We say that blocks X and Y are control-equivalent, if X dom-

inates [2] Y and Y simultaneously post-dominates [20] X. The
main reasons that we focus on the control equivalence are 1) post-
domination ensures that the control always reaches Y if X is exe-
cuted, and thus child thread execution is non-speculative in terms
of control dependence (note that SKY does not perform specu-
lative thread creation, as described in Section 2.2), and 2) basic
block relationships with control equivalence are accommodated
by general program structures (e.g., if-then-else and loops, where
(if-block, merging-block) pair and (head-block, tail-block) pair
are control-equivalent, respectively).
2.3.2 Estimation of Performance Gain for Partition Candi-

dates
The reduction in program execution time caused by execu-

tion of two parallel threads is the number of clock cycles in the
child thread that are executed in parallel with the parent thread.
Our compiler approximates this number based on the number of
sequentially-executed instructions in the child thread that can be
executed in parallel with the parent thread. We call this number
the performance gain.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

The performance gain is obtained based on the dependence dis-

tance, which is the number of instructions between two instruc-
tions with a data dependency relationship. If there is a single data
dependency over different threads (def→use), the performance
gain is obviously equal to the dependence distance between def
and use. Because there are generally multiple control paths be-
tween def and use, we compute the dependence distance using
the average distance weighted by the execution probability for
each path. The execution probability is obtained for each path by
profiling.

In general, there are multiple register and memory depen-
dences. We determine the performance gain for a specific thread
partitioning as being the minimum dependence distance for all
dependences (if there is no inter-thread data dependence, the per-
formance gain is the number of instructions between fork and
finish instructions). The compiler then eliminates thread can-
didates with performance gains that are lower than a predeter-
mined threshold. The compiler then selects the thread candidates
to observe the constraints of the multithreading model in SKY,
which are described in Section 2.1. Finally, it inserts the fork
and finish instructions for the selected threads.
2.3.3 Inserting Send Instructions

If a register value that is defined in thread Ti is used in thread
T j, the compiler then inserts a send instruction in thread Ti to
send the register value. We call such a send instruction a true

send instruction. Technically, the compiler inserts the true send
instructions by computing the reaching of definitions [2].

As described in Section 2.2, if at least one thread exists be-
tween threads Ti and T j, then send instructions are also required
in the threads between Ti and T j. These send instructions are
used to simply transfer the register values from the parent thread
to the child thread. We call this type of send instruction a transfer

send instruction. The compiler inserts the transfer send instruc-
tions immediately after a fork instruction.

3. Problems and Solutions

This section describes the three problems that we discuss in this
paper and explains the techniques used to solve each problem.

3.1 Instruction-Level Partitioning
3.1.1 Problem

Because the SKY compiler partitions a program on basic block
basis, the thread start point is always at the beginning of a ba-
sic block. While this level in program partitioning is a smaller
grain when compared with most other parallelizing compilers,
it does sometimes miss an opportunity to find good partitioning
with high performance gain.

Figure 4 shows an example for this case. Figure 4 (a)
shows a program fragment that consists of several basic blocks,
B0 . . . Bi, Bj . . . Bk. Blocks B0 and Bj are control equivalent, and
the path through Bi is a frequently executed path between B0 and
Bj. There is a dependence chain consisting of instructions i0, i1,
and i3, while instructions i2 and i4 are independent of the other
instructions in B0 . . . Bi.

Now consider program partitioning into T0 and T1 on a basic
block basis, as shown in Fig. 4 (b), where the fork and finish

instructions are inserted at the beginning of the basic blocks B0

and Bj, respectively. As shown in the figure, because there is a de-
pendence between instructions i0 and i1, and the path through Bi

is a frequently executed path, little performance gain is obtained.
However, we now consider reordering of the instructions in

basic block Bj, where we place the instructions i1 and i3 on
the dependence chain at the beginning of the basic block, then
place the finish instruction, and finally place the independent
instructions i2 and i4, as shown in Fig. 4 (c). In this partitioning,
the instructions i1 and i3, which depend on i0, are included in
thread T0, and no instruction in thread T1 depends on the instruc-
tions in thread T0. Therefore, a high performance gain can be
obtained by executing T0 and T1 in parallel.
3.1.2 Solution

As described in the previous section, finding a thread boundary
within a basic block combined with reordering of the instructions
can improve overall performance. We carry out this task by find-
ing a cut in a dataflow graph such that the minimum weight of the
edges crossing the cut is maximized. First, we model the prob-
lem, and then we explain our algorithm. Finally, a small working
example is given.

Modeling the problem. We represent the instructions and
their data dependencies in the target basic block in which we at-
tempt to find a thread boundary as a weighted directed graph G.
This graph G is generally called a dataflow graph, where a node
and an edge represent an instruction and the data dependence, re-
spectively. The weight of the edge is the dependence distance in
the original code if the associated data dependence type is true, or
it is ∞ otherwise (i.e., anti- or output dependence). In addition,
there are special nodes, in the form of a start node vs and an end
node ve, which represent those nodes that collect all instructions
preceding and succeeding the target basic block, respectively. If
there are true data dependences between an instruction in the tar-
get basic block and an instruction in nodes vs or ve, then they
are connected with an edge with the weight of the dependence
distance. However, if the dependence type is an anti- or output
dependence, they are ignored because the order of vs (or ve) and
the nodes in the target basic block do not change in this algorithm,
because we only reorder instructions in the target block.

Under these modeling conditions, the problem can be de-
scribed as follows:
• Goal: Find a cut that partitions G into subgraphs S and T

such that the evaluation function score is maximized.
• Evaluation function: Output the minimum weight in the cut-

set.
• Constraint: The direction of any edge that crosses the cut

must be from S to T .
Semantically, S and T represent the instructions included in the
parent and child threads, respectively, and the evaluation func-
tion score represents the performance gain with respect to these
threads.

Reducing the graph. In preparation for execution of the core
of our algorithm, we reduce the input graph G to simplify the
core algorithm. This reduction process first picks up two nodes
(excluding vs and ve) connected by an edge with a finite weight,
and then combines these two nodes into a single node. Inclusion

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 4 Program partitioning on a basic block basis and optimal partitioning on an instruction-level basis
with instruction reordering.

