HEEA HRLEZS HARE 2006—DBS—140 (I) (28)
IPSJ SIG Technical Report 2006,/7,/12

XML 7 — 2 DRI Al T

FybrFrrrst RERZMV JUIELN
BE

Extensible Markup Language (XML) l&, X v FT—2icBF 35— 2 &R - T|T7+—<w hickkolz. XML
BHoWANBTEEMICEDNE L3> TETVAID, SBIRNETOEMEMSTUEINZT,
il EREHRT 2D OER T OTLBENABIC L2 LATRENS. ZTTEARNETIR, XML DR
BRSERE DRMEERLI:, SWUBODDETFIVERETS. £k, BBRT -2 -V X7 LEZFIH
L e EEA KDV THINB.

Towards Analytical Processing of XML Data

Chantola KIT! Toshiyuki AMAGASA'“” Hiroyuki KITAGAWA®
Abstract

Extensible Markup Language (XML) has become an important format for data exchange and representation on the
web. In addition to conventional query processing, more complex analysis on XML data is considered to become
important in order to discover valuable information. In this research, we attempt to investigate a model for XML data
analysis in that features of XML data, such as grouping according to tree structure of XML, are taken into account.
Finally, we discuss an implementation of the system for XML data analysis using relational database systems.

1 Introduction format (Figure 1). It contains sales information at the
bookstores in the chain. The sales data is geographi-
cally categorized by the XML hierarchy. The top-level
is consisting of Kanto and Kansai areas, each of which
contains Tsukuba, and Kyoto and Osaka, respectively. A
book sales (b) contains title (t) and quantity (q). An-
other XML tree represents the book category (Figure 2).
The XML hierarchy represents the category-subcategory
relafionships, and each book information is stored with
its title (t) and price (p). Note that the name of each cat-
egory (c) is given as the name attribute. Note also that
the book titles are used as the key to identify each book
in the both documents.

In such an application domain, it is often the case that
one would like to calculate the total number of book sales
with diﬁerenﬁaﬁng categories and areas. Another exam-
ple is computing the most selling book category in terms
of total sales with some ranges. An important implica-
tion here is that the category and area hierarchies are
expressed in terms of XML hierarchies, and we need a

Since its inception in 1998, the Extensible Markup
Language (XML) [1] has become a de facto standard
for data exchange and representation on the web. Now,
XML is being used in a wide spectrum of application do-
mains, such as electronic documents, business data, and
log data.

Traditionally, when a user wants to extract necessary
information from XML data, his/her information need
is expressed in terms of a query written in a particular
query language such as XPath [2] and XQuery [3], or
transformation languages like XSLT [4], and the query is
then processed by XML processor and databases. How-
ever, as application domains of XML are continuously
growing, we are under the pressure of the necessity for
not only querying but also discovering information from
XML data.

Let us take a look at a simple example of sales data
in a bookstore chain. The sales data is recorded in XML

B A A A [T AERER mechanism to group any XML data of interest by such
Graduate School of Systems and Information Engineering, XML structures. In order to implement such systems,
”%Jg‘;g%g;fg;:%ty s these features should carefully be taken into account.

Center for Computational Sciences, University of Tsukuba

— 201 —

X 2: Book category.

In fact, in order to perform interactive analysis on re-
lational data, Online Analytical Processing (OLAP) sys-
tems [5] have successfully been used for the past decade.
An OLAP system enables us multidimensional viewing,
analysis, and querying of large amount of data, and has
been used for massive database decision support. How-
ever, when considering XML data, it is not sufficient in
the sense that its inability to deal with non-numeric mea-
sures and XML hierarchies. As a consequence, we can
conclude that using OLAP systems for XML data analy-
sis is not sufficient to fulfill our requirements.

One might think that XML processors or databases
that support XQuery could be used to analyze XML data.
However, this does not work due to the fact that XQuery
does not support grouping functionality, that is the key
mechanism to perform multidimensional data analysis.

