
Electronic Preprint for Journal of Information Processing Vol.26

Recommended Paper

Access Control Mechanism to Mitigate Cordova Plugin
Attacks in Hybrid Applications

Naoki Kudo1 Toshihiro Yamauchi1,a) Thomas H. Austin2,b)

Received: April 30, 2017, Accepted: February 1, 2018

Abstract: Hybrid application frameworks such as Cordova are more and more popular to create platform-independent
applications (apps) because they provide special APIs to access device resources in a platform-agonistic way. By us-
ing these APIs, hybrid apps can access device resources through JavaScript. In this paper, we present a novel app-
repackaging attack that repackages hybrid apps with malicious code; this code can exploit Cordova’s plugin interface
to steal and tamper with device resources. We address this attack and cross-site scripting attacks against hybrid apps.
Since these attacks need to use plugins to access device resources, we refer to both of these attacks as Cordova plugin
attacks. We further demonstrate a defense against Cordova plugin attacks through the use of a novel runtime access
control mechanism that restricts access based on the mobile user’s judgement. Our mechanism is easy to introduce to
existing Cordova apps, and allows developers to produce apps that are resistant to Cordova plugin attacks. Moreover,
we evaluate the effectiveness and performance of our mechanism.

Keywords: hybrid Application, Android, Access Control

1. Introduction

In developing mobile applications (apps), hybrid apps are
more and more popular because they can access the device re-
source in a platform-independent way. Unlike conventional mo-
bile apps, hybrid apps are largely implemented using platform-
independent languages such as HTML and JavaScript, with min-
imal use of platform-dependent languages such as Java on An-
droid or Objective-C and Swift on iOS. Thus, a major advan-
tage of hybrid apps is that mobile developers can share source
code among different platforms. In addition, hybrid apps execute
within WebView for using HTML and JavaScript.

Hybrid apps can access device resources through JavaScript
by using a bridge that communicates between JavaScript code
and platform-dependent language code. Hybrid apps are typ-
ically developed using hybrid application frameworks such as
Cordova [2]. According to Android apps statistics [3], 6.3% of
Android apps are implemented by using Cordova. Cordova apps
use plugins as interfaces to access device resources.

In this paper, we present a novel app-repackaging attack that
repackages Cordova apps with malicious code. App-repackaging
attacks can steal and tamper with device resources by exploiting
Cordova’s plugin interface. In addition to these attacks, we ad-
dress cross-site scripting attacks against hybrid apps [1]. We refer
to these attacks as Cordova plugin attacks since they need to use
plugins to access device resources. To address Cordova plugin

attacks, we propose an access control mechanism that restricts

1 Graduate School of Natural Science and Technology, Okayama Univer-
sity, Okayama 700–8530, Japan

2 San Jose State University, San Jose, USA
a) yamauchi@cs.okayama-u.ac.jp
b) thomas.austin@sjsu.edu

access at runtime based on the mobile user’s judgement.
Several works have introduced more fine-grained access con-

trol mechanisms in hybrid apps such as NoFrak [4], Jin et al. [5],
and Mohamed et al. [6]. None of the previous researches con-
sidered access control based on a mobile user’s judgement. In
contrast, MobileIFC [7] proposes an access control mechanism
based on the mobile user’s judgement. However, MobileIFC is
difficult to introduce to existing Cordova apps. On the other hand,
the proposed technique can control access to device resources for
plugins based on the mobile user’s judgement at runtime, and can
easily be applied to existing Cordova apps. Using our technique,
it is possible to use Cordova apps more safely. Note: In this study,
we focused on the Cordova framework for Android.

The contributions of this paper are as follows:
- We present a novel app-repackaging attack that repackages

Cordova apps with malicious code. Malicious attackers can
inject JavaScript code into existing Cordova apps. Moreover,
app-repackaging attacks are more vulnerable to this form of
code injection than Android apps. Therefore, this attack rep-
resents a significant threat because attackers can inject any
code more easily.

- We propose an access control mechanism that restricts ac-
cess to device resources based on the user’s judgement for
mitigating Cordova plugin attacks. App developers can eas-
ily introduce our mechanism since they do not need to mod-
ify the app’s source code.

The preliminary version of this paper was presented at Computer Secu-
rity Symposium 2016 (CSS2016) in October 2016, and recommended to
be submitted to Journal of Information Processing (JIP) by the program
chair of CSS2016.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

2. Cordova Apps

2.1 Structure of Cordova Apps
2.1.1 Structure

Figure 1 shows the structure of Cordova apps on Android.
Cordova apps use WebView and a Cordova framework. Web-

View shows web pages used by HTML and JavaScript. The Cor-
dova framework helps app developers to develop Cordova apps by
using HTML and JavaScript. As shown in Fig. 1, Cordova apps
can access device resources by using plugins. By using plugins,
these apps can access device resources across different platforms,
such as iOS and Windows Phone. Cordova apps access device
resources as follows:
(1) The Cordova app accesses the Java plugin from the

JavaScript plugin.
(2) The Cordova app accesses device resources from the Java

plugin.
(3) The Java plugin receives the result of the accessing device

resources.
(4) The JavaScript plugin receives the result of accessing device

resources from the Java plugin.
2.1.2 Plugins

A plugin is an interface to access device resources, and is di-
vided into two parts: a JavaScript plugin and a Java plugin. The
JavaScript plugin defines JavaScript APIs to access Java meth-
ods, while the Java plugin defines Java methods, which can ac-
cess device resources. Cordova apps can access device resources
through the JavaScript code by using JavaScript APIs.