Fig. 5 Graph reduction procedure.

of an edge that connects these nodes to the cut-set is obviously
not beneficial, because the number of instructions within a basic
block is generally small, and thus the performance gain is small.

We explain this reduction using the example shown in Fig. 5.
First, we pick up nodes v1 and v2, which are connected by an
edge with a weight of 1. We remove this edge and reduce the two
nodes into node v′1, as shown in Fig. 5 (b). In this new graph, there
are two edges between v0 and v′1. Because the evaluation function
outputs a minimum weight for the edges in a cut-set, we take the
edge with the smaller weight, thus converting the graph as shown
in Fig. 5 (c).

During the reduction procedure, if edges that connect nodes
with different directions appear, then we also reduce these nodes,
because the cut crossing these edges violates the constraint that
was described previously (i.e., the direction of any edge crossing
the cut must be from S to T).

Because any edge with a finite weight within the target basic
block is removed by this reduction procedure, we can obtain the
following lemma:

Lemma 1. Edges with a finite weight are only those that
lie between the nodes in the target basic block and vs or

ve, if they exist.
Core algorithm. The algorithm starts with the initialization,

letting the cut be one that crosses the edges from vs to the other
nodes. This cut represents our original program partitioning,
which was based on the basic blocks. The algorithm evaluates
the cut-set, and then carries out the following steps:
(1) The algorithm removes an edge with a minimum weight

from the cut-set by node motion from T into S. Because this
edge determines the evaluation function score, this removal
process can improve the evaluation score. The associated
node motion newly adds the edge that is connected to the
moved node to the cut-set.

(2) If the above node motion creates an edge that violates the
constraint (see the section of “modeling the problem”), the
algorithm then removes this edge from the cut-set by moving
the problem node from T into S.

(3) The algorithm evaluates the cut-set. If the evaluation score
is improved, the algorithm repeats the steps above; other-
wise, it stops this loop procedure and outputs the cut-set de-
termined in the previous iteration as an optimal solution.

This hill-climbing algorithm produces an optimal solution be-
cause:
(1) The algorithm removes the edges in an ascending order with

respect to weights. Therefore, it basically always improves
the solution by repeating the node motions.

(2) If any node motion causes the evaluation score to decrease,
this means that the edge (the start point of which is the
moved node) has been inserted into the cut-set, and its
weight becomes the new minimum. However, this edge is
connected to ve from lemma 1, and thus cannot be removed
from the cut-set. Consequently, no node motion exists that

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 6 Core algorithm for instruction-level partitioning.

would improve the solution.
We formally describe the algorithm using the pseudo code

shown in Fig. 6. The algorithm initializes the cut-set as a set of
edges crossing from vs to the other nodes (lines 2 and 3), and then
evaluates this cut-set (line 5). The algorithm then finds the edge
that is crossing the cut with the minimum weight (line 9), and at-
tempts to remove this edge from the cut-set by moving the node
that forms the end point of this edge from T to S. If this node
is ve, then the iteration of the algorithm is terminated (line 11),
because ve must be in T and thus cannot be moved. Otherwise,
the algorithm moves this node and updates the cut-set (line 12). If
this node motion creates an edge that violates the constraint, then
the algorithm moves the node at the start point of each violating
edge from T to S to solve the violation and then updates the cut-
set (lines 15 and 16). Finally, the iteration evaluates the cut-set
(line 20). If the evaluation has not improved, the algorithm then
ends (line 21) by outputting the cut-set from the previous itera-
tion (line 25); otherwise, the cut-set and the evaluation score are
saved and the algorithm loop is repeated (lines 22 and 23).

Working example. We describe a working example for the
core algorithm using Fig. 7.

Figure 7 (a) shows the initial state. The graph is cut immedi-
ately below node vs. The edge with the minimum weight in the
cut-set is vs→v2, which is 5.

The algorithm then moves node v2 from T to S to remove this
edge, as shown in Fig. 7 (b). The edge v1→v2 now violates the
constraint. The algorithm thus moves node v1 from T to S to re-
move this edge, as shown in Fig. 7 (c).

The algorithm then evaluates the cut-set and obtains a score
of 30 (the weight of the edge vs→v4). Because the evaluation
score has been improved, the algorithm continues. The algorithm
moves node v4 from T to S, as shown in Fig. 7 (d). There is no
violating edge, so the algorithm evaluates the cut-set and obtains

Fig. 7 Working example of core algorithm for instruction-level partitioning.

a score of 10. This evaluation score is worse than that in the pre-
vious iteration. Thus, the partition obtained in the previous itera-
tion, S = {vs, v1, v2} and T = {v3, v4, ve}, is the optimal solution.

3.2 Selective Fork
3.2.1 Problem

When a fork instruction is executed but the successor core is
busy with execution of another thread, a new child thread cannot
be created at this time. We explain how the conventional SKY
architecture handles this case using Fig. 8. In this example, the
processor has four cores, and threads T0 to T3 are executed in
cores 0 to 3, respectively. Now, a fork instruction is executed in
T3 in core 3. However, the successor core (core 0 in this case) is

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 8 Thread handling in the conventional SKY architecture when a new
thread cannot be created because the successor core is busy.

Fig. 9 Delaying the creation of a thread until the target core becomes idle.

busy, and thus the new thread T4 cannot be created at this time, as
shown in Fig. 8 (a). The fork instruction is then invalidated, and
the thread T4 that should have been created is executed in core 3
after T3 is finished, as shown in Fig. 8 (b). We call this behav-
ior thread serializing. Note that thread T4 is not created in this
case, but is simply executed after T3 finishes. In this case, the
associated send instructions are also invalidated, where the fork
and associated send instructions are identified by the thread ID
encoded in each instruction [9].

