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Abstract: Image compression has been investigated as a fundamental research topic for many decades. Recently,
deep learning is gradually being used in image compression. In this paper, we present a lossy image compression
architecture, which utilizes convolutional autoencoder (CAE) to achieve a high coding efficiency. First, we design a
novel CAE structure to replace the conventional transforms and train this CAE using a rate-distortion loss function.
Second, to generate a more energy-compact representation, we utilize the principal components analysis (PCA) to
rotate the feature maps produced by the CAE, and then apply the quantization and entropy coder to generate the codes.
Experimental results demonstrate that our method outperforms traditional image coding algorithms, by achieving a
13.7% BD-rate decrement on the Kodak database images compared to JPEG2000. Besides, our method maintains a

moderate complexity similar to JPEG2000.
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1. Introduction

Image compression has been a fundamental and significant re-
search topic in the field of image processing for several decades.
Traditional image compression algorithms, such as JPEG [1] and
JPEG2000 [2], rely on the hand-crafted encoder/decoder (codec)
block diagram. They use the fixed transform matrixes, i.e. Dis-
crete cosine transform (DCT) and wavelet transform, togeth-
er with quantization and entropy coder to compress the image.
However, they are not expected to be an optimal and flexible im-
age coding solution for all types of image content and image for-
mats.

Deep learning has been successfully applied in various com-
puter vision tasks and has the potential to enhance the perfor-
mance of image compression. Especially, the autoencoder has
been applied in dimensionality reduction, compact representa-
tions of images, and generative models learning [3]. Thus, au-
toencoders are able to extract more compressed codes from im-
ages with a minimized loss function, and are expected to achieve
better compression performance than existing image compression
standards including JPEG and JPEG2000. Another advantage of
deep learning is that although the development and standardiza-
tion of a conventional codec has historically taken years, a deep
learning based image compression approach can be much quicker
with new media contents and new media formats, such as 360-
degree image and virtual reality (VR) [4]. Therefore, deep learn-
ing based image compression is expected to be more general and
more efficient.

Recently, some approaches have been proposed to take advan-
tage of the autoencoder for image compression. Due to the inher-
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ent non-differentiability of round-based quantization, a quantiz-
er cannot be directly incorporated into autoencoder optimization.
Thus, the works [4] and [5] proposed a differentiable approxima-
tion for quantization and entropy rate estimation for an end-to-
end training with gradient backpropagation. Unlike those works,
the work [6] used an LSTM recurrent network for compressing
small thumbnail images (32 x 32), and used a binarization layer
to replace the quantization and entropy coder. This approach was
further extended in [7] for compressing full-resolution images.
In [8], the authors propose an adaptive bit rate strategy for re-
current networks for images with different textures. These works
achieved promising coding performance; however, there is still
room for improvement, because they did not analyze the energy
compaction property of the generated feature maps and did not
use a real entropy coder to generate the final codes.

In this paper, we propose a convolutional autoencoder (CAE)
based lossy image compression architecture. Our main contribu-
tions are twofold.

1) To replace the transform and inverse transform in traditional
codecs, we design a symmetric CAE structure with multi-
ple downsampling and upsampling units to generate feature
maps with low dimensions. We optimize this CAE using an
approximated rate-distortion loss function.

2) To generate a more energy-compact representation, we pro-
pose a principal components analysis (PCA)-based rotation
to generate more zeros in the feature maps. Then, the quan-
tization and entropy coder are utilized to compress the data
further.

Experimental results demonstrate that our method outperforms
JPEG and JPEG2000 in terms of PSNR, and achieves a 13.7%
BD-rate decrement compared to JPEG2000 with the popular Ko-
dak database images. In addition, our method is computationally
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more appealing compared to other autoencoder based image com-
pression methods.

The rest of this paper is organized as follows. Section II
presents the proposed CAE based image compression architec-
ture, which includes the design of the CAE network architecture,
quantization, and entropy coder. Section III summarizes the ex-
perimental results and compares the rate-distortion (RD) curves
of the proposed CAE with those of existing codecs. Conclusion

and future work are given in Section IV.

2. Proposed Convolutional Autoencoder based
Image Compression

The block diagram of the proposed image compression based
on CAE is illustrated in Fig.1. The encoder part includes the pre-
processing steps, CAE computation, PCA rotation, quantization,
and entropy coder. The decoder part mirrors the architecture of
the encoder.

