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欠損有りデータを対象としたテンソル分解に基づく
オンライン低ランク部分空間追跡法OLSTEC

笠井 裕之 †1,a)

概要：本稿では，欠損データを含む高次元ストリームデータを対象とした低ランク部分空間追跡問題に着
目する．当該データが低次元線形空間に位置することを仮定し，本問題をオンライン型・低ランクテン

ソル補完問題として定義し，CANDECOMP/PARAFAC (CP) テンソル分解に基づく OnLine Low-rank

Subspace tracking by TEnsor CP Decomposition (OLSTEC) 法を提案する．特に，着目するデータが時

事刻々と入力されるストリームデータで，且つデータの部分空間が緩やかに変化する状況を想定する．提

案法の OLSTEC法は，逐次最小二乗法 (RLS) による速い収束性能を有する勾配法に基づいている．

Online low-rank subspace tracking by tensor decomposition
under incomplete data: OLSTEC

Hiroyuki Kasai †1,a)

Abstract: This paper considers the problem of online tensor subspace tracking of a partially observed high-
dimensional data stream corrupted by noise, where we assume that the data lie in a low-dimensional linear
subspace. This problem is cast as an online low-rank tensor completion problem. We propose a novel online
tensor subspace tracking algorithm based on the CANDECOMP/PARAFAC (CP) decomposition, dubbed
OnLine Low-rank Subspace tracking by TEnsor CP Decomposition (OLSTEC). The proposed algorithm
specifically addresses the case in which data of interest are fed into the algorithm over time infinitely, and
their subspace are dynamically time-varying. To this end, we build up our proposed algorithm exploiting the
recursive least squares (RLS), which is a second-order gradient algorithm.

1. Introduction

The analysis of big data characterized by a huge vol-

ume of massive data is at the very core of recent ma-

chine learning, signal processing, and statistical learning

*1. The data have a naturally multi-dimensional struc-

ture, and they are represented by a multi-dimensional ar-

ray matrix, namely, a tensor. When the data are high-

dimensional data corrupted by noise, it is very challenging

to reveal the underlying latent structure, such as, to ob-
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neering, The University of Electro-Communications
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*1 本稿は [1] の拡張・短縮版であり，MATLAB コードは https:

//github.com/hiroyuki-kasai/OLSTEC から取得可能である．

tain meaningful information, to impute missing elements,

to remove the noise, or to predict some future behav-

iors of data of interest. For this purpose, one typical

but promising approach exploits the structural assump-

tion that the data of interest have low-dimensional sub-

space, i.e., low-rank, in every dimension. Many data anal-

ysis tasks are achieved efficiently by considering singular

value decomposition (SVD), which reveals the latent sub-

space of the data. However, when the data have missing

elements caused by, for example, system error, or com-

munication error, SVD cannot be applied directly. To

address this shortcoming, low-rank tensor completion has

been studied intensively in recent years. A convex relax-

ation [2], [3], [4] approach, which is a popular method,

estimates the subspace by minimizing the sum of the nu-
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clear norms of the unfolding matrices of the tensor of in-

terest. This approach extends the successful results in

the matrix completion problem [5] accompanied with the-

oretical performance guarantees. However, because of the

high computation cost necessary for the SVD calculation

of big matrices every iteration, its scalability is limited

on very large-scale data. Instead, a fixed-rank non-convex

approach with tensor decomposition [6], [7] has gained

great attentions recently because of superior performance

in practice irrespective of introduction of local minima.

This performance also derives from the success of matrix

cases [8], [9], [10]. This paper follows the same line as that

of the latter approach.

When the data are acquired sequentially from time to

time, it is more challenging because of the need for online-

based analysis without storing all of the past data as well

as without reliance on the batch-based process. From this

perspective, the batch-based SVD approach is inefficient.

It cannot be applied for real-time processing. For this

problem, online subspace tracking plays a fundamentally

important role in various data analyses to avoid expensive

repetitive computations and high memory consumption.