Plugins are divided into two classes depending on providers.
One is a Cordova core plugin provided by Apache Cordova and
the other is a third party plugin provided by third parties.

2.2 Flow of Access to Device Resources for Plugins
Figure 2 shows a flow of access to device resources for plug-

ins. Cordova apps access device resources through JavaScript as
follows:
(1) Cordova determines whether the JavaScript code calls a

JavaScript method for the plugin.
(A) When the JavaScript code calls the JavaScript method

for the plugin, the Cordova app starts the JavaScript plu-
gin execution and calls the JavaScript API.

(B) When the JavaScript code does not call the JavaScript
method for the plugin, the JavaScript code completes
execution.

(2) Cordova determines whether the URL is whitelisted.
(A) When the URL is whitelisted, the Cordova app starts the

Java plugin execution and calls the Java method corre-
sponding to the JavaScript API.

(B) When the URL is not whitelisted, the JavaScript plugin
completes execution.

(3) The Cordova app accesses device resources through the Java
method.

(4) The Java plugin sends the result of accessing device re-
sources to the JavaScript plugin and then the Java plugin and
the JavaScript plugin complete execution.

Fig. 1 Structure of Cordova apps on Android.

Fig. 2 Flow of access to device resources for plugins in the Cordova frame-
work.

2.3 Problem of Cordova Apps
By using plugins, Cordova apps can access device resources

through JavaScript. Therefore, Cordova apps can easily use de-
vice resources across different platforms such as iOS and Win-
dows Phone by using plugins. However, when malicious attack-
ers exploit plugins, they can steal and tamper with device re-
sources through JavaScript.

3. Cordova Plugin Attacks

3.1 Threat Model
Although their ability to attack is limited to plugins read by the

Cordova app, when malicious attackers exploit Cordova’s plugin
interface, they can steal and tamper with device resources through
JavaScript as mentioned in Section 2.3. In addition, Jin et al. [1],
Mohamed et al. [6], and Brucker et al. [8] show that malicious at-
tackers can steal and tamper with device resources by exploiting
plugins. Therefore, app developers need to address this prob-
lem to protect device resources from attackers. We analyze the
structure of plugins and find a novel app-repackaging attack that
injects malicious code into Cordova apps. Two forms of code
injection attacks are focused on in this paper:

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 3 Injected JavaScript code by using an app-repackaging attack.

(1) App-repackaging attack
Malicious attackers can inject JavaScript code by repackag-
ing Cordova apps, which are more vulnerable to this form of
code injection than Android apps. App-repackaging attacks

are significant threats because attackers can inject any code
more easily.

(2) Cross-site scripting attack
Jin et al. [1] demonstrate that hybrid apps including Cordova
apps have broad attack surfaces such as Wi-Fi access points
and 2D barcodes, and malicious attackers can inject the code
by using cross-site scripting vulnerabilities.

Furthermore, our app-repackaging attack significantly simpli-
fies the problem of attacking an Android app. Typically, to mod-
ify Java bytecodes and repackage apps, attacking an app would
involve time-consuming analysis of the target app and careful
bytecode manipulation. However, since we are targeting hybrid
applications, we only need to inject malicious JavaScript code
into HTML. Therefore, we believe that app-repackaging attacks

are easily and automatically applicable, and thus a serious threat.
We refer to both of these attacks as Cordova plugin attacks,

since they leverage the Cordova’s plugin interface. Note that in
Cordova plugin attacks we focus on the problem that malicious
attackers can inject the JavaScript code exploiting Cordova’s plu-
gins to access device resources.

3.2 Attack Example
To reveal threats of Cordova plugin attacks, we use a test app

that we developed as an example. This app displays the Apache
Cordova’s webpage and accesses the InAppBrowser plugin and
the Contacts plugin. Moreover, the test app has a vulnerability
against app-repackaging attacks. We injected the JavaScript code
of Fig. 3 into the test app by using an app-repackaging attack.

The code of Fig. 3 uses Contacts.find() to get the user’s

Fig. 4 Screenshot of the original
test app.

Fig. 5 Screenshot of the injected
test app.

contacts by accessing the Contact plugin. The plugin API is
called by the injected Cordova app in the case of the app startup.
At Line 19, the plugin API gets contacts satisfying the conditions
set by the code from Line 14 to Line 18. Then, the contacts are
stored in the variable con and displayed at Line 08. At Line 09
and Line 10, the value of con is sent to the outside of the app (IP
address 127.***.**.**).