To build an effective codec for image compression, we train
this approach in two stages. First, a symmetric CAE network is
designed using convolution and deconvolution filters. Then, we
train this CAE greedily using an RD loss function with an added
uniform noise, which is used to imitate the quantization noises
during the optimizing process. Second, by analyzing the pro-
duced feature maps from the pre-trained CAE, we utilize the PCA
rotation to produce more zeros for improving the coding efficien-
cy further. Subsequently, quantization and entropy coder are used
to compress the rotated feature maps and the side information for
PCA (matrix U) to generate the compressed bitstream. Each of
these components will be discussed in detail in the following.

2.1 CAE Network

As the pre-processing steps before the CAE design, the raw
RGB image is mapped to YCbCr images and normalized to [0,1].
For general purposes, we design the CAE for each luma or chro-
ma component; therefore, the CAE network handles inputs of size
H x W x 1. When the size of raw image is larger than H X W, the
image will be split into non-overlapping H X W patches, which
can be compressed independently.

The CAE network can be regarded as an analysis transform
with the encoder function, y = fy(x), and a synthesis transform
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with the decoder function, ¥ = g4(y), where x, %, and y are the
original images, reconstructed images, and the compressed data,
respectively. 6 and ¢ are the optimized parameters in the encoder
and decoder, respectively.

To obtain the compressed representation of the input images,
downsampling/upsampling operations are required in the encod-
ing/decoding process of CAE. However, consecutive downsam-
pling operations will reduce the quality of the reconstructed im-
ages. In the work [4], it points out that the super resolution is
achieved more efficiently by first convolving images and then
upsampling them. Therefore, we propose a pair of convolu-
tion/deconvolution filters for upsampling or downsampling, as
shown in Fig. 2, where N; denotes the number of filters in the
convolution or deconvolution block. By setting the stride as 2,
we can get downsampled feature maps. The padding size is set as
one to maintain the same size as the input. Unlike the work [4],
we do not use residual networks and sub-pixel convolutions, in-
stead, we apply deconvolution filters to achieve a symmetric and
simple CAE network.

In traditional codecs, the quantization is usually implemented
using the round function (denoted as [-]), and the derivative of
the round function is almost zero except at the integers. Due to
the non-differentiable property of rounding function, the quan-
tizer cannot be directly incorporated into the gradient-based op-
timization process of CAE. Thus, some smooth approximations
are proposed in related works. Theis et al. [4] proposed to re-
place the derivative in the backward pass of back propagation as
L[y ~

tive uniform noise as [y]

1. Balle et al. [5] replaced the quantization by an addi-
~ y+u. Toderici et al. [6] used a stochas-
tic binarization function as b(y) = —1 when y < 0, and b(y) = 1
otherwise. In our method, we use the simple uniform noises intu-
itively to imitate the quantization noises during the CAE training.
After CAE training, we apply the real round-based quantization
in the final image compression. The network architecture of CAE
is shown in Fig. 1, in which N; denotes the number of filters in
each convolution layer and determines the number of generated
feature maps.

As for the activation function in each convolution layer, we u-
tilize the Parametric Rectified Linear Unit (PReLU) function [9],
instead of the ReLU which is commonly used in the related work-
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Fig. 3: The effect of activation function in CAE.

s. Besides, we compare the performance of ReLU, PReLLU and
linear neurons after the convolutional layers. The quality of re-
constructed images, i.e. PSNR, are shown in Fig. 3. In the high
bit rate part, linear neurons achieves the best PSNR because it did
not suffer the information loss. Meanwhile, PReLLU is better than
ReLU. However, in the low bit rate part, the non-linear proper-
ty of ReLU and PReLU has the better performance than linear
neurons. Thus, we use PReLLU as the activation functions.

Inspired by the rate-distortion cost function in the traditional
codecs, the loss function of CAE is defined as

J(6,¢;0) = llx = &P + A - [lyll?

(1
= Il = go(fo) + WIP + A+ IfyIP

where ||x — X|* denotes the mean square error (MSE) distortion
between the original images x and reconstructed images X. u is
the uniform noise. A controls the tradeoff between the rate and
distortion. ||fy(x)||* denotes the amplitude of the compressed da-
ta y, which reflects the number of bits used to encode the com-
pressed data. In this work, the CAE model was optimized using
Adam [10], and was applied to images with the size of H X W.
We used a batch size of 16 and trained the model up to 8 x 103
iterations, but the model reached convergence much earlier. The
learning rate was kept at a fixed value of 0.0001, and the momen-
tum was set as 0.9 during the training process.

2.2 PCA Rotation, Quantization, and Entropy Coder

After the CAE computation, an image representation with a
size of % X % X Ng is obtained for each H x W X 1 input, where
Ng denotes the number of filters in the sixth convolution layer
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of the encoder part. Three examples of the feature maps for the
512% 512 images cropped from Kodak databases [12] are demon-
strated in the second column of Fig. 4. It can be observed that
each feature map can be regarded as one high-level representa-
tion of the raw images.