While this policy in the conventional SKY architecture makes
the hardware simpler, an opportunity for performance improve-
ment is being missed. In other words, there is a case where if the
creation of T4 in core 0 is delayed until T0 is finished, the perfor-
mance can then be improved as shown in Fig. 9 (a). However, this
is not always the case. As Fig. 9 (b) shows, if T3 is finished earlier
than T0, the creation of T4 in core 0 degrades the performance,
and the execution of T4 in core 3 as per conventional method is
the better choice.
3.2.2 Solution

Delaying the creation of a thread is not necessarily beneficial,
as described above. Specifically, if the thread that is currently
running in a core where a new thread is to be created finishes
earlier than the thread where the fork instruction is executed,
then delaying the creation of the thread is beneficial; otherwise,
it is beneficial when the new thread is serialized after the fork-
ing thread. Having considered these situations, we propose the
following scheme:
• If a fork instruction is executed, but the successor core is

busy, then the thread creation is reserved. Send instructions
that send register values to the reserved thread are executed,
and the register values and numbers are buffered.

• If the thread in the successor core finishes earlier than the

forking thread, then the reserved thread is actually created
in the successor core, and the buffered register values and
numbers are sent to the successor core; otherwise, the thread
reservation is canceled and the thread is serialized after the
forking thread. In addition, the buffered registers to be sent
are invalidated.

To implement this scheme, we prepared two structures. The
first is a single register called a thread creation reservation reg-

ister (TCRR), which holds and reserves fork instructions with a
valid bit. The other is a register send reservation buffer (RSRB),
which is a FIFO buffer that has the same number of entries as the
number of logical registers *2, where each entry holds a register
number and a value to send.

If a fork instruction is executed and the successor core is busy,
it is then written into the TCRR. If an associated send instruction
is executed, then the register number and the value that should
have been sent to the successor thread are written into the RSRB.
If the thread in the successor core finishes and the core becomes
idle before the forking thread finishes, then a child thread is cre-
ated by referring to the TCRR and the TCRR is then invalidated.
In addition, the registers that were held in the RSRB are sent
to the successor core. Conversely, if the forking thread finishes
while the successor core is still busy and the TCRR is valid, the
TCRR and the RSRB are simply invalidated. This means that the
child thread must be serialized after the forking thread. Note that
in the child thread creation case, the send instructions that are
executed after the child thread creation send the register values to
the successor core as usual.

3.3 Automatic Register Send
3.3.1 Problem

As described in Section 2.3, send instructions are inserted
in the last phase of compilation. This means that although the
compiler considers the data dependency between the definitions
and the uses (i.e., def→use), it does not consider the depen-
dency at runtime, where the send instructions are involved (i.e.,
def→send→use). True send instructions do not affect the ac-
tual performance gain significantly, because the point at which a
definition is determined to reach the use points is usually close to
the definition point. However, the transfer send instructions can
affect the actual performance gain in a specific situation.

We explain this situation using the example shown in Fig. 10.
Figure 10 (a) shows two data dependencies among three threads,
T0, T1, and T2, i.e., def A→use A and def B→use B. In
Fig. 10 (b), the send instructions are inserted for these two de-
pendencies, where send A0 and send B0 are true send instruc-
tions, while send A1 is a transfer send instruction. Note that
the transfer send instructions are inserted immediately after the
fork instruction, as described in Section 2.3.3. Because send A1

is fetched early, i.e., before send A0 is executed, the execution
of send A1 is delayed. However, this delay does not necessar-
ily delay the execution of send B0 because of the non-blocking

*2 Only the registers that are alive [2] at the start point of the child thread
in each thread must be sent, as described in Section 2.3.3. Therefore, the
maximum number of entries required for the RSRB is the total number
of logical registers.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 10 Performance degradation due to transfer send instructions.

register communication scheme that uses the instruction execu-
tion reordering capabilities of superscalar processors. Note also
that no instruction depends on the transfer send instructions
within the thread, and thus any instruction that follows the trans-
fer send instructions can be executed before execution of the
transfer send instructions. Figure 10 (c) shows this instruction
execution reordering, where def B and send B0 are executed
before send A1. The delay of send A1 does not adversely affect
the performance.

However, this instruction reordering is constrained by the in-
struction window size, and particularly by the reorder buffer
(ROB), of superscalar processors. If send A1 is stalled for a long
time at the head of the ROB, the ROB becomes clogged and fi-
nally becomes full. If send B0 is separated from send A1 by
more than the ROB size in the instruction count, then send B0

cannot be inserted into the ROB. As a result, the execution of
send B0 is delayed until the execution of send A1, without be-
ing reordered, as shown in Fig. 10 (d). The delay in execution of
send B0 causes a delay in execution of use B, and thus degrades
the performance.
3.3.2 Solution

We solve the problem described in Section 3.3.1 using a hard-
ware support. Specifically, when a transfer send instruction is de-
coded, and its source register has not yet been received, the trans-
fer send instruction is immediately removed, and the hardware
support instead will automatically send the register later when the
register is received from the predecessor core. Because transfer

Fig. 11 Sync table with a transfer flag.

send instructions are not inserted into the instruction window, the
problem that was described in Section 3.3.1 does not occur.

As the hardware support, we add an extra flag, called a trans-

fer, to each entry in the sync table, as shown in Fig. 11 *3. When a
thread is created, all transfer flags in the sync table are cleared. If
a transfer send instruction is decoded and its source register has
not been received, then the transfer flag of the associated entry is
set. The transfer send instruction is then removed and is thus not
inserted into the instruction window.

In contrast, when a register is received from the predecessor
core, the transfer flag in the associated entry in the sync table is
then checked.
• If the flag is set, it is found that the transfer send instruction

that should have sent the register has been removed. Thus,
the received register value is simply forwarded to the succes-
sor core through the ring bus.

• If the flag is not set, then the received register value is writ-
ten into the register file or is invalidated, depending on the
wait flag, as normal *4. In the former case, if a transfer send
instruction is fetched later, it will then send the received reg-
ister to the successor core.

Readers sometimes misunderstand that the scheme using the
transfer flag is not new because they believe that the multi-
scalar architecture [21] implements this scheme using the forward

bit [3]. However, it is a tag attached to a define instruction, and
the define instruction with the forward bit sends the destination
register to the succeeding core. In other words, it corresponds to
the combination of a define instruction and the true send instruc-
tion in the SKY architecture. Therefore, it is not related to the
problem addressed in this section.