This present paper particularly addresses three special

but realistic situations that arise in the online subspace

tracking in practical applications: (i) We consider a pure

online and streaming setting, where data of interest is fed

into the algorithm over time infinitely. For this problem,

some existing algorithms in the category of the so-called

streaming or online-based algorithms cannot fully handle

such a situation. They actually process new available data

only once without storing them in an online manner. How-

ever, they update an entire spaces of their model param-

eters every iteration. This suffers, sooner or later, from

the limitation of the computational capacity when data

is fed infinitely. (ii) Considering time-varying dynamic

nature of real-world streaming data, because there might

not exist a unique and stationary subspace over time, we

are often required to update such a time-varying subspace

from moment to moment. Despite allowing moderate ac-

curacy of subspace estimation, this update makes exist-

ing batch-based algorithms useless. In fact, as the exper-

iments described later in the paper reveal clearly, such

batch-based approaches do not work well under such a

situation. (iii) Furthermore, we consider the situations

and applications where computational speed is faster than

data acquiring speed. If the computational complexity per

iteration is constant across time and it is affordable in

the computational resource, we prefer the algorithm with

faster convergence rate in terms of iteration rather than

the algorithm with faster computational speed.

For all of these reasons, we particularly address the re-

cursive least squares (RLS) algorithm. Although the RLS

does not give higher precision from the viewpoint of the

optimization theory [11], it fits the dynamic situation as

considered herein because it achieves much faster conver-

gence rate per iteration as a result of the second-order

optimization feature.

This paper presents a new online tensor tracking al-

gorithm, dubbed OnLine Low-rank Subspace tracking by

TEnsor CP Decomposition (OLSTEC), for a partially ob-

served high-dimensional data stream corrupted by noise.

We specifically examine the fixed-rank tensor completion

algorithm with the second-order gradient descent based

on the CP decomposition exploiting the RLS. The advan-

tage of the proposed algorithm, OLSTEC, is quite robust

for dynamically time-varying subspace, which often arises

in practical applications. This engenders faster update of

sudden change of subspaces of interest. This capability

is revealed in the numerical experiments conducted with

several benchmarks.

2. Preliminaries and related work

2.1 Preliminaries

Hereinafter, we denote scalars by lower-case letters

(a, b, c, . . .), vectors as bold lower-case letters (a, b, c, . . .),

and matrices as bold-face capitals (A,B,C, . . .). An el-

ement at (i, j) of a matrix A is represented as Ai,j . It

is noteworthy that the transposed column vector of the

i-th row vector Ai,: is specially denoted as ai with super-

script to express a row vector explicitly, i.e., a horizontal

vector. We designate a multidimensional or multi-way

(also called order or mode) array as a tensor, which is de-

noted by (A,B,C, . . .). Tensor slice matrices are defined

as two-dimensional matrices of a tensor, defined by fixing

all but two indices. For example, a horizontal slice and

a frontal slices of a third-order tensor A are denoted, re-

spectively, as Ai,:,: and A:,:,k. Also, A:,:,k is used heavily

in this article. Therefore, it is simply expressed as Ak

using the bold-face capital font and a single subscript to

represent its matrix form explicitly. rank(X ) is the rank

ofX . Including some above, we basically follow the tensor

notation of the review article [12] throughout our article

and refer to it for additional details. Finally, a[t] and A[t]

with the square bracket represent the computed a and A

after performing t-times updates (iterations) in the online

algorithm. The notation diag(a) stands for the diagonal
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matrix with {ai} as diagonal elements. The symbol ⊛ de-

notes the Hadamard Product, which is the element-wise

product. ∥A∥F represents the Frobenius norm.

