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Abstract

In mobile ad-hoc peer-to-peer (M-P2P) networks, frequent network partitioning leads to typically low
data availability, thereby necessitating data replication. This work proposes EcoRep, a novel economic
model for dynamic replica allocation in M-P2P networks. EcoRep ensures fair replica allocation, while
discouraging free-riding. EcoRep deploys a replica allocation algorithm, which considers relative im-
portance of data items, load and energy issues, user mobility patterns, replica consistency and number
of neighbours of a given user. Our performance study demonstrates that EcoRep is indeed effective in
improving query response times and data availability in M-P2P networks.

1 Introduction

In a Mobile ad-hoc Peer-to-Peer (M-P2P) network,
mobile hosts (MHs) interact with each other in a peer-
to-peer (P2P) fashion. Proliferation of mobile devices
(e.g., laptops, PDAs, mobile phones) coupled with
the ever-increasing popularity of the P2P paradigm
strongly motivate M-P2P network applications such
as customers in a shopping mall sharing information
about the cheapest available ‘Levis’ jeans and swap-
ping shopping catalogues on-the-fly using mobile de-
vices. During lunch-time, mobile users could share
information about the cheapest price of steak across
different nearby restaurants and exchange restaurant
menus with each other. Visitors to a museum could re-
quest images/video-clips of different rooms of the mu-
seum to decide which room they will visit first. They
could share songs and historical data about the mu-
seum. They could even request the museum’s path
information from other visitors as in virtual reality ap-
plications. Such P2P interactions among mobile users
are generally not freely supported by existing mobile
communication infrastructures. Absolute consistency
is not a requirement in such applications [3, 17].

Data availability in M-P2P networks is typically
lower than in fixed networks1 due to frequent net-
work partitioning arising from user movement and/or

1Data availability is less than 20% even in a wired environ-
ment [21].

users switching ‘on’/‘off’ their mobile devices. To
improve M-P2P data availability, several replication
schemes [10, 11, 23] have been proposed. However,
these schemes do not address fair replica alloca-
tion since they allocate replicas solely based on the
read/write access ratio of a data item d without con-
sidering the origin of queries for d (e.g., the E-DCG+
approach in [10, 11]). Hence, they regard d as ‘hot’
and create several replicas of d, even if a single MH
M issues a disproportionately large number of (read)
queries for d. This is inherently unfair since it favours
M , thus these schemes are not able to fairly serve re-
quests of multiple MHs. Moreover, they do not combat
free-riding [9, 12, 18], which is rampant in P2P sys-
tems. (Nearly 90% of the peers in Gnutella were free-
riders [1].) Since free-rider MHs do not participate
in storing replicas, replication opportunities decrease,
thereby degrading performance of these schemes.

This work proposes EcoRep, which is a novel eco-
nomic model for dynamic replica allocation in M-
P2P networks. The main contributions of EcoRep are
three-fold:

1. It ensures fair replica allocation by considering
the origin of queries for any given data item d
to compute d’s relative importance to the M-P2P
network as a whole.

2. It discourages free-riding by requiring MHs to pay
a virtual currency to the MHs from which they
access data items or replicas i.e., an MH has to
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contribute to the network for its access requests
to be served.

3. It deploys a replica allocation algorithm, which
considers relative importance of data items, load
and energy of the MHs, user mobility patterns,
replica consistency and the number of neighbours
of an MH.

Notably, our main focus is on economy-based fair
replica allocation, a pleasant side-effect of which is
that of discouraging free-riding at no added cost. To
manage replication efficiently, EcoRep deploys a super-
peer architecture [24]. The super-peer (SP) is an MH,
which generally moves within the region and which has
maximum remaining battery power and processing ca-
pacity at a given time. The M-P2P network covers a
relatively small area, hence the total number of MHs
cannot be expected to be very large. SP knows the
schedule of every MH comprising the MH’s mobility
pattern and the data items that the MH is likely to
access at different points of time. Thus, SP is able
to determine a near-optimal replica allocation period
based on global information of MH schedules, hence it
can better manage replica allocation. Our architecture
avoids broadcast storm since every MH periodically
sends replication-related information and list of data
items/replicas stored at itself to SP, and SP broad-
casts this information to all MHs. This is in contrast
with distributed architectures (e.g., the E-DCG+ ap-
proach [10, 11]) that require every MH to periodically
broadcast its list of allocated replicas to all MHs in the
network, which causes a broadcast storm. Notably,
queries need not pass via SP as every MH has ade-
quate information to redirect queries, thus preserving
P2P autonomy.