From the above reasons, in this research, we attempt to
propose a model for XML data analysis. We also discuss
how to integrate structure- and value-based hierarchies

of XML data into the model and discuss a relational im-
plementation of the proposed model.

The rest of this paper is organized as follows: in Sec-
tion 2, we introduce preliminaries. We will introduce
the concepts of fact path, dimension path, and XML data
cube in Section 3, and discuss the concept hierarchy in
Section 4. Section 5 discusses implementation issues.
We discuss related works in Section 6 and conclude this
paper in Section 7.

2 Preliminaries

2.1 Online Analytical Processing (OLAP)

- Online Analytical Processing (OLAP) is a category
of software technology that enables analysts, managers,
and executives to gain insight into data through fast, con-
sistent, interactive access to a wide variety of possible
views of information. The information has been trans-
formed from raw data to reflect the real dimensionality
of the enterprise as understood by users.

When we talk about OLAP, star schema, cube, and ag-
gregation operations are the most important concepts. To
represent the multidimensional data model, star schema,
that consists of single fact table and some dimension ta-
bles, is used. Each dimension table contains columns
corresponding to attributes of the dimension. We give an
example of a book sales star schema (Figure 3), which
contains a sales fact table and two dimension tables, book-
info and store.

An OLAP system models the input data as a logical
multidimensional cube with multiple dimensions which
provides the context for analyzing measures of interest.
To analyze the data with the cube structure, various ag-
gregation operations, namely, drilling, pivoting (or ro-
tating), and slicing-and-dicing, are used to change the
number dimensions and the resolutions of dimensions of
interest.

Referring to the same example, the cube, in Figure 4,
shows a sales cube of three dimensions, area, category,
and price. Starting from the cube at the upper left, we can
create a new cube with coarser granularity on the area
axis by applying roll-up operation. We can go back to
the finer granularity by drill-down operation. By slicing
on the price dimension, we can get only the common

— 202 —

storeid

area
tel

4: OLAP example.

price cube. Dice operation enables us to change order of
the dimensions. '

3 Data Cube on XML Data

This section discusses our proposed data cube model
constructed on XML data. We first give the definitions of
facts and dimensions, and then discuss how a data cube
is constructed.

3.1 Facts about an XML Data

A fact-table in a traditional OLAP system stores data
items of interest. We attempt to define the facts in an
XML data after the traditional OLAP way. But the sit-
uation is different in the sense that we do not have ded-
icated XML data containing the facts of interest, whereas
the fact-table is assumed to be given beforehand in OLAP
systems. In order to identify the facts, we can use XML
query languages such as XPath and XQuery. In this pa-
per, we focus on XPath for the sake of simplicity.

Definition 1 (Fact path) 4 fact path (py) is an absolute
XPath expression that identifies data items of interest.

For example, when a user wants to get information of
book sales. The related data items can be obtained by the

fact path py = doc ("sales.xml")//b.

3.2 Dimensions

Having fixed the fact data, we might additionally need
some dimensions whose values are used to group the
facts together for the subsequent aggregation operations.
In traditional OLAP systems, dimensions are given as
independent tables associated with the fact table. In this
work we try to define a dimension as an XPath query, but
we need to care about the relationship between the fact
data and dimensions. In order to ensure this, a dimension
path is in either of the two cases: relative path from the
fact path and absolute path with referential constraints.

Definition 2 (Dimension path) 4 dimension path is a
XPath expression (pg) in either of the two forms:

1. pq is a relative path expression originated from the
fact path ps, or

2. pq is an absolute path expression contains at least
one condition with the fact path py.

Figure 5 shows an example of fact and dimension paths.
The circles on the left document represent the facts cor-
responding to ps. When we would like to use the book
title as a dimension for the subsequent analysis, a dimen-
sion path can be given as pgy =t, which is a relative path
from py. If we are interested in grouping the books ac-
cording to price ranges which is represented in another
XML data, we need to specify absolute path expression
with referential constraints like
Pgz =doc ("bookinfo.xml")//blt = ps/t]/p.
As can be seen from the example, for a given book, we
can obtain corresponding price in another XML data by
using title as the clue.