In addition, Fig. 4 shows the screenshot of the original test app
and Fig. 5 shows the screenshot of the injected test app. In Fig. 5,
the injected test app displays a dialog including mobile user’s
contacts before displaying the Apache Cordova’s webpage. The
operation of the injected test app corresponds to the code at Line
09 of Fig. 3. Moreover, we confirmed that the mobile user’s con-
tacts are sent to the outside. Thus, it shows that the JavaScript
code shown in Fig. 3 is executed in the injected test app.

In this way, when Cordova apps have a vulnerability against
Cordova plugin attacks, attackers can inject the JavaScript code
for stealing and tampering with device resources into the Cordova
apps.

3.3 App-Repackaging Attack
3.3.1 Structure of Apk Files for Android Cordova Apps

Before explaining how to inject the JavaScript code by repack-
aging Cordova apps, we show the architecture of apk files on An-
droid Cordova apps in Fig. 6. The app source code of HTML and
JavaScript are stored in /assets/www/*.
3.3.2 How to Inject JavaScript by Repackaging Cordova

Apps
The process of injecting the JavaScript code by repackaging

Cordova apps takes place as follows:
(1) Extracting apk files.
(2) Injecting the malicious JavaScript code into index.html or js

files of /assets/www/.
(3) Repackaging apk files.
When malicious attackers exploit Cordova plugins to inject the
JavaScript code, they can steal and tamper with device resources.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 6 Structure of apk files for Android Cordova apps.

3.3.3 Comparison with Repackaging Android Apps
Android malware using repackaging has increased in Android

markets. Attackers repackage popular original Android apps in
Google Play and spread repackaged Android apps in third party
markets.

When attackers inject malicious code by repackaging Android
apps, they exploit Java bytecode in class files extracted from
a classes.dex file by using reverse engineering tools such as
dex2jar [9] and Java Decompiler [10]. Moreover, they disassem-
ble a classes.dex file into readable text files to know the applica-
tion’s operation. Therefore, repackaging Android apps takes time
and effort to exploit Java bytecode and know the application’s
operation. In addition, when mobile developers use tools such
as ProGuard [11] to obfuscate the Java code on Android apps,
repackaging Android apps becomes difficult for attackers because
attackers cannot know the application’s operation exactly.

In contrast, when attackers inject malicious code by repack-
aging Cordova apps, they exploit the JavaScript code in /as-
sets/www/ such as index.html and js files. Unlike repackaging
Android apps, attackers can read the raw source code of these
files directly. Moreover, since Cordova apps are typically written
in HTML and JavaScript, the standard code obfuscation tools on
Android apps are useless. In addition, even if mobile develop-
ers use JavaScript obfuscation tools on Cordova apps, attackers
can inject the JavaScript code easily because these tools cannot
obfuscate the source code written in HTML such as HTML tags.

Therefore, Cordova apps are more vulnerable to repackaging
attacks than Android apps. In consequence, Cordova apps need a
strong defense to mitigate the app-repackaging attack.
3.3.4 Comparison with Code Injection Attacks against Cor-

dova Apps
In addition to Cordova plugin attacks, two code injection at-

tacks exist: Java bytecode injection attack and JavaScript code

injection attack. However, these attacks are not as serious as the
Cordova plugin attacks. First, in a Java bytecode injection at-

tack, attackers inject the exploit Java bytecode in class files ex-
tracted from a classes.dex file by using the same reverse engi-
neering tools used in repackaging Android apps. In this attack,
attackers can steal and tamper with device resources directly, de-
spite the fact that this attack is a difficult one for attackers because
they must precisely know the application’s operations.

Next, in a JavaScript code injection attack, attackers exploit
the JavaScript code in /assets/www/ such as index.html and js
files. This attack can inject the JavaScript code easily, despite the
fact that attackers cannot steal and tamper with device resources
directly.

Compared to these attacks, Cordova plugin attacks are more
serious because attackers can inject the code easily and can steal
device resources directly.

3.4 Cross-Site Scripting Attack on Cordova Apps
In this section, we explain cross-site scripting attacks demon-

strated in Jin et al. [1]. In a typical cross-site scripting attack,
attackers inject the JavaScript code into the data field (such as in
a form). Since the applications only interact with web servers,
attackers use the site for their code to reach the victim’s browser.
On the other hand, hybrid apps have a much broader attack sur-
face than web applications because they interact with many forms
of entities, such as other apps, 2D barcode, Wi-Fi access points,
other mobile devices, data sent by others or downloaded from ex-
ternal resources, etc.

Therefore, attackers can use many forms of entities to inject
the JavaScript code compared to web applications. In one exam-
ple, Jin et al. inject HTML tags and the JavaScript code into an
existing hybrid app by using QR code and steal a device’s geolo-
cation.

