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Abstract 

This paper proposes a privacy preserving 

protocol for implementing machine learning 

based on cloud server. Since the mobile 

terminals have very limited computational 

resources, cloud server-based implementation is 

considered more efficient for various mobile 

applications. But cloud-based approaches may 

have information leakage and privacy issues. 

The server or third person can see and collect 

the user's sensitive private data easily. Our 

proposed protocol can be useful to solve these 

problems. The protocol implements a neural 

network using both a mobile device and the 

server; and the part on the server is only a black 

box. Experimental results reveal that the 

protocol works well while preserving both the 

user data and the prediction model.  

 
1. Introduction 

As mobile terminals such as smartphones 

become more and more popular, a lot of 

smartphone applications are developed and 

used for various purposes. To make the 

applications more intelligence and effective, 

machine learning (ML) technologies can be used. 

But, it might be difficult to implement an ML 

model because it is usually designed for large-

scale computing environments.  A mobile device 

has limited resources (e.g., CPU, memory, 

battery and storage). To solve this problem, 

client-server implementation model can be used. 

In this approach, a client is used as input/output, 

and the server is used for ML-based prediction. 

However, this method poses information 

leakage and privacy invasion problems. If the 

ML models are conducted in the server,  it will 

be easy to analyze the user’s requests, 

intentions and sensitive information. Even if 

the server is trustable, some malicious third 

person may attack and see the personal 

information easily. Therefore, the server-based 

prediction services may not be trustable. To 

solve the problem, we proposed a privacy 

preserving protocol using extreme learning 

machine (ELM) [1]. The protocol can reduce the 

calculation cost on the mobile terminal by using 

server calculation while preserving the privacy. 

The server can only see the encrypted user data 

and a random matrix (black-box) calculation. 

The final decision of the ML model may not be 

seen from server-side. The protocol will make 

the server trustable. 

  
2. Privacy preserving protocol 

The privacy preserving protocol is proposed 

by us to solve limited resources problem and 

privacy problem. The main idea is to realize an 

ML model by ELM that is basically a single 

hidden layer feedforward neural network (NN), 

and to divide the ELM into server side and 

client (mobile terminals) side. The server has a 

weight matrix for the hidden layer; and the 

client has a weight matrix for the output layer. 

The hidden weight matrix for the ELM is 

generated at random and is fixed. Only the 

output weight is trained by using the training 

data. This means server-side has only random 

numbers that does not contain user’s sensitive 

data. Even if the model on the server is stolen, 

nothing will be leaked to malicious person 

because the server has only random numbers. 

The basic protocol works as follows. First, 

the mobile terminal gets a datum (feature 

vector) from the user. Then, the terminal sends 

the datum to the sever. The server calculates 

the hidden layer outputs with the random 

matrix, and sends back the outputs of the 

hidden neurons. The mobile terminal then 

calculates the final output.  

We proposed the following three methods to 

improve the usefulness and security. 1) User 

input encryption based on a transposition 

cipher; 2) Random weight matrix sharing by 

multiple applications; and 3) Decision making 

with part of the results obtained from the server. 
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By using these methods, the server input, server 

calculation, and server output are all protected. 

(See Fig. 1)  

 
Fig. 1. Neural network diagram of the protocol 

 

The classification flow of the protocol is as 

follows. First, the user input is encrypted using 

transposition cipher with a “trans-key”. The 

terminal then sends the encrypted input along 

with a “pos-key”. The server gets a sub-matrix 

of the large random weight matrix using the 

pos-key. The matrix on the server can be shared 

by multiple applications. Then the server 

calculates the outputs of the hidden neurons 

and sends back the results. Here the number of 

hidden neurons was set larger than the required 

value. After that the client terminal drops some 

elements of the output from server by using a 

“drop-key” which defines the indices of the 

elements to drop. This method adjusts the 

number of hidden neurons to required value. 

Then, the terminal gets a vector that is a part of 

output vector of the hidden layer. By this 

method, the server cannot see which element of 

the hidden layer are used to obtain the final 

decision. Finally, the mobile terminal calculates 

output layer and find a result.  

In the training phase, multiple trans-keys, 

pos-keys and drop-keys are randomly generated 

and used as training parameters. The output 

weight is generated through learning based on 

training data corresponding to these keys. The 

classification performance of the protocol is the 

same as that of the original ELM.  

 
3. Experiments and Discussions 

First, we compared the accuracy of ELM and 

the proposed protocol by 10 times 5-fold cross 

validation using the same parameters. The 

public dataset MNIST was used. The results are 

90.7% for the ELM, and 90.5% for the protocol. 

There is no significant difference.  

The next experiment is to compare the 

classification times for the proposed protocol 

and a method that implements the ML model 

using only the mobile device (all-in-device). As 

the mobile device, Android Nexus 6 was used. 

The experiment environment is one smartphone, 

one router and one server. The classification 

time is the time between capturing an input 

datum and obtaining the result.  We measured 

the classification times of 30 runs. Fig.2 shows 

the averaged classification time of MNIST. The 

vertical axis shows the time in second (smaller 

is better). The horizontal axis shows 3 type of 

methods MLP (all-in-device) trained by Adam, 

ELM (all-in-device) and the protocol. The size 

(number of hidden neurons) of all ML models 

are 2000. These values are found by grid-search. 

We can see that our protocol is the fastest in 

these three methods. So, the protocol is effective 

if the application NN is relatively large. 

 

Fig. 2 The classification time of MNIST dataset 

 
4. Conclusions 

In this study we proposed a privacy 

preserving protocol to implement ML-based 

applications using mobile terminal and cloud 

server. Experimental results show that our 

protocol can keep the classification performance 

and make decisions more quickly for the MNIST 

dataset. 
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