Our performance study indicates that EcoRep is in-
deed effective in improving query response times and
data availability in M-P2P networks, while incurring
relatively low communication traffic costs. To our
knowledge, this is the first work to propose an eco-
nomic model for data replication in M-P2P networks.

The remainder of this paper is organized as follows.
Section 2 reviews existing works, while Section 3 de-
scribes the EcoRep economic model. Section 4 dis-
cusses the replica allocation algorithm of EcoRep. Sec-
tion 5 reports our performance study. Finally, we con-
clude in Section 6 with directions for future work.

2 Related Work

Economic models have been discussed in [5, 14, 7, 4]
primarily for resource allocation in distributed sys-
tems, which differs from our focus on data replication.
A competitive micro-economic auction-based bidding
model with support for load-balancing has been pro-
posed in [5], while the work in [14] examines economy-
based optimal file allocation. The proposal in [7] uses
game-theoritic and trust-based ideas. Although the

work in [4] considers economic replication, it does not
address fairness in replica allocation and P2P concerns
such as free-riding.

Works concerning free-riding include [12, 6, 16, 18,
9, 15]. The works in [12, 6, 16] propose incentive
schemes to combat free-riding. The works in [18, 9]
discuss utility functions to capture user contributions,
while trust issues are examined in [15]. However, these
works are completely othogonal to replication issues
associated with free-riding.

The work in [13] proposes a suite of replication pro-
tocols for maintaining data consistency and transac-
tional semantics of centralized systems. P2P repli-
cation systems include ROAM [19], Clique [20] and
Rumor [8]. An update strategy, based on a hybrid
push/pull Rumor spreading algorithm, for truly de-
centralized and self-organizing systems has been ex-
amined in [3]. The proposals in [10, 11] present three
replica allocation methods with periodic and aperiodic
updates, which consider limited memory space in MHs
for storing replicas, access frequencies of data items
and the network topology, to improve data accessibil-
ity in mobile ad-hoc networks. The E-DCG+ approach
[11] is among the most influential replica allocation
approaches. By creating groups of MHs that are bi-
connected components in a network, E-DCG+ shares
replicas in larger groups of MHs to provide high stabil-
ity. However, the architecture considered in [10, 11] is
not suitable for our application scenarios since it does
not consider user mobility patterns, load sharing and
tolerance to weaker consistency.

3 EcoRep: An Economic Model for
Data Replication in M-P2P networks

This section discusses EcoRep, which is an economic
model for replica allocation in M-P2P networks. In
EcoRep, each data item d has a price ρ (in terms of
a virtual currency) that quantitatively reflects its rel-
ative importance to the M-P2P network as a whole.
Whenever an MH Mi accesses d stored at an MH Mj ,
it pays the price ρ of d to Mj since Mj serves its re-
quest. Thus, Mi spends the amount ρ and Mj earns ρ.
In essence, an MH has to provide service (i.e., storing
data items/replicas that are accessed by other MHs)
to the network for its own access requests to be served,
which discourages free-riding. We do not regard ‘relay
functions’ as ‘service’ since randomness ensures that
each MH will generally have to forward comparable
number of messages. We define the revenue of an
MH as the difference between the amount of virtual
currency that it earns and the amount that it spends.
Revenue values may vary significantly across MHs. In
EcoRep, when an MH joins the M-P2P network, SP
provides the MH with a small amount of revenue to
start with.

