
A Privacy Preserving Protocol for Cloud-based

Machine Learning Implementation

橋本雅人† 趙強福†

会津大学コンピュータ理工学部†

Abstract

This paper proposes a privacy preserving

protocol for implementing machine learning

based on cloud server. Since the mobile

terminals have very limited computational

resources, cloud server-based implementation is

considered more efficient for various mobile

applications. But cloud-based approaches may

have information leakage and privacy issues.

The server or third person can see and collect

the user's sensitive private data easily. Our

proposed protocol can be useful to solve these

problems. The protocol implements a neural

network using both a mobile device and the

server; and the part on the server is only a black

box. Experimental results reveal that the

protocol works well while preserving both the

user data and the prediction model.

1. Introduction

As mobile terminals such as smartphones

become more and more popular, a lot of

smartphone applications are developed and

used for various purposes. To make the

applications more intelligence and effective,

machine learning (ML) technologies can be used.

But, it might be difficult to implement an ML

model because it is usually designed for large-

scale computing environments. A mobile device

has limited resources (e.g., CPU, memory,

battery and storage). To solve this problem,

client-server implementation model can be used.

In this approach, a client is used as input/output,

and the server is used for ML-based prediction.

However, this method poses information

leakage and privacy invasion problems. If the

ML models are conducted in the server, it will

be easy to analyze the user’s requests,

intentions and sensitive information. Even if

the server is trustable, some malicious third

person may attack and see the personal

information easily. Therefore, the server-based

prediction services may not be trustable. To

solve the problem, we proposed a privacy

preserving protocol using extreme learning

machine (ELM) [1]. The protocol can reduce the

calculation cost on the mobile terminal by using

server calculation while preserving the privacy.

The server can only see the encrypted user data

and a random matrix (black-box) calculation.

The final decision of the ML model may not be

seen from server-side. The protocol will make

the server trustable.

2. Privacy preserving protocol

The privacy preserving protocol is proposed

by us to solve limited resources problem and

privacy problem. The main idea is to realize an

ML model by ELM that is basically a single

hidden layer feedforward neural network (NN),

and to divide the ELM into server side and

client (mobile terminals) side. The server has a

weight matrix for the hidden layer; and the

client has a weight matrix for the output layer.

The hidden weight matrix for the ELM is

generated at random and is fixed. Only the

output weight is trained by using the training

data. This means server-side has only random

numbers that does not contain user’s sensitive

data. Even if the model on the server is stolen,

nothing will be leaked to malicious person

because the server has only random numbers.

The basic protocol works as follows. First,

the mobile terminal gets a datum (feature

vector) from the user. Then, the terminal sends

the datum to the sever. The server calculates

the hidden layer outputs with the random

matrix, and sends back the outputs of the

hidden neurons. The mobile terminal then

calculates the final output.

We proposed the following three methods to

improve the usefulness and security. 1) User

input encryption based on a transposition

cipher; 2) Random weight matrix sharing by

multiple applications; and 3) Decision making

with part of the results obtained from the server.

A privacy preserving protocol for machine learning prediction

on mobile terminals

† Masato Hashimoto ・ University of Aizu

‡ Qiangfu Zhao ・ University of Aizu

Copyright 2018 Information Processing Society of Japan.
All Rights Reserved.2-529

3S-06

情報処理学会第80回全国大会

By using these methods, the server input, server

calculation, and server output are all protected.

(See Fig. 1)

Fig. 1. Neural network diagram of the protocol

The classification flow of the protocol is as

follows. First, the user input is encrypted using

transposition cipher with a “trans-key”. The

terminal then sends the encrypted input along

with a “pos-key”. The server gets a sub-matrix

of the large random weight matrix using the

pos-key. The matrix on the server can be shared

by multiple applications. Then the server

calculates the outputs of the hidden neurons

and sends back the results. Here the number of

hidden neurons was set larger than the required

value. After that the client terminal drops some

elements of the output from server by using a

“drop-key” which defines the indices of the

elements to drop. This method adjusts the

number of hidden neurons to required value.

Then, the terminal gets a vector that is a part of

output vector of the hidden layer. By this

method, the server cannot see which element of

the hidden layer are used to obtain the final

decision. Finally, the mobile terminal calculates

output layer and find a result.

In the training phase, multiple trans-keys,

pos-keys and drop-keys are randomly generated

and used as training parameters. The output

weight is generated through learning based on

training data corresponding to these keys. The

classification performance of the protocol is the

same as that of the original ELM.

3. Experiments and Discussions

First, we compared the accuracy of ELM and

the proposed protocol by 10 times 5-fold cross

validation using the same parameters. The

public dataset MNIST was used. The results are

90.7% for the ELM, and 90.5% for the protocol.

There is no significant difference.

The next experiment is to compare the

classification times for the proposed protocol

and a method that implements the ML model

using only the mobile device (all-in-device). As

the mobile device, Android Nexus 6 was used.

The experiment environment is one smartphone,

one router and one server. The classification

time is the time between capturing an input

datum and obtaining the result. We measured

the classification times of 30 runs. Fig.2 shows

the averaged classification time of MNIST. The

vertical axis shows the time in second (smaller

is better). The horizontal axis shows 3 type of

methods MLP (all-in-device) trained by Adam,

ELM (all-in-device) and the protocol. The size

(number of hidden neurons) of all ML models

are 2000. These values are found by grid-search.

We can see that our protocol is the fastest in

these three methods. So, the protocol is effective

if the application NN is relatively large.

Fig. 2 The classification time of MNIST dataset

4. Conclusions

In this study we proposed a privacy

preserving protocol to implement ML-based

applications using mobile terminal and cloud

server. Experimental results show that our

protocol can keep the classification performance

and make decisions more quickly for the MNIST

dataset.

References

[1] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme

learning machine: theory and applications,” Neuro

computing, vol. 70, no. 1, pp. 489–501, 2006.

Copyright 2018 Information Processing Society of Japan.
All Rights Reserved.2-530

情報処理学会第80回全国大会