4. Evaluation

Section 4.1 describes our evaluation environment, while Sec-
tion 4.2 determines the latency of send and fork instructions
through a circuit simulation for the following performance eval-
uation. Section 4.3 evaluates the performance when using the
optimization methods described thus far. Section 4.4 shows the
performance scalability relative to the number of cores. Finally,
Section 4.5 discusses on the evaluation results.

4.1 Evaluation Environment
For evaluation, we used five integer programs and six

*3 The total number of entries of the sync table is the number of logical
registers [9], which can be easily inferred from the fact that the index of
the table is the logical register number, as shown in Fig. 11

*4 The normal behavior of SKY controlled by the wait flag is not detailed
here, because it is not directly related to the topics in this paper. For
details, see Ref. [9].

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 1 Processor configuration.

core

Pipeline width 4-instruction width for each of
fetch, decode, issue, and commit

Reorder buffer 128 entries
Res. station 64 entries
Load/store queue 64 entries
Branch prediction 4-bit history, 1K-entry BHT and

16K-entry PHT PAp
10-cycle misprediction penalty

Function unit 4 iALU, 1 iMULT/DIV, 4 Ld/St,
4 fpALU, 1 fpMULT/DIV/SQRT, 4 send

caches and main memory

L1 I-cache 64 KB, 2-way, 32 B line
L1 D-cache 64 KB, 2-way, 32 B line, 2-cycle hit latency
L2 cache 8 MB, 4-way, 64 B line, 36-cycle hit latency
Main memory 300-cycle latency

floating-point programs from the SPEC2000 benchmark suite,
which were successfully compiled by the cross-compiler GCC
when targeting the SimpleScalar PISA [19] *5 with options -O6
-funroll-loops, and which could also be correctly compiled by
our SKY parallelizing compiler. The SKY compiler performs the
tasks described in Section 2.3, and generates the fork, finish,
and send instructions, using the SimpleScalar PISA binaries as
inputs. In the performance gain computation phase, profiling is
carried out using the train inputs (SPEC recommends using train

inputs for feedback directed optimization of a compiler [22]). The
compilation is automatic, with no need for manual intervention.

For performance evaluation, we built a simulator. We used the
ref inputs for the evaluation, where we simulated the 1B instruc-
tions selected by SimPoint 3.2 [5]. The configurations of the core,
the caches, and the main memory are given in Table 1. The pro-
cessor has four cores if not explicitly specified. The caches are
currently shared among the cores.

4.2 Latency of Send and Fork Instructions
Before the performance evaluation, we determine the latency

of send and fork instructions. Although the operation of these
instructions is simple, they need inter-core communication. Be-
cause the delay of long wires is significant in modern LSI tech-
nology [6], [17], the latency of these instructions is long. We eval-
uate the inter-core wire delay using an HSPICE simulation with a
16 nm predictive transistor model [1] developed by the Nanoscale
Integration and Modeling Group of Arizona State University. We
assume the resistance and capacitance per unit length of the wire
that are predicted by the International Technology Roadmap for
Semiconductors [8]. In addition, we assume the Intel Skylake
with 3 GHz clock frequency as a core size, where the height is
longer than the width. Because the Skylake is fabricated using
14 nm LSI technology, we linearly scale the size for the simula-
tion assuming 16 nm LSI technology.

Table 2 shows the core placement and the evaluated latency
of send and fork instructions for the different numbers of cores
for which we evaluate performance in the following sections. Re-
garding four and eight cores, we evaluated the configurations of
one- and two-dimensional placement. Table 2 shows the latency

*5 To the best of our knowledge, there is no cross-compiler that targets
PISA and can correctly compile SPEC2006 programs. Thus, we used
the SPEC2000 benchmark suite.

Table 2 Latency of send and fork instructions.

of better configurations in terms of the performance. In the
HSPICE simulation, we assume that the length of the commu-
nication wires between horizontally adjacent cores (short path)
is the Skylake core width, while that between vertically adjacent
cores (long path) is the Skylake core height. In the four-core case,
we assume that the wire length of the long path from the rightmost
core to the leftmost core is three times the Skylake core width.

4.3 Performance
Figure 12 shows the performance improvement with four

threads compared to single-thread execution using a single core.
The left and right bars represent the performance improvement
without and with the optimizations, respectively.

As shown in Fig. 12, in the SPECint2000 programs, the av-
erage performance improvement over the single thread is 16%
without optimization, but optimization improves it by 4.4%
(maximum of 11%). These programs are known as hard-to-
parallelize programs (e.g., the performance improvement is 1.05
in Ref. [24]), but a resulting performance improvement of 21% is
achieved on average (maximum of 52%).

In the SPECfp2000 programs, a relatively scalable perfor-
mance is achieved even without optimization in many programs;
the average performance improvement compared to a single
thread is 53%. By applying the optimizations, the overall per-
formance is significantly improved by 26% (maximum of 206%)
when compared with the case without optimization, and thus a
more scalable performance is achieved. The resulting perfor-
mance improvement is as much as 1.93 times on average (maxi-
mum of 3.30 times).

Figure 13 shows the contributions of each optimization to the
overall performance. The contribution of a specific single opti-
mization, Contrib(opt), is given by the following equation:

Contrib(opt) = (Per f f ull − Per felim(opt))/Per f f ull,

where Per f f ull and Per felim(opt) are the performance with full
optimization and the performance with a single optimization, opt,
eliminated, respectively.

In the SPECint2000 programs, as shown in Fig. 13 (a), the
automatic register send (auto-send) is significantly effective in
bzip2, and boosts the performance by 9.6%. Instruction-level par-
titioning (IL part) and the selective fork (sel fork) are also effec-
tive in several programs.

In the SPECfp2000 programs, as shown in Fig. 13 (b), IL
partitioning is highly effective in equake, with a contribution
of as much as 65%. The selective fork is widely effective;

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 12 Performance improvement with four threads over a single thread
execution.