3.5 Discussion
In this section, we consider whether the conventional Android

system permission can protect device resources against Cordova

plugin attacks. When Cordova apps access device resources by
using plugins, they request Android permissions. Prior to An-
droid 6.0, Android apps requested permissions at install-time.
Since Android 6.0, Android apps request any permissions belong-
ing to the “Dangerous Permissions” group at runtime. Request-
ing permissions at install-time cannot protect device resources
against Cordova plugin attacks because it cannot detect access
to device resources at runtime. On the other hand, requesting per-
missions at runtime can protect device resources against Cordova

plugin attacks because it can detect access to device resources be-
fore plugins access them. Therefore, since Android 6.0, Cordova
apps can prevent malicious JavaScript from accessing device re-
sources for plugins belonging to the “Dangerous Permissions”
group.

However, from Android 6.0 upwards, Android apps must set
the targetSdkVersion to 23 or over for requesting permissions at
runtime in the AndroidManifest.xml. According to Mutchler et
al. [12], 93% of 60,086 Android apps had set the targetSdkVer-
sion to under 23. Moreover, the attacker could change the tar-
getSdkVersion’s value to under 23 in order to facilitate Cordova

plugin attacks. Therefore, it is assumed that many Cordova apps
request permissions at install-time but not at runtime because they
set the targetSdkVersion to under 23.

Consequently, many Cordova apps are vulnerable to Cor-

dova plugin attacks because they request Android permissions
at install-time. Therefore, Cordova apps need a strong defense to
protect device resources from Cordova plugin attacks.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

4. Access Control Mechanism for Plugins

4.1 Concept of Proposed Technique
To mitigate Cordova plugin attacks as described in Section 3.1,

we propose an access control mechanism that restricts access to
plugins before accessing and sending device resources at runtime.
The purpose of the proposed technique is to prevent the malicious
JavaScript code from exploiting Cordova’s plugins to steal and
tamper with device resources. We focus on the communication
between a JavaScript plugin and a Java plugin into the Cordova
framework as shown in Fig. 1.

Our access control mechanism can control the following.
(1) Access to the Java plugin from the JavaScript plugin before

accessing device resources
(2) Information sent to the JavaScript plugin from the Java plu-

gin after accessing device resources
By introducing the proposed technique, when mobile users use
a vulnerable Cordova app, they can control access to device re-
sources for plugins before accessing and sending device resources
against Cordova plugin attacks.

Our access control mechanism can address Cordova plugin at-

tacks. Moreover, app developers can easily integrate the tech-
nique into existing Cordova apps since they do not need to modify
the app’s source code.

4.2 Design
4.2.1 Access Control to the Java Plugin

Figure 7 shows an overview of access control to the Java plu-
gin, which controls access to device resources from the JavaScript
code as follows:
(1) A Java method that accesses the Java plugin is hooked.
(2) Our mechanism collects the necessary information from the

method.
(3) Our mechanism determines whether access to this plugin has

been granted previously.
(A) When access to this plugin has not been granted, a dia-

log to decide the plugin permission is displayed.
(B) When access to this plugin has been granted, the Cor-

dova app starts the Java plugin execution and accesses
device resources.

(4) Our mechanism controls this plugin according to the mobile
user’s judgement.

Fig. 7 Overview of access control to the Java plugin.

(A) When the mobile user grants access to device resources,
the Cordova app starts the Java plugin execution and ac-
cesses device resources.

(B) When the mobile user denies access to device resources,
the JavaScript plugin completes execution.

4.2.2 Information Control to the JavaScript Plugin
Figure 8 shows an overview of information control to

the JavaScript plugin, which controls information sent to the
JavaScript code as follows:
(1) A Java method that sends the result of accessing device re-

sources to the JavaScript plugin is hooked.
(2) Our mechanism collects the necessary information from the

method.
(3) Our mechanism determines whether sending to this plugin

has been granted previously.
(A) When sending to this plugin has not been granted, a di-

alog to decide the plugin permission is displayed.
(B) When sending to this plugin has been granted, the Java

plugin sends the result to the JavaScript plugin.
(4) Our mechanism controls this plugin according to the mobile

user’s judgement.
(A) When the mobile user grants sending the result to the

JavaScript plugin, the Java plugin sends the result to the
JavaScript plugin.

(B) When the mobile user denies sending the result to the
JavaScript plugin, the control is moved to (5).

(5) Our mechanism restricts the information sent to the
JavaScript plugin so as not to include device resources.

4.3 Challenges
To implement the proposed technique, we need to consider the

following challenges.
C1 Controlling access to device resources for plugins based on

the mobile user’s judgement.
In vulnerable Cordova apps, the proposed technique needs to
prevent the JavaScript code from accessing device resources
through the Cordova plugin interface.

C2 Considering information that the dialog displays to the mo-
bile user.
The proposed technique displays a dialog for access control
based on the mobile user’s judgement. The mobile user de-
cides whether the Cordova app accesses and sends device

Fig. 8 Overview of information control to the JavaScript plugin.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 9 Flow of access to device resources for a plugin using the proposed technique in the Cordova frame-
work.

resources for the plugin based on the information of the dia-
log.

C3 Avoiding repeated dialogs.
Once the user has granted access to a resource for a plu-
gin, the plugin is assumed to retain that permission going
forward. This design avoids excessive dialog messages that
inconvenience for the mobile user.