2.2 Related work

Representative research of the matrix-based online al-

gorithm is the projection approximation subspace track-

ing (PAST) [13]. GROUSE [14] proposes an incremental

gradient descent algorithm performed on the Grassman-

nian G(d, n), the space of all d-dimensional subspace of Rn

[15], [16]. The algorithm minimizes on ℓ2-norm cost func-

tion. GRASTA [17] enhances robustness against outliers

by exploiting ℓ1-norm cost function. PETRELS [18] cal-

culates the underlying subspace via a discounted recursive

process for each row of the subspace matrix in parallel.

As for the tensor-based online algorithm, which is our

main focus in this paper, Nion and Sidiropoulos propose

an adaptive algorithm to obtain the CP decompositions

[19]. Yu et al. also propose an accelerated online tensor

learning algorithm (ALTO) based on the Tucker decom-

position [20]. However, they do not deal with a missing

data presence. Mardani et al. propose an online imputa-

tion algorithm based on the CP decomposition under the

presence of missing data [21], which is called as TeCPSGD

in this paper. This considers the stochastic gradient de-

scent (SGD) for large-scale data. This work bears resem-

blance to the contribution of the present paper. However,

considering situations in which the subspace changes dra-

matically and the processing speed is sufficiently faster

than data acquiring speed, a faster convergence rate al-

gorithm per iteration is crucially important to track this

change. Because it is well-known that SGD shows a slow

convergence rate as the experiments described later in the

paper, it is not suitable for this situation. Kasai and

Mishra also propose a novel Riemannian manifold pre-

conditioning approach for the tensor completion problem

with multi-linear rank constraint based on the Tucker de-

composition [22]. The specific Riemannian metric allows

the use of versatile framework of Riemannian optimization

on quotient manifolds to develop a preconditioned SGD

algorithm (RPTucker). Very recently, Nimishakavi et al.

propose a dynamic tensor completion framework called

Side Information infused Incremental Tensor Analysis (SI-

ITA), which incorporates side information and works for

general incremental tensors based on the Tucker decom-

position [23]. However, RPTucker and SIITA do not deal

with the pure online subspace tracking scenario. Namely,

they update the entire spaces of the factor matrices every

iteration, and thus the calculation costs of the factor ma-

trices that grow over time become prohibitively increase.

All previously described algorithms are first-order algo-

rithms. For that reason and because of their poor cur-

vature approximations in ill-conditioned problems, their

convergence rate can be slow. One promising approach

in the literature is second-order stochastic gradient algo-

rithms such as stochastic quasi-Newton (QN) methods us-

ing Hessian evaluations. Numerous reports of the litera-

ture describe studies of stochastic versions of determinis-

tic quasi-Newton methods [24], [25], [26], [27] with higher

scalability in the number of variables for large-scale data.

AdaGrad, which estimates the diagonal of the squared

root of the covariance matrix of the gradients, was pro-

posed [28]. SGD-QN exploits a diagonal rescaling matrix

based on the secant condition with quasi-Newton method

[29]. A direct extension of the deterministic BFGS using

stochastic gradients and Hessian approximations is known

as online BFGS [30]. Its variants include [30], [31], [32].

Overall, they achieve a higher convergence rate by ex-

ploiting curvature information of the objective function.

Nevertheless, it is unclear whether they are effective under

the online tensor subspace tracking applications.

3. Proposed OLSTEC

3.1 Problem formulation

Similarly to the state-of-the-art tensor tacking algo-

rithms [21], [22], [23], this paper assumes that the rank

is given or estimated. Without loss of generality, we

particularly examine the third order tensor, and its one

order increases over time. In other words, we address

Y ∈ RL×W×T of which third order increases infinitely.