In EcoRep’s super-peer architecture, each
MH maintains recent read-write logs (including
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timestamps) of its own data items and the read-logs
of the replicas stored at itself. Periodically, each
MH sends its logs to SP so that SP knows about
data accesses. Each data item d is owned by only
one MH, which can update d autonomously anytime;
other MHs cannot update d. Memory space of MHs,
bandwidth and data item sizes may vary. We assume
location-dependent data access [22] i.e., an MH in
region X will access data only from MHs in X . We
define load Li of an MH Mi as the job queue length
of Mi normalized w.r.t. available bandwidth and
service capacity to address heterogeneity.

Li = Ji,tj
÷ ( σi ×Bi ) (1)

where Ji,tj
represents the job queue length of Mi at

time tj . σi and Bi are the normalized values of the
service capacity and the available bandwidth of Mi

respectively. σi is fixed for a given MH since it is
hardware-dependent. σi = ( σMi

/σmin ), where σMi

is the service capacity of Mi and σmin is a low service
capacity. This work has used the minimum service ca-
pacity among all the MHs as σmin, however any low
value of service capacity would suffice for σmin. Simi-
larly, Bi = ( BMi

÷ Bmin ), where BMi
represents the

available bandwidth of Mi and Bmin is a low band-
width e.g., we have used 56 Kbps as the value of Bmin.

In practice, MH owners do not move randomly since
they have some schedule. An MH M ’s schedule con-
tains information concerning M ’s location during any
given time period T and the data items required by M
during T . Each MH owner initially sends his sched-
ule to SP and if later on, his schedule changes signifi-
cantly, he will keep SP updated about these changes by
piggybacking such information onto replica allocation-
related messages to SP. Thus, SP is able to exploit MH
schedules for replica allocation purposes. SP backs up
information using the Internet as an interface to han-
dle failures and we assume that some of the MHs have
access to the Internet for backup purposes. If SP fails
or network partitioning occurs, these MHs can connect
to the Internet to obtain adequate information to act
as SP.

Factors influencing the price of a data item

Price of a data item d depends on d’s access fre-
quency, number of MHs served by d, number
of existing replicas of d, (replica) consistency of
d and average response time for queries on d.
Since high access frequency of d generally implies that
d is important, its price should increase with increasing
access frequency. However, if d serves a large number
of requests originating from only a few MHs in the
M-P2P network, its price should decrease due to its
relatively low importance to the network as a whole.
Thus, in contrast with existing works, given two data
items with equal access frequencies, the price of the

data item that serves a larger number of MHs would
be higher.

In consonance with economic principles, which pos-
tulate higher prices for rare items, d’s price should in-
crease with decreasing number of its replicas and vice-
versa. Higher replica consistency of d implies higher
price due to better quality of results. Response time
τ for a query Q pertaining to d reflects the quality of
service provided to the query issuing MH MQ by the
query serving MH MS, hence shorter response times
should command higher price. τ equals ( TW + TD ),
where TW is the waiting time spent by Q in MS ’s job
queue and TD is the download time for d. TW depends
on MS ’s job queue length and its service capacity. TD

depends upon the bandwidth allocated by MS for d’s
download, which is related to MS ’s total bandwidth
and the number of concurrent access requests to MS .

Quantifying price and revenue

Based on the factors discussed above, let us now de-
rive the formula for the price of a data item d. Let
ρrec be the price of d based on the accesses during the
most recent allocation period. ρrec may not always be
able to reflect the true importance of d to the network
(e.g., when spurious ‘spikes’ in d’s access frequency
occur), thereby leading to unnecessary replica alloca-
tions. Hence, we use ρ, which is the moving average
price of d over a fixed number of allocation periods.
As we shall see shortly, both ρrec and ρ are computed
by SP since they need to be computed based on the
accesses to d and its replicas across the entire M-P2P
network. For the sake of convenience, Table 1 summa-
rizes the notations, which shall henceforth be used in
this paper.