4.4 Our Solution
4.4.1 Controlling Access to Device Resources for Plugins

Based on the Mobile User’s Judgement
The proposed technique displays a dialog based on the plugin

name extracted from the hooked Java method. The mobile user
decides whether the Cordova app accesses and sends device re-
sources based on the information in the dialog. When the mobile
user denies access to device resources for the plugin, Cordova
apps cannot start the Java plugin execution. Moreover, when the
mobile user denies sending information to the outside for the plu-
gin, the proposed technique restricts the information sent to the
JavaScript plugin so as not to include device resources.
4.4.2 Considering Information that the Dialog Displays to

the Mobile User
Since the mobile user decides whether the Cordova app ac-

cesses device resources for the plugin, it is necessary for the
mobile user to understand the plugin operation. Therefore, the
proposed technique displays the plugin name and the device re-
sources requested. In addition to the above information, when the
proposed technique detects sending information, the technique
displays the information that it attempts to send to the outside.
4.4.3 Avoiding Repeated Dialogs

In order to avoid repeatedly asking the mobile user for the same
access, we use a plugin permission list. The plugin name is added
to the permission list when the mobile user grants access to device

resources for the plugin. In addition, the proposed technique con-
firms whether the detected plugin name is in the plugin permis-
sion list before displaying a dialog. When the plugin name exists
in the plugin permission list, the proposed technique updates the
plugin permission. In addition, when the detected plugin name
is in the plugin permission list, the permission is granted without
prompting the mobile user.

4.5 Flow of Access to Device Resources for Plugins
Figure 9 shows the flow of access to device resources for plu-

gins using the proposed technique. Moreover, Fig. 10 and Fig. 11
show the flow of the proposed technique. As shown in the Fig. 10,
the proposed technique controls access to the Java plugin as fol-
lows:
(1) The access control mechanism determines whether a de-

tected plugin is in the plugin permission list.
(A) When the plugin name is not in the plugin permission

list, a dialog is shown to the mobile user.
(B) When the plugin name is in the plugin permission list,

the Cordova app starts the Java plugin execution and
calls the Java method corresponding to the JavaScript
API.

(2) The mobile user decides whether the Cordova app may send
device resources based on the information presented in the
dialog.
(A) When the mobile user grants access to device resources,

the plugin name is added to the plugin permission list.
(B) When the mobile user denies access to device resources,

the JavaScript plugin completes execution.
In addition, as shown in Fig. 11, the proposed technique con-

trols information sent to the JavaScript plugin as follows:
(1) The access control mechanism determines whether sending

device resources from a detected plugin has been granted by

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 10 Flow of access control to the Java plugin.

Fig. 11 Flow of information control to the JavaScript plugin.

referring the plugin permission in the plugin permission list.
(A) When sending device resources from the plugin has

been granted, a dialog is shown to the mobile user.
(B) When sending device resources from the plugin has not

been granted, the Java plugin sends the result to the
JavaScript plugin.

(2) The mobile user decides whether the Cordova app may send
the information based on the information presented in the
dialog.
(A) When the mobile user grants sending the information to

the JavaScript plugin, the mechanism updates the plugin
permission list to record that the sending of the plugin
has been granted.

(B) When the mobile user denies sending the information
to the JavaScript plugin, the mechanism restricts infor-
mation sent to the JavaScript plugin so as not to include
device resources.

5. Implementation and Evaluation

5.1 Implementation
We implemented the proposed technique in the Cordova frame-

Table 1 Smartphone specifications.

OS Android 6.0.1

CPU Snapdragon 810 2.0 GHz (octa-core)

Memory 3 GB

work so that app developers can integrate it into existing Cordova
apps more easily. The proposed technique changes the control-
flow for the JavaScript plugin to access the Java plugin, restricting
access to device resources.

Therefore, to implement our access control mechanism, we
modified the Java implementation of the Cordova framework re-
lated to the original control-flow. In particular, we modified two
Java classes (PluginManager and CallbackContext) and added
five Java classes in the Cordova framework.

When app developers integrate our access control mechanism
into existing Cordova apps, it is only necessary for developers
to modify the above-mentioned seven Java classes in the original
Cordova framework. Moreover, developers do not need to modify
their app source code for introducing the proposed technique ac-
cess to the Java plugin. Therefore, our access control mechanism
is easy for developers to introduce to existing Cordova apps.

5.2 Experimental Setup
We evaluate the proposed technique from two aspects: effec-

tiveness in detecting Cordova plugin attacks and performance of
the proposed technique. First, we show that the proposed tech-
nique can prevent malicious JavaScript code from exploiting the
plugin API to access device resources using a sample app that
we developed. Then, we consider the possibility of an app-

repackaging attack and test applying for the proposed technique
against existing Cordova apps. Finally, we evaluate the process-
ing time of the Cordova framework using the proposed technique
and the original Cordova framework, using several existing Cor-
dova apps for our tests. We refer to the Cordova framework in-
troduced using the proposed technique as the modified Cordova
framework. Table 1 shows the evaluation environment. We used
a smartphone (Nexus 6p) for the evaluation.