Assuming that Yi1,i2,i3 are only known for some indices

(i1, i2, i3) ∈ Ω, where Ω is a subset of the complete set of

indices (i1, i2, i3), a general batch-based fixed-rank tensor

completion problem is formulated as

min
X∈RL×W×T

1

2
∥PΩ(X )− PΩ(Y)∥2F

subject to rank(X ) = R,
(1)

where the operator PΩ(X )i1,i2,i3 = Xi1,i2,i3 if (i1, i2, i3) ∈
Ω and PΩ(X )i1,i2,i3 = 0 otherwise. rank(X ) is the rank

of X (see [12] for a details of tensor rank). R ≪ {L,W, T}
enforces a low-rank structure. Then, the problem (1) is

reformulated with ℓ2-norm regularizers as [21]

min
A,B,C

1

2
∥PΩ(Y)−PΩ(X )∥2F + µ(∥A∥2F + ∥B∥2F + ∥C∥2F )
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subject to Xτ = Adiag(bτ )CT for τ = 1, . . . , T.

(2)

where µ > 0 is a regularization parameter. This regular-

izer suppresses the instability of RLS. Consequently, con-

sidering the situation where the partially observed tensor

slice Ωτ ⊛Yτ is acquired sequentially over time, we esti-

mate {A,B,C} by minimizing the exponentially weighted

least squares;

min
A,B,C

1

2

t∑
τ=1

λt−τ

[
∥Ωτ ⊛

[
Yτ −Adiag(bτ )CT

]
∥2F

+ µ̄(∥A∥2F + ∥C∥2F ) + µ[τ ]∥bτ∥22
]
. (3)

Therein, µ[t] is the regularizer parameter for b, µ̄ =

µ[τ ]/
∑t

τ=1 λ
t−τ , and 0 < λ ≤ 1 is the so-called forgetting

parameter. The problem (3) with λ = 1 is equivalent to

the batch-based problem (2).

3.2 Algorithm of OLSTEC

The unknown variables in (3) are A,C, and b. Also,

A and C are a non-convex set. Therefore, this function

results in non-convex. The proposed OLSTEC algorithm,

as summarized by Algorithm 1, alternates between least-

squares estimation of b[t] for fixed A[t−1] and C[t−1],

and second-order stochastic gradient steps using the RLS

algorithm on A[t−1] and C[t−1] for fixed b[t]. It is note-

worthy that W[t] with the square bracket represents the

calculated W after performing t-times updates.

3.2.1 Calculation of b[t]

The estimate b[t] is obtained in a closed form by mini-

mizing the residual by fixing {A[t−1],C[t−1]} derived at

time t− 1. Then, we obtain b[t] as

b[t] =

[
µ[t]IR +

L∑
l=1

W∑
w=1

[Ωt]l,wgl,w[t](gl,w[t])
T

]−1

[ L∑
l=1

W∑
w=1

[Ωt]l,wY[t]l,wgl,w[t]

]
. (4)

Therein, gl,w[t] = al[t−1]⊛ cw[t−1] ∈ RR.

3.2.2 Calculation of A[t] and C[t] based on RLS

The calculation of C[t] uses A[t−1], and the calculation

of A[t] uses C[t−1]. This paper addresses a second-order

stochastic gradient based on the RLS algorithm with the

forgetting parameters. As for A[t], defining

RAl[t] = λRAl[t−1] +
W∑

w=1

[Ωt]l,wαw[t](αw[t])
T

+(µ[t]− λµ[t−1])IR, (5)

al[t] is obtained as presented below.

Algorithm 1 OLSTEC algorithm

Require: {Yt and Ωt}∞t=1, λ, µ[t] for t = 1, 2, · · · .
1: Initialize {A[0], b[0], C[0]}, Y[0] = 0, (RAl[0])−1 =

(RCw[0])−1 = γIR, γ > 0.