Fig. 13 Performance contributions of each optimization.

its contribution is nearly equal to or more than 10% in three
programs.

4.4 Scalability
Figure 14 shows the performance relative to that for single

Fig. 14 Performance for various numbers of cores.

thread execution using a single core, when the number of cores
(threads) is varied. The blue and red lines represent the relative
performance without and with optimizations, respectively.

As shown in the figure, in the SPECint2000 programs, there is
little scalability. This is because these programs are very hard to
parallelize. In contrast, in the SPECfp2000 programs, although
scalability is less impressive in the case without the optimization,
good scalability is achieved in the case with the optimization.
When the optimization case is compared with the no optimization
case, the performance improvement caused by the optimizations
is 20 to 32%.

4.5 Discussion
This section discusses the evaluation results in the previous

sections.
4.5.1 Reason for Lack of Performance Improvement in

parser without the Optimizations
As shown in Fig. 12, no performance improvement is obtained

in parser in the case without the optimizations, compared with
the case of a single thread. According to the simulation log, al-
though the compiler inserted 220 fork instructions, no fork in-
structions were executed during the simulation. This can occur
because the compiler relies on the profile collected by execution
using the train inputs, while the simulation is carried out using the
ref inputs and the simulated sections are selected by SimPoint, as
described in Section 4.1.

In contrast, in the case with the optimizations, the compiler
inserts 353 fork instructions, and the total number of dynamic
fork instructions are 1,883,908. The increase in the number of
static fork instructions arises from applying the instruction-level

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

partitioning optimization. This optimization increases the perfor-
mance gain (see Section 2.3.2 regarding the definition of perfor-
mance gain), and consequently, more partitions are selected in the
thread selection process of the compiler because they have gains
larger than the predetermined threshold. The additional fork in-
structions are executed during the simulation.
4.5.2 Reason for the Performance Decrease in vortex

As shown in Fig. 12, the performance improvement is slightly
negative in vortex. The reason is as follows. Multithreaded ex-
ecution does not necessarily increase the performance. This is
due to the speculative execution of superscalar processors. As-
sume a single def→use relationship. If these two instructions
are executed in a single thread, these can be executed specula-
tively. In contrast, if these two instructions are allocated to dif-
ferent threads, the following instruction sequence is executed:
def→send→use. As described in Section 2.2, send instruc-
tions are not executed speculatively. Thus the execution of use
can be delayed. In addition, the latency of the send instructions is
more than a zero cycle, as shown in Table 2. These substantially
increases the latency of the def instruction.

To avoid selecting partitions whose performance gain does not
outweigh the negative effect described above, the compiler selects
partitions with performance gains that are more than the predeter-
mined threshold, as described in Section 2.3.2. However, this is
only a heuristic and not a perfect solution. Performance therefor
will sometimes drop when multithreaded execution is performed.
4.5.3 Reasons for the Different Effectiveness of Instruction-

Level Partitioning
Whichever optimization is used, its effectiveness depends on

whether there are opportunities for it to be applied or not in gen-
eral. This is also true for instruction-level partitioning optimiza-
tion. If there exist the cases we showed in Fig. 4 and the optimiza-
tion improves the performance gain, a performance improvement
is the result; otherwise, the optimization has no effect.

Figure 15 shows the weighted performance gain increase

(WPGI) for each thread, which is defined as follows:

WPGI = (GIL part −GNo IL part) ×Cthread, (1)

where GIL part and GNo IL part are the performance gain estimated
by the compiler with and without the instruction-level partition-
ing optimization, respectively. Further, Cthread is the execution
count of the associated thread. WPGI implies how many oppor-
tunities exist for applying the optimization, how significant the
optimization is in the executed program, and how much the opti-
mization is estimated to improve the performance using the asso-
ciated new partitioning. The larger the WPGI, the more effective
the optimization is, and thus the performance can be improved.
The graph shows only the top ten partitions of WPGI for each
program.

As shown in Fig. 15 (a), gzip, parser, and vortex have a posi-
tive WPGI in SPECint2000. This results in the performance im-
provement in gzip and parser. Note that a WPGI with a mag-
nitude of 107 increases the performance by several percent, be-
cause the total dynamic instruction count we simulated is 109.
In contrast, the performance is degraded in vortex slightly, be-
cause the increase in thread execution incurs the adverse effect

Fig. 15 Weighted performance gain increase (WPGI).

of multithreaded execution related to the problem of speculative
execution described in Section 4.5.2. For the same reason, the
performance is degraded slightly in bzip.

As shown in Fig. 15 (b), in the SPECfp2000 programs, the
WPGI is positive only for equake, and it is significant. This re-
sults in a considerable performance improvement in equake, as
shown in Fig. 13. Because this yields a significant performance
improvement, we show the details of the optimization.

The basic block the compiler successfully optimized is only a
single block. Figure 16 (a) shows the reduced graph of this basic
block, which is the input to the core algorithm of the instruction-
level partitioning. Before the optimization, a finish instruction
is placed at the top of the basic block. This means that the cut
is placed immediately below vs. As the graph shows, the perfor-
mance gain of this partition is only 15 (the weight of the edge
from vs to v2).

The instruction-level partitioning optimization moves the
nodes v2, v1, and v0 from T to S in this order, and then the process
ends. Figure 16 (b) shows the resultant cut. As the figure shows,
the performance gain is increased to 579, which is 39 times larger
than the original gain.
4.5.4 Computation Time of the Instruction-Level Partition-

ing Optimization
We measured the computation time needed to perform

instruction-level partitioning optimization. The computer we
used for this measurement has an Intel Xeon E5-1620 processor
with 3.5 GHz clock frequency and main memory of 8 GB.

The process of instruction-level partitioning includes
1) dataflow analysis, 2) the reduction of dataflow graphs,
and 3) execution of the core algorithm (see Section 3.1.2). We

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 16 Graph of the basic block in equake to be processed by the
instruction-level partitioning optimization.