For computing ρrec for d, we sort the MHs in de-
scending order of access frequency for d during the
most recent allocation period i.e., the first MH in this
order made the most accesses to d. Given this order
and using the notations in Table 1, SP computes ρrec

of d as follows:

ρrec =

NMH∑

i=1

(wi × ni × Ci ×BAi × PAi) /

((NR + 1) × (Ji,tj
/σi)) (2)

where the weight coefficient wi equals ( i/NMH ),
thereby ensuring that more the number of MHs served
by d, the more its price will be. For simplicity, assume
NMH = 50, BAi = 50 units, PAi = 0.5, NR = 1 and
Ji,tj

/σi = 1. If only a single MH makes 100 accesses
to d, ρ = 25. When 4 MHs make 25 accesses each to
d, ρ = 62.5. But, if 50 MHs make 2 accesses each to
d, ρ = 637.5. Observe how ρrec increases as d serves
more MHs, even though d’s total access frequency is
same.
Ci = 1 for queries answered by an MH’s own data

items since such queries are always answered with ab-
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Notation Significance

d A given data item

ρrec Price of d during most recent allocation period

ρ Moving Average Price of d across multiple allocation periods

NMH Number of MHs

wi Weight coefficient for MH i for fairness in serving multiple MHs

ni Number of access requests for d originating from a given MH i

Ci Average consistency with which MH i answered queries on d

BAi Bandwidth allocated by MH i for d’s download

PAi Probability of availability of a given MH i

NR Number of existing replicas of d

Ji,tj
Length of job queue at MH i during time tj

σi Service capacity of MH i

Table 1: Summary of notations

solute consistency. For queries answered by replicas,
we consider three different levels of replica consistency,
namely high, medium and low. Ci is assigned values of
1, 0.5 and 0.25 for high, medium and low consistency
respectively. SP maintains a table Tε,C , which contains
the following entries: (x%, high), (y%, medium), (z%,
low), where x, y, z are error-bounds, whose values are
application-dependent and pre-specified by the system
at design time. Thus, Ci is computed using Tε,C . BAi

equals (TB/Na), where TB is the sum of all the band-
widths that MH i allocated for each time when d was
downloaded from itself and Na is the total number of
access requests for d at MH i. Notably, SP will know
the probability of availability PAi of MH i over a pe-
riod of time by keeping records of such MH availability
information in its log files. Number of copies of d in
the M-P2P network equals the number of replicas in
addition to the original data item itself, which explains
the term (NR+1) in Equation 2. MH job queue lengths
are normalized by service capacities to address service
capacity heterogeneity.

After computing ρrec, SP computes the moving av-
erage price ρ of d. Since simple moving averages give
equal weight to the last N reallocation periods, they
are not able to react quickly to dynamically changing
access patterns, which are characteristic of M-P2P net-
works. Hence, we use the Exponential Moving Average
(EMA), which gives higher weights to recent access
patterns relative to older access patterns. SP com-
putes the price ρ of d as follows:

ρ = (ρrec − EMAprev) × 2/(N + 1)) +EMAprev (3)

where EMAprev is the EMA computed for the previ-
ous replica allocation period, and N is the number of
replica allocation periods over which the moving aver-
age is computed. SP only needs to store the previous
allocation period’s value of EMA instead of the respec-
tive prices for the previous N allocation periods. This
optimizes memory space usage of SP. Based on prelim-
inary experiments, N = 5 is a reasonably good value
for our application scenarios.

Suppose MH M stores p data items of its own
and q replicas. Let ρi be the price of the ith data
item/replica. Let nedi

and neri
be the access frequen-

cies of the ith data item and the ith replica respectively.
M ’s earning E follows.

E =

p∑

i=1

( ρi × nedi
) +

q∑

i=1

( Ci × ρi × neri
) (4)

where Ci indicates the average consistency with which
queries on replicas at M were answered. The first term
of Equation 4 does not contain Ci since it concerns
M ’s own data items, which are always absolutely con-
sistent.

Now suppose M accesses p original data items
and q replicas. Let ρi be the price of the ith data
item/replica. Let nsdi

and nsri
be the access frequen-

cies of the ith data item and the ith replica respectively.
The amount S spent by M is computed as follows:

S =

p∑

i=1

( ρi × nsdi
) +

q∑

i=1

( Ci × ρi × nsri
) (5)

In the above equation, the significance of Ci is the
same as that of Equation 4. M ’s revenue is simply (E
- S). Observe how EcoRep’s economy-based paradigm
of replication encourages MHs to store replicas so that
they can increase their revenues, thereby ensuring that
they obtain better service from the M-P2P network.