2: for t = 1, 2, · · · do

3: Calculate b[t]

4: for l = 1, 2, · · · , L do

5: Calculate RAl[t] and al[t]

6: end for

7: for w = 1, 2, · · · ,W do

8: Calculate RCl[t] and cw[t]

9: end for

10: end for

11: return Xt = A[t]diag(b[t])(C[t])T

al[t] = al[t−1]− (µ[t]− λµ[t−1])(RAl[t])
−1al[t−1]

+

W∑
w=1

[Ωt]l,w
(
[Yt]l,w − (αw[t])

Tal[t−1]
)

·(RAl[t])
−1αw[t]. (6)

As in the A[t] case, C[t] is also obtainable

3.3 Accelerated OLSTEC (OLSTEC-A)

Addressing that the calculation cost of the inversion

of RA[t], this extension is to reduce the calculation

cost while keeping the approximation quality reasonably

higher. The calculation cost of the inversion of RA[t] is

the most expensive parts in (6). Therefore, we execute an

diagonal approximation ofRA[t] to reduce the calculation

costs, which ignores the off-diagonal part of them. More

specifically, we calculate al[t] instead of (6) as presented

below.

al[t] = al[t−1]− (µ[t]− λµ[t−1])(DAl[t])
−1al[t−1]

+
W∑

w=1

[Ωt]l,w
(
[Yt]l,w − (αw[t])

Tal[t−1]
)
·

(DAl[t])
−1αw[t].

Therein, DAl[t] is defined by reformulating (5) as

DAl[t] = λDAl[t−1] + diag

(
W∑

w=1

[Ωt]l,wαw[t](αw[t])
T

)
+(µ[t]− λµ[t−1])IR. (7)

The calculation of (DAl[t])
−1 is light because DAl[t] is a

diagonal matrix. Similarly, cw[t] can be lightly solvable.

4. Theoretical analysis

4.1 Convergence analysis

This subsection describes a convergence analysis of the

proposed OLSTEC. Since the problem at hand is non-

convex, the target of the convergence analysis is to pro-

vide a convergence to a stationary point of the function.
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A convergence analysis of the online subspace tracking on

matrices based on the RLS algorithm has been well stud-

ied in [33]. A analysis for a tensor case with stochastic

gradient is provided in [21]. They are inspired by the

work in [34]. Although our case is slightly different from

them, the fundamental proof strategy is the same. There-

fore, the complete proof is omitted. However, the basic

strategy is given below in brief by following [21], [33], [34].

We first define gt(A,C, b) as gt(A,C, b) =
1
2∥Ωt ⊛

[
Yt −Adiag(bt)CT

]
∥2F + µ[t]/2∥bt∥22, The pro-

posed algorithm amounts to seek the minimization of the

following cost with the fixed forgetting parameter λ = 1 as

Ft(A,C) =
∑t

τ=1 argminbgτ (A,C, b)+ µ̄
2 (∥A∥2F+∥C∥2F ).

When calculating b[t] = argminb gt(A[t−1],C[t−1], b)

as (4) and fixing C = C[t−1], we define the surrogate

function F̂t of Ft as F̂t(A) =
∑t

τ=1 gτ (A,C[t−1], b[t]) +
µ̄
2 (∥A∥2F + ∥C[t−1]∥2F ), Hence, we define the t-th sum-

mand in the above equation for t = 1, 2, . . . as f̂t(A) =

gt(A,C[t−1], b[t]) + µ[t]/(2t)(∥A∥2F + ∥C[t−1]∥2F ). Then,
we consider the calculation of A[t] = argminAf̂t(A).

The minimization problem of f̂t(A) boils down a

smooth convex quadratic optimization problem, and

the minimizer A[t] is the solution of linear equation of

∇f̂t(A) = 0 as (6). Alternatively, we consider F̃t(C)

from Ft(A,C) with setting A = A[t−1] derived above

as F̃t(C) = gτ (A[t−1],C, b[t]) + µ̄/2(∥A[t]∥2F + ∥C∥2F ),
Here, we similarly define the t-th summand of

the earlier equation for t = 1, 2, . . . as f̃t(C) =

gt(A[t − 1],C, b[t]) + µ[t]/(2t)(∥A[t − 1]∥2F + ∥C∥2F ).
In an analogous manner to A, considering

C[t] = argminC f̃t(C), we obtain the minimizer

C[t] as the solution of linear equation of ∇f̃t(C) = 0.