5.3 Experiment to Prevent JavaScript Code from Exploiting
Plugins

We tested whether the proposed technique can prevent the
JavaScript code from exploiting the plugin API to access and
send device resources in a test app as shown in Section 3.2. This
app displays Apache Cordova’s webpage and accesses the InApp-
Browser plugin and the Contacts plugin. We injected malicious
JavaScript code into the test app. This code attempts to access the
Contacts plugin and display the user’s contacts.

Figure 12 shows a dialog displayed by the test app with the in-
jected JavaScript code that exploits the Contacts plugin. The dia-
log informs the mobile user of the attempt to steal contacts before
displaying Apache Cordova’s webpage. Next, Fig. 13 shows a di-
alog displayed by the test app built with our framework; when ac-
cess to the Contacts plugin is requested, the user is asked whether
to authorize the access. Therefore, Fig. 13 shows that the pro-
posed technique can detect plugins before accessing device re-
sources. Figure 14 shows a dialog displayed by the test app

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 2 Processing time of access to device resources against existing Cordova apps.

Method Application Name
Aprender ingles
con Wlingua

Kite Fighting Period Calendar,
Cycle Tracker

Pirate Treasures Translator
Women’s Voice

(1) Original Cordova framework 1.740 ms 1.534 ms 3.426 ms 3.592 ms 3.214 ms

(2) Modified Cordova framework
(first access attempt)

5.012 ms 2.812 ms 4.726 ms 4.468 ms 5.059 ms

(3) Modified Cordova framework
(subsequent access attempts)

2.161 ms 2.381 ms 3.614 ms 4.130 ms 4.218 ms

Fig. 12 Dialog of the injected test
app in uninstrumented
Cordova.

Fig. 13 Dialog of the test app with
our defense when access to
the plugin is detected.

Fig. 14 Dialog of the test app with our defense when sending information
to the plugin is detected.

when sending information by the Contacts plugin. The user is
asked whether to authorize sending the information. In addition,
we tested that the proposed technique can prevent plugins from
accessing device resources when the mobile user denies access to
the plugin.

Consequently, we demonstrated that the proposed technique
can detect and prevent attacks that attempt to exploit Cordova’s
plugin interface.

5.4 Application for Existing Cordova Apps
We apply the proposed technique for existing Cordova apps.

First, we chose five free Cordova apps that each have over a mil-
lion downloads from Google Play. The list of Cordova apps is in
Table 2. Next, we inject the JavaScript code into five Cordova
apps by using an app-repackaging attack. In consequence, we
could inject the JavaScript code into all Cordova apps. Therefore,
it is assumed that app-repackaging attacks can occur realistically.

Then, we developed modified Cordova apps using the modified
Cordova framework against their apps and tested whether the pro-
posed technique can detect access to device resources for plugins.
The result of applying the modified Cordova framework shows
that the proposed technique did not find false positives against
five Cordova apps and could detect all access to device resources
for plugins against five Cordova apps. Therefore, the proposed
technique can apply for existing Cordova apps.

5.5 Evaluation of Performance Overhead
To compare the performance of the original Cordova frame-

work and the modified Cordova framework, we evaluated them
against existing Cordova apps.

First, we developed modified Cordova apps using each Cor-
dova framework against the Cordova apps shown in Section 5.4.
Next, we executed the Cordova apps three times and measured the
average processing time of access to device resources for plugins
in the following cases.
(1) Original Cordova framework
(2) Modified Cordova framework on the first access attempt
(3) Modified Cordova framework on subsequent access attempts
Note that case (2) measures only the time of showing a dialog and
the processing time of accessing device resources or sending in-
formation to the outside after the user’s response. Thus, this case
does not consider the time taken by the mobile user to decide
whether to allow access to device resources or sending informa-
tion for the plugin.

Table 2 and Table 3 show the evaluation results. When the
Cordova framework accesses device resources, Table 2 shows
that the overhead on the first access is within about 1.2–3.3 ms
and the overhead on subsequent access attempts is within about
0.2–1.1 ms. The maximum overhead on the first access is about
3.3 ms, which has little effect on the usability of Cordova apps.
When mobile users grant access to device resources for plugins,
the overhead is reduced within about 0.2–1.1 ms on future access
attempts.

On the other hand, when the Cordova framework sends infor-
mation, Table 3 shows that the overhead on the first sending is
within about 1.6–2.5 ms and the overhead on subsequent send-

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 3 Processing time of sending information against existing Cordova apps.