4 AReL: An Adaptive Revenue-Load-
based Replica Allocation Algorithm
for EcoRep

This section discusses the AReL (Adaptive Revenue-
Load) replica allocation algorithm deployed by
EcoRep. Since AReL considers both revenue and load
of an MH for replica allocation, let us first explore
the interaction between revenue and load of an MH
M . Incidentally, an MH M may earn high amounts
of virtual currency by serving only a few requests for
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some high-priced data items, while not issuing any ac-
cess requests of its own, the implication being that
M ’s revenue would be high, even though M is un-
derloaded. On the other hand, M could be serving
a large number of access requests for low-priced data
items, thereby implying that M ’s revenue would be
low in spite of its high load. Even if M earns high
amounts, M ’s revenue could still be low if M issues
several access requests for high-priced data items. In
essence, there is no direct correlation between the rev-
enue and load of an MH. AReL uses a parameter λ
that can be tweaked to adjust the relative importance
of revenue and load during replica allocation. Thus,
AReL is capable of adapting to the needs of different
types of applications.

Computation of λ involves calculating the normal-
ized values of revenue and load since revenue and load
are measured in different units. Normalization is nec-
essary to correctly reflect the relative weights of rev-
enue and load. As a single instance, if an MH’s revenue
equals 10000 revenue units and its load equals 10 load
units, its revenue value would always dominate, irre-
spective of the weights assigned to revenue and load by
AReL. We define the normalized revenue of an MH M
as MRev/TotalRev, where MRev is the revenue of M
and TotalRev is the summation of the revenues of all
the MHs in the network. Similarly, normalized load
of an MH M is defined as MLoad/TotalLoad, where
MLoad is the load of M and TotalLoad is the summa-
tion of the loads of all the MHs in the network. For
the sake of convenience, we shall henceforth designate
the normalized revenue value of an MH as R and the
normalized load of an MH as L. Moreover, for every
MH, we normalize further to make (R + L) = 1. This
can be easily performed by multiplying the value of
(R + L) of every MH by a real number k, whose value
may differ across MHs. For the sake of convenience, we
shall use R + L = 1 to reflect the above normalization.

Computation of λ for different cases follows.
Case 1: Revenue and load are both assigned
equal weight: AReL computes the function f = R×
L = R× (1−R) (since R + L = 1). Using the product
rule of differentiation, f is differentiated w.r.t. R.

df/dR = R(−1) + 1 −R = 1 − 2R

To find f ’s maximum value, the derivative (df/dR) is
set to zero. Hence, 1−2R = 0 ⇒ R = 1/2. Since R +
L =1, we obtain L = 1/2. Thus, f ’s maximum value
occurs when R = L = 1/2. Hence, AReL computes
λ= (R + L) in this case.

Case 2: Revenue is assigned higher weight
than load: AReL computes a function f = R2 ×L =
R2× (1−R). Using the product rule , we differentiate
f w.r.t. R.

df/dR = R2(−1) + 2R(1 −R) = R(−3R+ 2)

To find f ’s maximum value, we set the derivative
(df/dR) to zero. Since R �= 0, −3R + 2 = 0 ⇒ R

= (2/3). Hence, L = 1/3. Thus, R =2L, hence λ =
2R + L in this case.

Case 3: Revenue is assigned lower weight
than load: AReL computes a function f == R×L2 =
R × (1 − R)2. Similar to Case 2, by differentiating f
w.r.t. R, we obtain L = 2R, hence λ = R + 2L for
this case.