To obtain a more energy-compact representation, we decorre-
late each feature map by utilizing the principle component anal-
ysis (PCA), because PCA is an unsupervised dimensionality re-
duction algorithm and is suitable for learning the reduced features
as a supplementary of CAE. The generated feature maps are de-
noted as y = % X % X Ng, and y is reshaped as Ng-dimensional
data. PCA is performed using the following steps. The first step
is to compute the covariance matrix of z as follows:

I T
Z-mZ@@ )

where m is the number of samples for y. The second step is
to compute the eigenvectors of £ and stack the eigenvectors in
columns to form the matrix U. Here, the first column is the prin-
cipal eigenvector corresponding to the largest eigenvalue, the sec-
ond column is the second eigenvector, and so on. The third step
is to rotate the Ng-dimensional data y by computing

Yo = Uy (©)

By computing y,,, we can ensure that the first feature map-
s have the largest value, and the features maps are sorted in
descending order. Experimental results demonstrate that the
vertical-scan order for the feature maps works a little better than
diagonal scan and horizontal scan; therefore, we arrange the fea-
ture maps in vertical scan as shown in the third column of Fig. 4.
It can be observed that more zeros are generated in the bottom-
right corner and large values are centered in the top-left corner in
the rotated feature maps, which can benefit the entropy coder to
achieve large compression ratio.

After the PCA rotation, the quantization is performed as

y, = [28_1 : yrot] (4)

where B denotes the number of bits for the desired precision,
which is set as 12 in our model.

As for the entropy coder, we use the JPEG2000 entropy coder
to decompose y’ into bitplanes and apply the adaptive binary
arithmetic coder. It is noted that JPEG2000 entropy coder applies
EBCOT (Embedded block coding with optimized truncation) al-
gorithm to achieve a desired rate R, which is also referred to as
post-compression RD optimization. In our method, the feature
maps rotated by PCA have many zeros; therefore, assigning the
target bits R can further improve the coding efficiency.

In the decoder part, de-quantization is performed as

’

i = i ©)

After obtaining the float-point number jj from the bitstream, we
recover the feature maps from the rotated data by using

jy=Uy (©)
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Fig. 4: Examples of three images and their corresponding feature maps arranged in raster-scan order (Ng = 32): (a)(d)(g)(j) Raw images,
(b)(e)(h)(k) Generated 32 feature maps for Y-component by CAE, and the size of each feature map is % X V—SV, (©)()()(D) Rotated Y feature

maps by PCA, arranged in vertical scan order.

Then, the CAE decoder network will reconstruct the images
using ¥ = g¢(§). The side information of PCA rotation is the
matrix U with a dimension of Ng X Ng for each image. We also
quantize U and encode it. The bits for U is added to the final rate
as the side information in the experimental results.

3. Experimental Results

3.1 Experimental Setup

We use a subset of the ImageNet database [11] consisting of
5500 images to train the CAE network. In our experiments, H
and W are set as 128; therefore, the images that are input to
the CAE are split to a size of 128 x 128 patches. The number-
s of filters, i.e. N;,i € [1,6] in convolutional layers are set as
{32,32, 64, 64, 64,32}, respectively. The decoder part mirrors the
encoder part. The luma component is used to train the CAE net-
work. Mean square error is used in the loss function during the
training process in order to measure the distortion between the
reconstructed images and original images. For testing, we use the
commonly used Kodak lossless image database [12] with 24 un-
compressed 768 x 512 or 512 x 768 images. In our CAE training
process, Ais set as one and the uniform noise g is set as [— 2%, 2%].

In order to measure the coding efficiency of the proposed CAE-
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based image compression method, the rate is measured in terms
of bit per pixel (bpp). The quality of the reconstructed images
is measured using the quality metrics PSNR and MS-SSIM [13],
which measure the objective quality and perceived quality, re-
spectively.

3.2 Coding Efficiency Performance

We compare our CAE-based image compression with JPEG
and JPEG2000. The color space in this experiment is YUV444.
Since the human visual system is more sensitive to the luma

component than chroma components, it is common to assign the
6 1

88
ly. The RD curves for the images red door and a girl are shown
in Fig. 6. The coding efficiency of CAE is better than those of
both JPEG2000 and JPEG in terms of PSNR. In terms of MS-
SSIM, CAE is better than JPEG and comparable with JPEG2000,
because optimizing MSE in CAE training leads to better PSNR
characteristic, but not MS-SSIM. Besides, CAE handles a fixed

input size of 128 x 128; therefore, block boundary artifacts ap-

weights and % to the Y, Cb, and Cr components, respective-

pear in some images. It is expected that adding perceptual quality
matrices into the loss function will improve the MS-SSIM perfor-
mance, which will be carried out in our future work. Examples
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(c) 0.297bpp, 31dB (d) 0.293bpp, 32dB