Method Application Name
Aprender ingles
con Wlingua

Kite Fighting Period Calendar,
Cycle Tracker

Pirate Treasures Translator
Women’s Voice

(1) Original Cordova framework 0.261 ms 0.190 ms 0.108 ms 0.076 ms 0.138 ms

(2) Modified Cordova framework
(first access attempt)

2.130 ms 1.778 ms 2.617 ms 2.114 ms 1.855 ms

(3) Modified Cordova framework
(subsequent access attempts)

0.789 ms 0.785 ms 0.763 ms 0.613 ms 0.848 ms

ing attempts is within about 0.5–0.7 ms. The maximum overhead
on the first sending is about 2.5 ms, which has little effect on the
usability of Cordova apps as with the case of access to device re-
sources. When mobile users grant sending information to the out-
side for plugins, the overhead is reduced within about 0.5–0.7 ms
on future access attempts.

The results of both cases shows that the overhead has little ef-
fect on the usability of existing Cordova apps on the first attempt
and is reduced on future access attempts. Therefore, existing Cor-
dova apps using the modified framework remain usable.

6. Related Work

Jin et al. [1] and Georgiev et al. [4] discussed a new form of
attack targeting hybrid apps. In addition, to address these at-
tacks and improve the security of hybrid apps, NoFrak [4], Jin
et al. [5], and Mohamed et al. [6] proposed fine-grained access
control mechanisms for hybrid apps. Previous researches do not
consider access control based on the mobile user’s judgement. In
contrast, MobileIFC [7] is a novel framework where the mobile
user and the developer can set access permissions by specifying
a resource’s URL. However, mobile developers need to integrate
the MobileIFC code into existing Cordova apps. Therefore, they
must heavily modify their source code to introduce MobileIFC.
Our proposed technique only modifies the Cordova framework.
Therefore, mobile developers do not need to modify their source
code to introduce the proposed technique.

On the other hand, to improve the security of the Android plat-
form, Backes et al. [13], Nauman et al. [14], Wang et al. [15],
Conti et al. [16], Bugiel et al. [17], and Yu et al. [18] proposed
fine-grained access control mechanisms on Android. In the range
of control objects, previous researches [13], [14], [15], [16], [17],
[18] showed that control can be achieved regardless of the An-
droid application type. The proposed technique can control when
an Android application uses the Cordova framework. Therefore,
previous researches have a wide range of scope compared to the
proposed technique.

Next, we compare to previous researches from the viewpoint
of ease of introduction. Previous researches must modify either
the Android OS or the Android framework to introduce access
control mechanisms proposed by previous researches because the
Android OS and the Android framework do not deploy the fine-
grained access control of previous researches. Therefore, when
mobile users do not modify them with these defenses, they cannot
deal with Cordova plugin attacks and other attacks. In addition,
it is difficult to modify the Android OS or the Android framework
of their own device. On the other hand, the proposed technique is
easier for introducing users to this process of mitigating these at-

tacks because mobile users must install only Cordova apps using
our defense without modifying the Android OS or framework.

Furthermore, the proposed technique does not require config-
uration by users before they use it. Thus, users can immediately
start using the proposed technique.

As described previously, the proposed technique can be eas-
ily introduced to users because mobile users only need to install
Cordova apps using our defense mechanism. In addition, the pro-
posed technique targets only Android applications using the Cor-
dova framework. Therefore, compared to previous researches,
our mechanism is more effective when mobile users use Android
applications using the Cordova framework. Furthermore, we be-
lieve that Android applications using the Cordova framework will
be more convenient and thus more popular, as mobile developers
can share source code among different platforms.

7. Conclusion

In this paper, we presented a novel app-repackaging attack

against Android Cordova apps. This attack can steal and tamper
with device resources from JavaScript by exploiting Cordova’s
plugin interface. In addition, to mitigate against app-repackaging

attacks and cross-site scripting attacks [1], we proposed an access
control mechanism that restricts access to plugins before access-
ing device resources at runtime.

The proposed technique can control access to device resources
for plugins and the information sent to the outside based on the
user’s judgement. Moreover, the proposed technique only needs
to modify the Cordova framework. Therefore, in comparison with
related work, it is easier to introduce our defense to existing Cor-
dova apps. With our modified framework, mobile users can re-
strict access to device resources when using a compromised app.
Thus, mobile users can use Cordova apps more safely. Moreover,
we evaluated the effectiveness and performance of the proposed
technique. The result of our testing shows that the proposed tech-
nique can prevent JavaScript by exploiting the Cordova’s plugin
interface from accessing device resources with little overhead.
Therefore, Cordova apps are still usable with our modified frame-
work.

In future work, we will consider an access control mechanism
not heavily depending on the app user’s decision to protect the
sensitive information.

References

[1] Jin, X., Hu, X., Ying, K., Du, W., Yin, H. and Peri, G.N.: Code
Injection Attacks on HTML5-based Mobile Apps: Characterization,
Detection and Mitigation, Proc. 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’14), pp.66–77 (2014).

[2] Apache Software Foundation: Apache Cordova, Apache Software

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Foundation (online), available from 〈https://cordova.apache.org/〉 (ac-
cessed 2017-01-17).

[3] AppBrain: AppBrain (online), available from
〈http://www.appbrain.com/stats/libraries/details/phonegap/phonegap-
apache-cordova〉 (accessed 2017-01-17).