3.3 Data Cube on XML data

We are now ready to define data cube on XML data us-

 ing the concepts of the fact and dimension paths. Before

going into the definition, we introduce some notations as
helpers. For a given XPath expression p, [[p]] denotes
an evaluation of p, and the result would be XML nodes,
string-values, or a boolean. We additionally introduce
evaluation with context. Let [[p]]. denotes an evaluation

— 203 —

5: Fact path, dimension path, and their correspon-
dence.

of p where p and c represent an XPath expression and a
context node, respectively. If context nodes are given as
a set like [[p]|c, it can be defined as a natural extension:

UeecllPlle-

Definition 3 (n-dimensional data cube) A nD-cube is
defined as (py, D) where ps is a fact path and D =
{pd1,Pazs...,Pan} is a set of dimension paths. A fact
f in nD-cube is an n + 1-tuple (f,d1,...,dys) where
f € llpsl] and each d; is obtained by evaluating pa;:
(lpelly f pas is in a relative form or ([pl]] where vl
can be obtained by replacing each occurrence of p ¢/ pr
in pa; with [[p,-]]f

Let us consider an 1 D-cube as an example. It is speci-
fiedby (py, {pa}) where p; =doc ("sales.xml") //b
and py =doc ("bookinfo.xml")//blt =ps/t]/p.
A tuple can be extracted as follows. Firstly, fact data
can be extracted by evaluating fact path like [[ps]] =
{m1;ma, ..., mg}. For each fact data m;, we can iden-
tify corresponding dimension data in another XML data
as specified by ps. When evaluating py, we need to
rewrite the path according to the fact data. For exam-
ple, for the fact m;, py/t, which is a part of py, is
rewritten as [[ps/t]lm1 = {” A"}, that turns out to be
doc ("bookinfo.xml")//b[t = "A"] /p. Inthis
way, we can extract all tuples from the data cube, that are
set of 2-tuples: {(m1,n1), m2,n4), (m3,n3), (m4,n3),
(m5, n2), (m86,n5)}. :

Once the data cube is constructed, we can make anal-
ysis using 1) the dimensions and 2) related information
such as XML hierarchies as clues to -group the facts. An
important remark is that unlike traditional OLAP sys-

tems, an XML data cube has potential axes, in addition
to explicitly specified dimensions, that are derived from
XML hierarchies. To each generated group, we can cal-
culate specified measures by applying aggregation func-
tions. o

4 Concept Hierarchy

The concept hierarchy is a notable feature of tradi-
tional OLAP systems by which we can carry out flexible
grouping operations over the data items stored in the fact
table. When dealing with XML data in the same con-
text, we need special consideration on its semistructured
nature. In addition to value-based concept hierarchy that
has been used in traditional systems, we have to take into
account structure-based concept hierarchy represented as
XML tree.

4.1 Value-based Concept Hierarchy

As with the traditional OLAP systems, we assume that
value-based concept hierarchies are given beforehand.
We do not go into the detail of how to represent such
a hierarchy, because it is beyond the scope of this paper.

4.2 Structure-based Concept Hierarchy

In addition to the value-based concept hierarchy, there
is a need to group fact data according to the hierarchical
structure of XML data. ' This kind of concept hierarchy
is called “structure-based.” More precisely, there are two
éasgs in this category according to the way how category
information is represented. The first case is called “di-
rect” where the concepts are directly represented by tag
names. For example, in Figure 1, the geographical infor-
mation of each book can be observed by looking at the
path expression like /area/kanto/tsukuba. The
other case is called “indirect.” This is different from the
direct case in the sense that the name of each category is
not presented explicitly by XML fags, although the cate-
gorization is expressed in terms of inclusion relationship
of XML elements. For example, in Figure 2, it is pos-
sible to categorize each book according to the XML hi-
erarchy, but the name of each category is not explicitly

— 204 —

represented by the element names (/bookinfo/c/c).