Now we shall describe the AReL algorithm. The
key features of AReL follow. (a) It is executed by SP
and it requires every MH to periodically send its load
status, its revenue value ω, available memory space
status, read-write logs of its own data items and read-
logs of the replicas stored at itself. SP uses these logs
to compute the price ρ of each data item. (b) It prefers
higher-priced data items since these items have higher
importance to the network. (c) It checks MH schedules
to identify MHs that are likely to access a given data
item d. Among these MHs, it replicates d at the MH
M , which has maximum number of k-hop neighbours
that are likely to access d or at one of M ’s k-hop neigh-
bours. This facilitates serving multiple MH requests
in a fair manner. (d) It performs replica allocation
based on constraints such as available memory space
at the MHs, load status of the MHs and the probabil-
ity of availability of the MHs. (SP is able to estimate
probability of availability of an MH by maintaining
availability information about the MH over a period of
time.) (e) It considers those data items, whose prices
exceed the average price ψ, as candidates for replica-

tion. ψ equals ( (1/Nd)
∑Nd

k=1 ρj ), where Nd is the
total number of data items in the M-P2P network and
ρj is the price of the jth data item.

Figure 1 depicts the AReL algorithm. Observe
how AReL allocates replicas starting from the highest-
priced data item, thus preferring higher-priced data
items. Line 15 of Figure 1 indicates that AReL al-
locates replicas of relatively higher-priced data items
to MHs with low values of λ. This facilitates both
revenue-balance and load-balance since low value of
λ implies relatively lower MH revenue and lower MH
load. Revenue-balancing becomes a necessity because
gross imbalance across revenues of MHs may result in
undesirably low revenues for some of the MHs, which
could potentially prevent them from obtaining their
desired services (i.e., issuing access requests) from the
network. This would decrease the overall participa-
tion in the M-P2P network, which is undesirable. On
the other hand, load-balancing is required to optimize
query response times by preventing queries from incur-
ring long waiting times in the job queues of overloaded
MHs. Hence, AReL does not replicate at overloaded
MHs since such MHs would not be able to provide
good service due to their large job queues.

In Line 17 of Figure 1, the price ρ of a data item d
is recomputed after replica allocation since ρ depends
upon the number of existing replicas. If there is still
some available memory space at some MHs after the
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Algorithm AReL

D: List of data items that are candidates for replication

(1) Sort data items in D in descending order of ρ

(2) for each data item d in D

(3) FLAG R = FALSE

(4) Check MH schedules to identify list LA of MHs likely

to access d

(5) Compute the number φ of M ’s k-hop neighbours for

each MH in LA

(6) Sort the MHs in descending order of φ into a list LB

(7) while (FLAG R != TRUE)

(8) for each MH M in LB

(9) Add M and its k-hop neighbours to a list LC

(10) Delete MHs with inadequate memory space from LC

(11) Delete MHs with low remaining energy from LC

(12) Delete overloaded MHs from LC

(13) Delete MHs with low availability from LC

(14) if ( LC is not an empty list )

(15) From LC , select the MH with lowest λ for

storing d’s replica

(16) Delete all entries from LA, LB and LC

(17) Recompute ρ of d

/* ρ depends on the number of replicas */

(18) FLAG R = TRUE

(19) break

end

Figure 1: AReL replica allocation algorithm

AReL algorithm has been executed for all the candi-
date data items for replication, the algorithm is exe-
cuted multiple times until none of the MHs have ade-
quate memory space for storing replicas.

5 Performance Evaluation

MHs move according to the Random waypoint model
[2] within a 1000 metre ×1000 metre area. The entire
network contains 200 data items that are uniformly
distributed among 50 MHs i.e., each MH owns 4 data
items. Each query is a request for one of the data
items. Periodically, every TP seconds, SP decides
whether to perform replica allocation. Network topol-
ogy does not change significantly during replica allo-
cation since it requires only a few seconds [11]. In all
our experiments, 20 queries/second are issued in the
network, the number of queries directed to each MH
being determined by the Zipf distribution. Communi-
cation range of all MHs (except SP) is a circle of 100
metre radius. Table 2 summarizes the performance
study parameters.