Fig. 17 Computation time for performing instruction-level partitioning.

call the processes of 1) and 2) preprocessing. The software for
the preprocessing and core algorithms are written in Perl and
C++, respectively. The Perl interpreter and C++ compiler we
used are perl ver.5.18.2 and g++ ver.4.8.4, respectively.

Figure 17 shows the measured time for the static instruction
count of each program. As shown in the figure, the time needed
for the preprocessing is much longer than the time needed to ex-
ecute the core algorithm. The major reason is that the software
for the preprocessing is written in Perl so the interpretation is
much slower than compiled binary execution. The time for both
preprocessing and executing the core algorithm increases linearly
with the instruction count, hence increasing the total time linearly.
However, the time for any program is very short: the average time
is only 2.10 sec.

Fig. 18 Breakdown of the thread creations.

4.5.5 Discussion of the Selective Fork Optimization Evalua-
tion Results

Figure 18 shows the breakdown of the number of thread cre-
ations. The two bars for each program represent the break-
down without and with the selective fork optimization, respec-
tively. The left bar is broken down into “created” and “serial-
ized,” while the right bar is broken down into “created without
reservation,” “reserved and created,” and “reserved but serial-
ized”. “AVG int” and “AVG fp” represent the average numbers
for the SPECint2000 and SPECfp2000 programs, respectively.

As shown in the figure, selective fork optimization signifi-
cantly increases the rate of successful thread creation (i.e., “cre-
ated without reservation” + “reserved and created”) in many pro-
grams. In general, “reserved and created” occurs quite often in
the case with selective thread optimization, which contributes to
the increase in successful thread creation.

In many programs, the increase in the successful thread cre-
ation rate contributes to increased performance. However, a clear
positive correlation is observed only in a few programs (e.g.,
in mcf and equake); the correlation is unclear in many pro-
grams. For example, in applu, the successful thread create rate
increases to nearly 100%, but the performance improvement is
not very large. Conversely, in apsi, the successful thread create
rate is only slightly increased, but the performance improvement
is large. These uncorrelated relationships arise for the following
reasons. First, not all threads have the same performance gain.
The most important factor to increase performance is how many
threads with large performance gains are not serialized, but are
created. Second, the performance gain is constrained by data de-
pendences. Figure 19 shows the distribution of the number of

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 19 Distribution of the number of threads with respect to the number of
true send instructions per thread.

threads with respect to the number of true send instructions per
thread. For example, the point for the Y-value of 80% on the X-
value of 30 true send instructions indicates that the number of
threads where 30 true send instructions were sent is 80% of the
total number of dynamic threads. Note that true send instructions
are executed because there are true data dependences between
threads. As the figures show, all threads have many data depen-
dences. These dependences constrain the amount of parallelism
of threads. So the performance does not increase in proportion to
an increase in thread creations.
4.5.6 Discussion of the Automatic Register Send Evaluation

Results
As described in Section 3.3, the mechanism of the automatic

register send becomes effective if the instruction window re-
sources are unavailable when transfer send instructions attempt
to use these resources. Thus, it is intuitively found that there
are correlations between the performance contribution of the au-
tomatic register send optimization and the reduction rate of the
pipeline stall cycles on the instruction window resources owing
to this optimization. The correlations are shown in Fig. 20. Weak
correlations are found in both SPECint2000 and SPECfp2000.

However, vortex and ammp do not follow this trend. We be-
lieve that the reason is the adverse effect problem associated with
speculative execution described in Section 4.5.2 in vortex. As
discussed in Section 4.5.2, the partitions decided by the com-
piler include those that are not beneficial in vortex. The automatic
register send reduces the execution cycles of threads and this in-
creases the number of thread creations. The more the number of
thread creations is increased, the more the negative effect is in-
creased. This negative effect offsets the reduced cycles gained by

Fig. 20 Correlation between the performance contribution of the automatic
register send and stall cycle reduction rate of the instruction window
resources.

the automatic register send.
In contrast, we have not found a clear reason for the uncorre-

lation in ammp. In general, if there are multiple constraints that
prevent parallelization, we cannot parallelize the program with-
out all constraints eliminated. The sequential part of the pro-
gram severely limits the performance improvement according to
Amdahl’s law. Although we solved three of the problems that cre-
ated the constraints in this paper, there must be remaining prob-
lems that are as yet unknown. Such problems could be preventing
parallelizing in ammp.
4.5.7 Reason for the Difference in Scalability of Integer and

Floating-Point Programs
In general, multithreaded architecture and parallelizing com-

pilers are responsible for the extraction of parallelism contained
in programs. If the contained parallelism is high, they have more
chances to extract it and can turn it into performance improve-
ment; otherwise, they have fewer chances to extract it, and it is
difficult to improve performance.

It is very widely known that floating-point programs (most are
numerical programs) contain more parallelism than integer pro-
grams. In fact, the limit study [10] presented such results. Our
results, which show that good scalability can be achieved for the
floating-point programs, arises from this fact.

In contrast, integer programs are also widely known to be very
hard to parallelize and thus performance improvement is difficult.
This is because they have many data dependences with short dis-
tances and contain little parallelism. Again, the limit study [10]
showed that integer programs contain only a small amount of par-
allelism. In addition, the previous studies [11], [14], [18], [24],

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 3 Hardware cost for the automatic register send.

(additional)
hardware entries bits per entry cost (bytes)

TCRR 1 95 12
RSRB 64 70 560
sync table 64 1 8

total 580

[25] achieved poor performance improvement with less scala-
bility. For example, the performance improvement is only 1.05
times in Ref. [24]. Although the performance improvement in
this study is better than those in the several previous studies, our
results showing the poor scalability of the integer programs cor-
roborate the results in previous studies.
4.5.8 Hardware Cost for the Automatic Register Send

The hardware cost for the automatic register send is listed in
Table 3. In the third column, the bits per entry are shown for the
TCRR and RSRB, while the additional bit (the transfer flag) per
entry for the automatic register send is shown for the sync table.
Note that the number of logical registers is 64 (32 for integer and
32 for floating-point registers). As the table shows, the required
cost is very small; it is only 0.9% compared with the L1 I-cache
or L1 D-cache, for example.