[4] Georgiev, M., Jana, S. and Shmatikov, V.: Breaking and Fixing Origin-
Based Access Control in Hybrid Web/Mobile Application Frame-
works, Proc. 2014 Network and Distributed System Security (NDSS
’14), pp.1–15 (2014).

[5] Jin, X., Wang, L., Luo, T. and Du, W.: Fine-Grained Access Control
for HTML5-Based Mobile Applications in Android, Proc. 16th Infor-
mation Security Conference (ISC 2013), pp.309–318 (2013).

[6] Mohamed, S. and Abeer, A.: Reducing Attack Surface on Cordova-
based Hybrid Mobile Apps, Proc. 2nd International Workshop on Mo-
bile Development Lifecycle (MobileDeLi ’14), pp.1–8 (2014).

[7] Kapil, S.: Practical Context-Aware Permission Control for Hybrid
Mobile Applications, Proc. 16th International Symposium on Re-
search in Attacks, Intrusions and Defenses (RAID 2013), pp.307–327
(2013).

[8] Brucker, A.D. and Herzberg, M.: On the Static Analysis of Hybrid
Mobile Apps, Proc. 8th International Symposium on Engineering Se-
cure Software and Systems (ESSoS 2016), pp.72–88 (2016).

[9] pxb1988: dex2jar (online), available from 〈https://github.com/
pxb1988/dex2jar〉 (accessed 2017-01-17).

[10] Emmanuel Dupuy: Java Decompiler (online), available from
〈http://jd.benow.ca/〉 (accessed 2017-01-17).

[11] ProGuard: ProGuard (online), available from
〈http://proguard.sourceforge.net/〉 (accessed 2017-01-17).

[12] Mutchler, P., Safaei, Y., Doupe, A. and Mitchell, J.: Target Fragmen-
tation in Android Apps, Proc. IEEE Security Privacy Mobile Security
Technologies Workshop (MoST) (2016).

[13] Backes, M., Bugiel, S., Gerling, S. and von Styp-Rekowsky, P.: An-
droid Security Framework: Extensible Multi-Layered Access Control
on Android, Proc. 30th Annual Computer Security Applications Con-
ference (ACSAC ’14), pp.46–55 (2014).

[14] Nauman, M., Khan, S. and Zhang, X.: Apex: Extending Android
Permission Model and Enforcement with User-defined Runtime Con-
straints, Proc. 5th ACM Symposium on Information, Computer and
Communications Security (ASIACCS ’10), pp.328–332 (2010).

[15] Wang, Y., Hariharan, S., Zhao, C., Liu, J. and Du, W.: Compac: En-
force Component-Level Access Control in Android, Proc. 4th ACM
Conference on Data and Application Security and Privacy (CODASPY
’14), pp.25–36 (2014).

[16] Conti, M., Nguyen, V.T.N. and Crispo, B.: CRePE: Context-Related
Policy Enforcement for Android, Proc. 13th International Conference
on Information Security, pp.331–345 (2010).

[17] Bugiel, S., Heuser, S. and Sadeghi, A.-R.: Flexible and Fine-grained
Mandatory Access Control on Android for Diverse Security and Pri-
vacy Policies, Proc. 22nd USENIX Conference on Security, pp.131–
146 (2013).

[18] Yu, J. and Yamauchi, T.: Access Control to Prevent Malicious
JavaScript Code Exploiting Vulnerabilities of WebView in Android
OS, IEICE Trans. Inf. Syst., Vol.E98-D, No.4, pp.807–811 (2015).

Editor’s Recommendation
The aim of the paper is clearly stated and the problems are

carefully addressed. The proposed method exploits a permission-
based access control scheme, which might be rather a well-known
approach, however, the evaluation results of the proposed method
implemented on a real system should be valuable for readers and
thus is selected as a recommended paper.

(Program chair of Computer Security Symposium 2016,
Masayuki Terada)

Naoki Kudo received his B.E. and M.E.
degrees from Okayama University, Japan
in 2015 and 2017 respectively. His re-
search interests include computer security
and Android platforms.

Toshihiro Yamauchi received his B.E.,
M.E. and Ph.D. degrees in computer sci-
ence from Kyushu University, Japan in
1998, 2000 and 2002, respectively. In
2001 he was a Research Fellow of the
Japan Society for the Promotion of Sci-
ence. In 2002 he became a Research As-
sociate in the Faculty of Information Sci-

ence and Electrical Engineering at Kyushu University. He has
been serving as an Associate Professor of the Graduate School
of Natural Science and Technology at Okayama University since
2005. His research interests include operating systems and com-
puter security. He is a member of IPSJ, IEICE, ACM, USENIX,
and IEEE.

Thomas H. Austin earned his Ph.D. in
computer science from UC Santa Cruz.
He is currently an Assistant Professor at
San Jose State University, and has pre-
viously worked with Mozilla’s research
group, ESIEA Ouest’s Cryptology and
Operational Virology lab, and CloudFlare,
Inc. His research interests include mal-

ware analysis and programming language design.

c© 2018 Information Processing Society of Japan