Performance metrics are average response time
(ART) of a query, data availability (DA) and
traffic (TR) for replica allocation. ART =

(1/NQ)
∑NQ

i=1(Tf −Ti), where Ti is the time of query is-
suing, Tf is time of the query result reaching the query
issuing MH, andNQ is the total number of queries. DA

Parameter Default value

No. of MHs (NMH) 50

Zipf factor (ZF) 0.9

Allocation period TP (102 s) 2

Queries/second 20

Bandwidth between MHs 28 Kbps to 100 Kbps

Probability of MH availability 50% to 85%

MH service capacity 1 to 5 service capacity units

Size of a data item 50 Kb to 350 Kb

Memory space of each MH 1 MB to 1.5 MB

Speed of an MH 1 metre/s to 10 metres/s

Size of message headers 220 bytes

Table 2: Performance Study Parameters

= ( NS/NQ )*100, NS being the number of queries
that were answered successfully. Each query has a
‘hops-to-live’ i.e., queries that are not answered within
n hops are dropped. Preliminary results of our experi-
ments indicated that n= 4 is a reasonable value for our
application scenarios. We define TR as the total hop-
count for replica allocation during the experiment. As
reference, we adapt the E-DCG+ approach [11] to
our scenario. E-DCG+ is executed at every replica
allocation period. As a baseline, we compare with an
approach NoRep, which does not perform replica allo-
cation. Incidentally, AReL showed comparable perfor-
mance for different values of λ, hence we present here
the results of AReL corresponding to equal weight for
both revenue and load (i.e., λ = R + L, as discussed
in Section 4).

Effect of fair replica allocation

We conducted an experiment to observe the number
of replicas created by AReL and E-DCG+ for a single
‘hot’ data item d over a period of time. This data item
was selected randomly from the top 10% hottest data
items. Figure 2a depicts the results. For both AReL
and E-DCG+, the number of replicas increases over
time since more MHs start participating in providing
service. However, the number of replicas does not in-
crease indefinitely over time and eventually plateaus
after some time due to competition among replicas for
MH memory space. AReL creates more replicas than
E-DCG+ because AReL’s economic model encourages
more MHs to participate in storing replicas, hence to-
tal available memory space and bandwidth are more
for AReL than for E-DCG+.

Figure 2b indicates the average number of hop-
counts required for querying the same data item d
during different periods of time. These results were
averaged over a total of 1200 queries. Initially, be-
fore replica allocation had been performed, all three
approaches required comparable number of hops for
querying d. After replica allocation has been per-
formed, AReL requires lower number of hops than E-
DCG+ to answer queries on d since AReL creates more
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Figure 2: Effect of fair replica allocation

replicas for d as discussed for Figure 2a. More replicas
generally decrease the querying hop-count since it in-
creases the likelihood of queries being answered within
lower number of hops. E-DCG+ requires lower num-
ber of querying hop-counts than NoRep essentially due
to replication.

Performance of AReL

We conducted a simulation experiment using default
values of the parameters in Table 2. Figure 3 depicts
the results, which can be explained partly by the ex-
planations for Figure 2. Additionally, AReL creates
larger number of replicas for many different data items
depending upon data item prices. Thus, AReL would
create a replica for a data item d, which is accessed
by a large number of MHs, even if d’s total access fre-
quency is low, in which case E-DCG+ would not cre-
ate any replica. Furthermore, AReL allocates replicas
only to underloaded MHs, while it is possible for E-
DCG+ to allocate replicas to overloaded MHs. The
performance gap between AReL and E-DCG+ keeps
increasing over time due to to more MH participation
in case of AReL. Incidentally, during replica allocation,
E-DCG+ requires every MH to broadcast its RWR
values to every MH, thereby incurring O(N2

MH) mes-
sages, while AReL requires each MH to send only one
message to SP and SP to send a message to each MH,
thus incurring O(NMH) messages, which explains the
results in Figure 3c.

6 Conclusion

We have proposed EcoRep, which is a novel eco-
nomic model for dynamic replica allocation in M-P2P
networks, the aim being to improve data availabil-
ity. EcoRep ensures fair replica allocation, while dis-

couraging free-riding. EcoRep’s replica allocation al-
gorithm AReL considers relative importance of data
items in terms of price, load and energy issues, user
mobility patterns, replica consistency and number of
neighbours of a given user. Our performance evalua-
tion indicates that EcoRep is indeed effective in im-
proving data availability in terms of reduced query re-
sponse times and higher data availability in M-P2P
networks. We plan to extend this work by consider-
ing replication in the presence of obstacles in M-P2P
networks.
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