5. Related Work

Sohi et al. first proposed a tightly coupled multicore architec-
ture, called multiscalar architecture, which supports inter-core
register communication using a unidirectional ring bus [21]. Our
SKY architecture is motivated by this multiscalar architecture.
However, the performance improvement techniques proposed in
this paper were not presented in the multiscalar studies.

Marcuello et al. and Tubella et al. proposed an architecture that
performs multithreaded execution by hardware alone, i.e., with-
out compiler assistance [14], [23]. Each core is tightly coupled
via a ring bus with register communication ability. The hard-
ware dynamically detects loops and then parallelizes them. The
inter-thread data dependences are relaxed by predicting the live-in
values of the threads. Although this architecture has the advan-
tage of realizing parallel thread execution without parallelization
by the compiler, the hardware approach means that it is difficult
to identify the benefits of the parallelization from a high-level
view, unlike the compiler approach; thus, it usually parallelizes
the inner-most loop and misses the potential benefits of parallel
thread execution.

Renau et al. proposed the out-of-order thread fork [18], al-
though the threads are conventionally forked in-order, i.e., in
the same order as they would be executed sequentially. The
out-of-order fork increases the overall performance even in non-
numerical applications (1.30× in the SPECint2000). To support
the out-of-order thread fork, the thread order must be managed,
and the authors proposed a scheme to do so. While the mecha-
nism is simplified when compared with a previous scheme, it has
not achieved sufficient performance improvements to justify the
hardware complications.

Zhong et al. proposed an architecture that supports various lev-
els of grain parallelism [25]. Narrow-issue cores are tightly cou-
pled with supporting register communication via dedicated buses.

There are two modes for this architecture: coupled and decou-
pled. In the coupled mode, the cores work as a VLIW proces-
sor, exploiting ILP. In the decoupled mode, the cores execute
fine-grain communicating threads that are extracted by their com-
piler. Although ILP can be exploited to collect the cores with
low-latency register communication, the latency of the register
communication has a negative impact on the exploitation of ILP.
Wide-issue superscalar processors can exploit ILP more effec-
tively, and this architecture is thus less useful for performance
enhancement in programs with less TLP.

Luo et al. proposed a scheme that dynamically determines the
level of a loop that is beneficial for parallelization [12]. Accord-
ing to the authors, profiling to find the benefits of parallelization,
which is adopted in most of their other work (e.g., Ref. [11]), is
highly dependent on the input data. Also, changing the phases
of execution alters the beneficial levels of the loops. By com-
bining a compiler hint with their proposed dynamic scheme, they
achieved 9.5% performance improvement when compared with a
static scheme in the SPEC2000 programs.

Campanoni et al. proposed a low-latency inter-core commuta-
tion architecture, similar to that of the multiscalar architecture,
with a parallelizing compiler that exploits its feature [4]. The
evaluation results using SPEC2000 programs show that the per-
formance is very sensitive to the latency of the inter-core com-
munication, and they claim that the low-latency communication
is thus very important.

Most studies on parallelization of single-thread applications
are carried out by a single partitioning level (i.e., either loop,
function, or basic block levels); they do not evaluate performance
by varying the partitioning level. This is because changing levels
requires exhaustive changes of the compiler, and comparison is
thus very difficult. However, the limit of parallelism depending
on partitioning levels has been previously assessed. Marcuello et
al. assessed loop and function levels, and concluded that loop-
level partitioning yields higher parallelism, and function-level
partitioning hardly yields any parallelism [13]. Nakajima et al.
assessed basic block level in addition to the levels Marcuello et
al. assessed [15], [16]. Their study results corroborate poor paral-
lelism in function-level partitioning as Marcuello et al. found, but
Nakajima et al. concluded that loop-level partitioning is also not
attractive. In contrast, they showed that basic-block-level par-
titioning exhibited significant amounts of parallelism, as previ-
ously indicated by Lam et al. [10]. Our partitioning policy of the
basic block level is based on these studies.

6. Conclusion

Single-thread performance has not seen dramatic improve-
ments for more than a decade. Tightly coupled multicore archi-
tectures provide a potential solution for this single-thread perfor-
mance barrier, because they enable very low-latency inter-thread
communication and very lightweight thread creation. These fea-
tures are advantageous in fine-grain parallel thread execution of
hard-to-parallelize programs with many inter-thread data depen-
dences. SKY is a typical tightly coupled multicore architecture.
Only slight modification is necessary to migrate from conven-
tional architecture to SKY.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

In this paper, we proposed three software and hardware tech-
niques to improve the performance of SKY. Our evaluation re-
sults using SPEC2000 benchmark suite demonstrate that the pro-
posed techniques achieved mean performance improvements of
4% and 26% (maximum of 11% and 206%) over the base per-
formance of SKY for a four-core processor executing integer and
floating-point programs, respectively. The resulting mean perfor-
mance improvements over a single core were as much as 1.21
times and 1.93 times, respectively (maximum of 1.52 times and
3.30 times, respectively).

Acknowledgments This work is supported by the Ministry
of Education, Culture, Sports, Science and Technology Grant-in-
Aid for Scientific Research (C) (No. 16K00070). This work is
also supported by VLSI Design and Education Center (VDEC),
the University of Tokyo with the collaboration with Synopsys
Inc.

References

[1] PTM, available from 〈http://ptm.asu.edu/〉.
[2] Aho, A.V., Sethi, R. and Ullman, J.D.: Compilers: Principles, Tech-

niques, and Tools, Addison-Wesley Publishing Company, Reading,
Massachusetts (1986).

[3] Breach, S.E., Vijaykumar, T.N. and Sohi, G.S.: The Anatomy of the
Register File in a Multiscalar Processor, Proc. 27th International Sym-
posium on Microarchitecture, pp.181–190 (1994).

[4] Campanoni, S., Brownell, K., Kanev, S., Jones, T.M., Wei, G.-Y. and
Brooks, D.: HELIX-RC: An architecture-compiler co-design for au-
tomatic parallelization of irregular programs, Proc. 41st Annual Inter-
national Symposium on Computer Architecuture, pp.217–228 (2014).