4.3 How to Realize?

We discuss here how to realize grouping operation based
on structure-based concept hierarchy. Our basic strategy
is to utilize path expressions. We will divide the subse-
quent discussions into two cases.

For the case of direct structure-based hierarchy, we
can just use path expressions as the key to perform group-
ing, because the tags directly represent category infor-
mation. For a given data items, we need to compute the
prefix of each data, and then perform grouping on the
prefixes. The level of grouping can be controlled by the
length of the path prefixes. :

For the indirect cases, the problem becomes a bit com-
plicated. As discussed above, using path expressions is
not enough, because category information is embedded
in attributes or elements. So, we need to extract the nec-
essary information from the XML data in a preprocess,
that is, a user has to specify his/her information need us-
ing an XML query language or a dedicated language, and
the system can extract the information. Such information
can also be represented as path-like expressions. For ex-
ample, in the exarhple of Figure 2, each book can be cate-
gorized one of /math/linear balgebra, /cs/db,
or /cs/web. We call such expression “context expres-
sion.” When dealing with indirect structure-based hier-
archy, we can use context expressions instead of path ex-
pressions. .

Now, we discuss how to perform groupiné operations
using path (context) expressions. Let us introduce some
notations. Given an XML node n, let pezp(n) (cexzp(n))
denote n’s .absolute path (context) expression, and let
prefiz(exp,i) denote path (context) expression exp’s
i-th prefix, e.g., prefiz(*/a/b/c”,1) = ”/a”, and
prefiz("/a/b/c”,2) =" /a/b.” Then, the grouping

1. Let the depth of the dimensijon be d.

2. Find the common prefix of the path (or context)
expressions and let the depth be 4.

3. Thelevel-j (i < j < d) grouping can be computed
by calculating pre fiz(pezp(n), j)
(prefiz(cexp(n), j)) for each dimension value n.

In fact, the proposed grouping operation can be imple-
mented in many ways, but an important remark is that it
can be realized solely by the functionality of SQL, which
will be discussed in the next section.

S Implementation using Relational
Database Systems

This section discusses an implementation of the pro-
posed model and grouping operations. We try to make
the best use of relational databases as the underlying data
storage. The reasons are: 1) there are many commercial
and open source products, 2) enormous amount of in-
formation resources are stored in relational systems, and
3) we can leverage established relational XML storage
techniques. In addition, we can utilize grouping func-
tionality, that is supported in most relational database
systems, to implement value- and structure-based group-
ing of XML data.

5.1 Relational XML storage

We employ the path-approach [6] for mapping XML
data to relational tables, because we can manage any
well-formed XML documents with fixed relational schema
and realize practical subset of XPath solely by the use
of SQL functionalities. Due to the limitation of pages,
we just show the brief overview. In the path-approach,
an XML node is basically mapped to a relational tuple
with the document ID, the path expression from the root
node, the node label by which we can preserve ancestor-
descendant relationship, and the node values. Table 1
shows a storage example. The attributes did, pexp, cexp,
pre, post, type, and value denote document id, path ex-
pression, context expression, pre-order, post-order, node
type (element, text, or attribute), and node value, respec-
tively. Note that we assume that the way how to extract

- context expressions is given by the user, and how to ex-

press such an request will be discussed in another article.

5.2 Data Cube Formulation

For the purpose of data cube formulation, we also would
like to make the best use of the functionality of the un-

— 205 —

7% 1: Node table.

[csxp pre ot e e
1 Isales 1 74 E

1 /sale/arcalkanto/tsukuba/d H 14 E

1 [sales/area/kantoftsukube/b 15 24 E

1 /sales/area/kanto/tsukuba/d 25 34 E

1 /sales/arca/kansai/osaka/d 39 48 E

1 /eales/area/kansai/kyoto/b 49 58 E

1 /sales/area/kansai/kyoto/b 61 70 E

1 /sales/area/kansai/kyoto/b/t 63 64 T F
2 oookinfo 1 k73 E

2 Tbookinfo/c 2 35 E

2 i aigebra 4 13 E

2 i i algebra 14 23 E

2 /bookinfo/c/ed /math/lizear algebra 24 33 E

2 /bookinfo/c/ed les/db 38 47 E

2 /oookinfo/c/c/d lesiwed 60 69 E

2 oookinfe/c/c/oht leshwed 62 63 T F

derlying database systems. Actually, we can use SQL to
formulate the data cube on XML data discussed in Sec-
tion 3.3.