(e) 24bpp (f) 0.283bpp, 26dB

(i) 24bpp

(j) 0.318bpp, 25dB

(2) 0.300bpp, 34dB

(h) 0.294bpp, 35dB

(k) 0.299bpp, 31dB (1) 0.295bpp, 31dB

Fig. 5: Examples of raw image (the first column) and reconstructed images (300 x 300) cropped from Kodak images using the JPEG (the
second column), JPEG2000 (the third column) and our proposed CAE (the last column).

of reconstructed patches are shown in Fig. 5. We can observe
that the subjective quality of the reconstructed images for CAE is
better than JPEG and comparable with that of JPEG2000.
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Fig. 6: RD curves of color images for the proposed CAE, JPEG,
and JPEG2000

The rate-distortion performance can be evaluated quantitative-
ly in terms of the average coding efficiency differences, BD-rate
(%) [14]. While calculating the BD-rate, the rate is varied from
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BD-rate with JPEG2000 as benchmark
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Fig. 7: BD-rate of the proposed CAE with JPEG2000 as the
benchmark.

0.12bpp to 2.4bpp and the quality is evaluated by using PSNR.
With JPEG2000 as the benchmark, the BD-rate results for 24 im-
ages in the Kodak database are listed in Fig. 7. On average, for
the 24 images in the Kodak database, our method achieves 13.7%
BD-rate saving compared to JPEG2000.

We also compare our proposed CAE-based method with
Balle’s work, which released the source code for gray images [5].
For a fair comparison, we give the comparison results for gray
images. For Balle’s work, the rate is estimated by the entropy of
the discrete probability distribution of the quantized vector, which
is the lower bound of the rate. In our work, the rate is calculated
by the real file size (kb) divided by the resolution of the tested
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Fig. 8: RD curves of gray images for our proposed CAE and
Balle’s work.

images.

Two examples of RD curves are shown in Fig. 8. Our method
exhibits better RD curves than Balle’s work for some test images,
such as Fig. 8(a), but exhibits slightly worse RD performance for
some images, such as Fig. 8(b). On average, the performance
of our proposed method CAE is comparable with Balle’s work,
even though the CAE used an actual entropy coder against the
ideal entropy of Balle’s work.

3.3 Complexity Performance

Our experiments are performed on a PC with 4.20 GHz Intel
Core i7-7700K CPU, 16GB RAM and GeForce GTX 1080 GPU.
The pre-processing steps for the images and Balle’s codec [5] are
implemented using Matlab script in Matlab R2016b environmen-
t. The codecs of JPEG and JPEG2000 can be found from [15]
and [16], implemented with CPU. Balle released only their CPU
implementation. Running time refers to one complete encoder
and decoder process for one color image with a resolution of
768 x 512, while Balle’s time refers to the gray image. The run-
ning time comparison for each image for different image com-
pression methods is listed in Table 1. It can be observed that
our CAE-based method achieves lower complexity than Balle’s
method [5] when it is run by the CPU, because we have designed
a relatively simple CAE architecture. Besides, with GPU im-
plementation, our method could achieve comparable complexity
with those of JPEG and JPEG2000, which are implemented by
C language. Thus, it proves that our method has relatively low
complexity.

Table 1: Average running time comparison.

Codec Time (s)
JPEG 0.39
JPEG2000 0.59

Balle’s work[5] with CPU | 7.39
Propose CAE with CPU | 2.29
Propose CAE with GPU | 0.67

4. Conclusion and Future Work

In this paper, we proposed a convolutional autoencoder based
image compression architecture. First, a symmetric CAE archi-
tecture with multiple downsampling and upsampling units was
designed to replace the conventional transforms. Then this CAE
was trained by using an approximated rate-distortion function to
achieve high coding efficiency. Second, we applied the PCA
to the feature maps for a more energy-compact representation,
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which can benefit the quantization and entropy coder to improve
the coding efficiency further. Experimental results demonstrate
that our method outperforms conventional traditional image cod-
ing algorithms and achieves a 13.7% BD-rate decrement com-
pared to JPEG2000 on the Kodak database images. In our fu-
ture work, we will add perceptual quality matrices, such as MS-
SSIM or the quality predicted by neural networks in [17], into the
loss function to improve the MS-SSIM performance. Besides,
the generative adversarial network (GAN) shows more promis-
ing performance than using autoencoder only; therefore, we will
utilize GAN to improve the coding efficiency further.
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