[5] Hamerly, G., Perelman, E., Lau, J. and Calder, B.: SimPoint 3.0:
Faster and more flexible program analysis, Journal of Instruction-
Level Parallelism, Vol.7, pp.1–28 (2005).

[6] Hou, C.: A Smart Design Paradigm for Smart Chips, 2017 IEEE Inter-
national Solid-State Circuits Conference, Digest of Technical Papers,
Plenary Session (2017).

[7] Intel: P6 Family of Processors - Hardware Developer’s Manual
(1998).

[8] International Technology Roadmap for Semiconductors, available
from 〈http://www.itrs2.net/〉.

[9] Kobayashi, R., Iwata, M., Ogawa, Y., Ando, H. and Shimada, T.: An
on-chip multiprocessor architecture with a non-blocking synchroniza-
tion mechanism, Proc. 25th EUROMICRO Conference, pp.432–440
(1999).

[10] Lam, M.S. and Wilson, R.P.: Limits of control flow on parallelism,
Proc. 19th Annual International Symposium on Computer Architec-
ture, pp.46–57 (1992).

[11] Liu, W., Tuck, J., Ceze, L., Ahn, W., Strauss, K., Renau, J. and
Torrellas, J.: POSH: A TLS compiler that exploits program structure,
Proc. Eleventh Symposium on Principles and Practice of Parallel Pro-
gramming, pp.158–167 (2006).

[12] Luo, Y., Packirisamy, V., Hsu, W.-C., Zhai, A., Mungre, N. and Tarkas,
A.: Dynamic performance tuning for speculative threads, Proc. 36th
Annual International Symposium on Computer Architecture, pp.462–
473 (2009).

[13] Marcuello, P. and González, A.: A Quantitative Assessment of
Thread-Level Speculation Techniques, Proc. 14th International Sym-
posium on Parallel and Distributed Processing, pp.595–601 (2000).

[14] Marcuello, P., González, A. and Tubella, J.: Speculative multithreaded
processors, Proc. 12th International Conference on Supercomputing,
pp.77–84 (1998).

[15] Nakajima, A., Kobayashi, R., Ando, H. and Shimada, T.: Limit of
Thread-Level Parallelism on Partitioning Levels and Speculations in
Non-Numerical Programs, Proc. 8th Symposium on Low-Power and
High-Speed Chips, pp.465–472 (2005).

[16] Nakajima, A., Kobayashi, R., Ando, H. and Shimada, T.: Limits of
Thread-Level Parallelism in Non-numerical Programs, IPSJ Trans.
Advanced Computing Systems, Vol.47, No.SIG 7 (ACS 14), pp.12–20
(2006).

[17] Palacharla, S., Jouppi, N.P. and Smith, J.E.: Quantifying the complex-
ity of superscalar processors, Technical Report CS-TR-1996-1328,
University of Wisconsin-Madison (1996).

[18] Renau, J., Tuck, J., Liu, W., Ceze, L., Strauss, K. and Torrellas,

J.: Tasking with out-of-order spawn in TLS chip multiprocessors:
Microarchitecture and compilation, Proc. 19th Annual International
Conference on Supercomputing, pp.179–188 (2005).

[19] SimpleScalar LLC., available from 〈http://www.simplescalar.com/〉.
[20] Smith, M.D., Horowitz, M.A. and Lam, M.S.: Efficient Superscalar

Performance Through Boosting, Proc. 5th International Conference
on Architectural Support for Programming Languages and Operating
Systems, pp.248–259 (1992).

[21] Sohi, G.S., Breach, S.E. and Vijaykumar, T.N.: Multiscalar Proces-
sors, Proc. 22nd Annual International Symposium on Computer Ar-
chitecture, pp.414–425 (1995).

[22] SPEC, available from 〈https://www.spec.org/cpu2000/docs/runspec.
html〉.

[23] Tubella, J. and González, A.: Control Speculation in Multithreaded
Processors Through Dynamic Loop Detection, Proc. 4th International
Symposium on High-Performance Computer Architecture, pp.14–23
(1998).

[24] Zhai, A., Colohan, C.B., Steffan, J.G. and Mowry, T.C.: Compiler op-
timization of scalar value communication between speculative threads,
Proc. 10th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp.171–183 (2002).

[25] Zhong, H., Lieberman, S.A. and Mahlke, S.A.: Extending multicore
architectures to exploit hybrid parallelism in single-thread applica-
tions, Proc. 13th International Symposium on High Performance Com-
puter Architecture, pp.25–36 (2007).

Keita Doi received his B.E. and M.E. de-
grees from Nagoya University, Nagoya,
Japan, in 2012 and 2014, respectively.
Since then, he has been with Okuma Cor-
poration.

Ryota Shioya was born in 1981. He re-
ceived his M.E. and Ph.D. degrees in In-
formation and Communication Engineer-
ing from the University of Tokyo in 2008
and 2011, respectively. He was a research
fellow of the Japan Society for the Promo-
tion of Science from 2009. From 2011, he
was an assistant professor at the Gradu-

ate School of Engineering, Nagoya University. Since 2016, he
has been an associate professor at the Graduate School of Engi-
neering, Nagoya University. He is a member of IPSJ, IEICE and
IEEE.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Hideki Ando received his B.S. and M.S.
degrees in Electronic Engineering from
Osaka University, Suita, Japan, in 1981
and 1983, respectively. He received
his Ph.D. degree in Information Science
from Kyoto University, Kyoto, Japan, in
1996. From 1983 to 1997 he was with
Mitsubishi Electric Corporation, Itami,

Japan. From 1991 to 1992 he was a visiting scholar at Stanford
University. In 1997 he joined the faculty of Nagoya University,
Nagoya, Japan, where he is currently a Professor in the Depart-
ment of Information and Communication Engineering. He re-
ceived IPSJ Best Paper Awards in 1998 and 2002, and a Best
Paper Award at the Symposium on Advanced Computing Sys-
tems and Infrastructures in 2013. His research interests include
computer architecture and compilers.

c© 2018 Information Processing Society of Japan