Let us take a look at an example:

e p; =doc("sales.xml")//b
® pg; =doc ("bookinfo.xml")//blps/t=t]

In order to create a data cube, we need to establish
the relationships between the fact and the dimension as
described in Section 3.3. Here we attempt to use SQL
to perform the process. Since fact and dimension paths
are given in terms of XPath, we can translate them to
the corresponding SQL queries. Having fixed the base
relations, we next join the base relations by giving the
referential constraints as the join key.

SELECT fct.*, dim.*
FROM
-- Fact path
(SELECT fctl.*, fct2.value as jkey
FROM node fctl, node fct2
WHERE fctl.did = fct2.did
AND fctl.pexp like ’'/%/b’
AND fct2.pexp like ’'/%/b/t’

AND fctl.type = ’E’ AND fct2.type = ‘T’
AND fctl.pre < fct2.pre

AND fct2.post < fctl.post) fct,

-- Dimension path

(SELECT diml.*, dim2.value as jkey
WHERE diml.did = dim2.did

AND diml.pexp like ’/%/b’

AND dim2.pexp like ‘/%/b/t’

AND diml.type = ‘E’ AND dim2.type = ‘T’

AND diml.pre < dim2.pre

AND dim2.post < dim2.post) dim
-- Join condition
WHERE fct.jkey = dim.jkey;

This query has two subqueries, each of which corresponds
to fact and dimension path. The where clause gives the join

condition over attributes in the subqueries. Finally we get a
new XML table as shown in Table 2. The table contains all
attributes from fact and dimension and each record consists of
data from fact and dimension which have the same title.

Since the XML data cube is constructed solely by SQL, it is
up to us to choose to materialize it for speeding up the rest of
the analysis or not.

5.3 Implementing Grouping Operation

We are now ready to apply grouping operation against the
generated XML data cube. For value-based concept hierarchy,
the task is easy because we can assume that the concept hierar-
chy is given as an extra relational table. So, we do not go into
the detail.

For structure-based concept hierarchy, as discusses in Sec-
tion 4.3, the clue to perform grouping is the path expressions.
One possible way is to leverage the string match functional-
ity provided by the database system. More precisely, we can
make use of regular expressions to extract substrings, and use
them with the GROUP BY clause. Assume that we would like
to use the first two tags to group the facts, e.g., use /a/b out
of /a/b/c/d, we can achieve this by:

SELECT ...

FROM ...

WHERE ...

GROUP BY regexp_replace (dim.pexp,

VA RYA WA RS AR LAV)|
Another possibility is to introduce dedicated indexes based

on Dewey encodings or prime numbers. They might be good
for speeding up the grouping operations compared to the above
approach. The comparison might be an interesting topic to re-
search.

6 Related Work

Rajesh Bordawakar et al. [7] investigated various is-
sues related to XML data analysis, and proposed a log-
ical model for XML analysis based on the abstract tree-
structured XML representation. In particular, they pro-
posed a categorization of XML data analysis system: 1)
XML is used simply for external representation for OLAP
results, 2) Relational data is extracted from XML data,
and then processed with existing OLAP systems, 3) XML
is used for both data representation and analysis. They
also proposed new syntactical extensions to XQuery for
supporting complex analytical operations, and discussed
various challenges.