Now, we provide the convergence result for Algorithm 1

below;

Theorem 4.1. Consider Algorithm 1 with λ = 1 sup-

posing that: (a1) {Ωt}∞t=1 and {Yt}∞t=1 are independent

and identically distributed (i.i.d.) random processes; (a2)

∥Ωt ⊛ Yt∥∞ is uniformly bounded; (a3) {A[t],C[t]}∞t=1

are in a compact set; (a4) λmin[F̂t(A)] ≥ c1 for some

c1 > 0 and λmin[F̃t(C)] ≥ c2 for some c2 > 0.

Then, limt→∞ Ft(A[t],C[t]) = 0 almost surely (a.s.), i.e.,

the subspace {A[t],C[t]}∞t=1 asymptotically approaches the

stationary point set of the problem as t → ∞.

The proof sketch is as follows: We first prove that

F̂t(A), F̃t(C) and Ft(A,C) are a quasi-martingale se-

quence, and thus convergent a.s. This can be proven

by exploiting the strong convexity assumption (a4) on

F̂t(A) and F̃t(C). Next, the cost sequence {F̂t(A[t]) −

表 1 Computational complexity comparison.

Algorithm Complexity per iteration

TeCPSGD [21] O(|Ωt|R2)

RPTucker [22] O(|Ωt|R2 + (L+W + T )R2)

SIITA [23] O(|Ωt|R3 + (L2 +W 2 + T 2)R)

OLSTEC (Proposed) O(|Ωt|R2 + (L+W )R3)

OLSTEC-A (Proposed) O(|Ωt|R2 + (L+W )R)

Ft(A[t],C[t])} → 0 yields the convergence of the gradient

{∇AF̂t(A[t])−∇AFt(A[t],C[t])} → 0. Similarly, the cost

sequence {F̃t(C[t])−Ft(A[t],C[t])} → 0 yields the conver-

gence of the gradient {∇CF̃t(C[t])−∇CFt(A[t],C[t])} →
0. This provides the desired claim.

4.2 Computational complexity and memory con-

sumption analysis

With respect to computational complexity per itera-

tion, OLSTEC requires O(|Ωt|R2+(L+W )R3) because of

O(|Ωt|R2) for b[t] in (4) and O((L+W )R3) for the inver-

sion ofRAl in (6) andRCw, respectively. The accelerated

OLSTEC (OLSTEC-A) requires O(|Ωt|R2 + (L+W )R),

where the second term is achieved by the diagonal approx-

imation DAl of RAl such as (7). Meanwhile, TeCPSGD

requires O(|Ωt|R) for updating two factor matrices A[t]

and C[t], and O(|Ωt|R2) for b[t]. Thus, the total com-

plexity per iteration is O(|Ωt|R2). As for SIITA assum-

ing without side information and all ranks of the multi-

linear rank are fixed to R, SIITA requires O(|Ωt|R3 +

(L2 + W 2 + T 2)R) because it maintains its entire factor

matrices. Due to the same reason as SIITA, RPTucker

requires O(|Ωt|R2 + (L+W + T )R2). Even if R is much

smaller than {L,W, |Ωt|}, the calculation complexities of

T 2R in SIITA and TR2 in RPTucker become dominant in

the all computations when the streaming data size T be-

comes huge. Consequently, OLSTEC(-A) requires much

less computing than SIITA and TeCPSGD does. In ad-

dition, while OLSTEC needs higher computations than

TeCPSGD does, OLSTEC-A requires the same order com-

plexity as TeCPSGD when {L,W} ≪ |Ωt|. The overall

results are summarized in Table 1.

As for memory consumption, O((L+W )R2) is required

in OLSTEC, respectively, forRAl andRCw. OLSTEC-A

reduces the memory consumption to O((L+W )R).

5. Conclusion

We have proposed a new online tensor subspace track-

ing algorithm, designated as OLSTEC, for a partially ob-

served high-dimensional data stream corrupted by noise.

Numerical comparisons will be given at the presentation.
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