Mikael R. Jensen et al. [8] proposed a scheme for spec-
ifying OLAP cubes on XML data. They integrated XML

— 206 —

% 2: XML Data

Cube Example.
did

did E,? cexp pre post type value l%:n value jkey
1 /sales/arca/kanto/tsukuba/b 5 14 E A] e 4 13 A
1 /sales/arca/kanto/tsuluba/d 15 24 E D 2 fbookinfo/e/e/d 38 47 E D
1 Isales/area/knnto/tsukuba/b 25 34 E c 2 24 33 E c
1 Isales/srea/kansai/osaka/b 39 48 E c 2 24 33 E c
1 Isale/area/kansai/kyoto/b 49 58 E B 2 14 23 E B
1 /sales/arca/kansaifkyoto/b 61 70 E F 2 60 69 E F

and relational data at the conceptual level based on UML,
which is easy to understand by system designers and
users. In their scheme, a UML model is built from XML
data and relational data, and the corresponding UML
snowflake diagram is then created from the UML model.
In particular, they considered how to handle dimensions
with hierarchies and ensuring correct aggregation.

Dennis Pedersen et al. [9] proposed a federation of
OLAP and XML, which allows external XML data to be
presented along with dimensional data in OLAP query
results. It enables the uses of external XML data for se-
lection and grouping. It is the same to the third approach
mentioned by Rajesh Bordawakar et al. [7]. They al-
low XML data to be used as “virtual” dimensions, and
present a data model and multi-schema query language
based on SQL and XPath.

7 Conclusions

In this paper we discussed a model for XML data anal-
ysis and implementation issues using relational databases.
We first introduced the concepts fact path, dimension
path, and XML data cube, and then discussed value- and
structure-based concept hierarchy, which is a novel con-
cept in the context of XML. Regarding implementation
issues, we utilized the path-approach for mapping XML
data to relations, and showed that XML data cube can
be constructed using the functionality of SQL on top of
the relations. For the future work we plan to evaluate the
proposed method. We also plan to investigate how to in-
corporate textual features such as word vectors of XML
data into the analytical processing.

Acknowledgments

This research is partly supported by the Grant-in-Aid
for Scientific Research (17700110) from Japan Society
for the Promotion of Science (JSPS), Japan, and the Grant-

in-Aid for Scientific Research on Priority Areas (18049005)

from the Ministry of Education, Culture, Sports, Science
and Technology (MEXT), Japan.

BE K

[1] World Wide Web consortium: Extensible
Markup Language (XML) 1.0 (Third Edition),

http://www.w3.0rg/TR/REC-xml. W3C Recom-
mendation 04 February 2004.

[2] World Wide Web consortium: XML
Path Language (XPath) Version 1.0,

http://www.w3.0rg/TR/1999/REC-xpath-19991116.
W3C Recommendation 16 November 1999.

[3] XQuery: A query language for XML,
http://'www.w3.0org/TR/xquery. W3C working
draft 2001.

[4] World Wide Web consortium: XSLT
Transformations (XSLT) Version 2.0,

http://www.w3.0rg/TR/2006/CR-xs1t20-20060608.
W3C Candidate Recommendation 8 June 2006.

(s

—

Saurajit Chaudhuri and Umeshwar Dayal. An
Overview of Data Warehousing and OLAP Technol-
ogy. SIGMOD Record, 26(1):65-74, 1997.

[6] Masatoshi ~ Yoshikawa, Toshiyuki ~Amagasa,
Takeyuki Shimura, and Shunsuke Uemura. XRel:
A path-based approach to storage and retrieval
of XML documents using relational databases.
ACM Transactions on Internet Technology (TOIT),

1(1):110-141, 2001.

[7

—

Rajesh Bordawakar and Christian A. Lang. Ana-
lytical Processing of XML Documents: Opportuni-
ties and Challenges. SIGMOD Record, 34(2):27-32,
2005.

— 207 —

[8] Mikael R. Jensen, Thomas H. Moller; and Tor-
ben Bach Pedersen. Specifying OLAP Cubes on
XML Data. SSDBM, pages 101-112, 2001.

[9] Dennis Pedersen, Karsten Riis, and Torben Bach
; Perdersen. ‘_XML»-Exgcndevd OLAP Q_ueryi'ng. SS-
. DBM, pages 195-206,2002. .

— 208 —

