空撮画像に基づく応急浮橋の位置・姿勢計測

久郷 紀之† 崔 龍雲‡

創価大学大学院工学研究科情報システム工学専攻† 創価大学理工学部情報システム工学科‡

1 はじめに

近年,ゲリラ豪雨や地震といった自然災害を要 因とする橋の崩壊が起きている.河川に架けら れた橋が崩壊した場合,応急浮橋と呼ばれる浮 橋を河川に並べることで,対岸への応急浮橋が 架橋される.従来これらの架橋作業は,人の経 験や知識に基づいて浮橋を操船していたが,長 時間にわたる操船作業は難しく,熟練した経験 が必要という課題がある.このような背景から, 人の手を介さない応急浮橋の架橋作業の自動化 が求められている.

応急浮橋の架橋作業の自動化には,各浮橋の 位置・姿勢計測,各浮橋の目標位置までの経路 生成,生成された経路に沿った浮橋の制御の大 きく3つの要素が必要である.本研究ではその中 の,空撮画像に基づいた応急浮橋の位置・姿勢 計測を行う.従来研究[1]では,各浮橋の端に色 の付いた線を付与,マルチコプターから得る空 撮画像から浮橋に付与した色を検出することで 直線に対する浮橋の位置ずれを計測していた. しかし,この手法では空撮画像内に浮橋に付与 した色と同様な色は浮橋として認識してしまう ため,外乱による影響を受けやすい.

そこで本研究では、応急浮橋の架橋・船位保 持作業の自動化をするため、空撮画像に基づく 各浮橋の位置・姿勢計測システムを提案する. 本稿では、本システムの概要と浮橋位置計測の 原理について述べる.また、提案手法の有用性 を検証するため、浮橋モデルを用いた計測精度 の評価を行う.

2 応急浮橋の位置・姿勢計測システム

2.1 システムの概要

今回提案する浮橋位置・姿勢計測システムの 概要を図1に示す.計測システムは、マルチコプ ターと計算機から構成される.マルチコプター は3軸のジンバルが搭載されており、常に真下を 向いた空撮画像を取得可能である.本システム

[Position and orientation measurement for floating bridges based on aerial images]

図 2 YOLO の学習と浮橋の検出

ではマルチコプターから得た空撮画像を計算機 に転送する.次に,計算機で空撮画像から物体 検出手法である YOLO[2]を用いて浮橋領域を検出 する.これにより,空撮画像から確率的に浮橋 が映る領域を絞り込むことで,空撮画像の外乱 に対する位置・姿勢計測のロバスト性を向上さ せる.最後に,検出された浮橋領域の画像に対 して線分特徴である LSD 特徴[2]を抽出,抽出さ れた線分特徴から成る矩形領域から,浮橋の位 置・姿勢計測を行う.

2.2 YOLO を用いた浮橋領域の検出

浮橋領域の検出には、物体検出手法である YOL0[2]を用いる. YOL0 は入力画像から物体の検 出領域を表す座標とサイズ(x, y, w, h)と信頼 度が取得できる. YOLO で浮橋を検出するには, YOLO のネットワークを学習する必要があり、学 習には浮橋が映った画像が大量に必要である. 学習用画像は応急浮橋の利用が想定される環境 の条件下で撮影した画像を用いる事が好ましい. しかし、応急浮橋の利用が想定される災害下で の画像を用意することは難しい.そのため本研 究では,図2に示すように浮橋画像と空撮画像を 用意し,空撮画像に対して浮橋画像を様々な位 置・角度・サイズで配置した合成画像を生成す る.これにより生成した学習用画像約 5000 枚を 学習用データとして YOLO のネットワークを学習 した. 浮橋位置の計測時は、この学習済みの YOLO のネットワークを用いることで空撮画像か

[†]Noriyuki Kugou

Graduate School of Engineering Dept. of Information Systems Eng., Soka University

[‡]Yongwoon Choi

Dept. of Information Systems Sci., Faculty of Sci., and Eng., Soka University

(a)浮橋領域画像 (b)線分特徵検出結果 (c)浮橋検出結果 図3 浮橋の位置・姿勢推定の処理の流れ ら浮橋領域の検出を行う.

2.3 LSD 特徴を用いた浮橋位置・姿勢計測

図3に浮橋領域画像から浮橋位置・姿勢計測の 処理の流れを示す. 浮橋の位置・姿勢を計測す るには、YOLOで検出された浮橋領域画像から、 浮橋の位置・姿勢を計測する必要がある. その ため、まず図 3(a)に示す浮橋領域画像から、線分 特徴であるLSD特徴の抽出を行う. 図3(b)は線分 特徴を抽出した結果を示しており、抽出された 線分特徴を緑色の線で示している.次に抽出さ れた線分特徴から2本の線分を選択、2本の線分 から成る矩形領域のアスペクト比を求める.ア スペクト比は矩形領域の長編を len long, 短辺を len shortとすると、アスペクト比 boat aspect は式 (1)で表せる.

$$boat_aspect = \frac{len_short}{len_long}$$
(1)

次に矩形領域のアスペクト比と, 既知情報と して得られる検出対象の浮橋のアスペクト比の 比を, 浮橋らしさを表す評価値として求める. 評価値は、矩形領域のアスペクト比を boat aspect, 検出対象の浮橋のアスペクト比を template aspect とすると、評価値 evaluation val は式(2)で表すこ とが出来る.

evaluation_val = $\frac{\min\{boat_aspect,template_aspect\}}{\sum_{i=1}^{n}}$ (2) max{boat_aspect,template_aspect} この評価値の計算を線分のペアすべてに対して 行い、最も評価値が高い矩形領域を浮橋として 検出を行う. これにより, 図 3(c)に示すように 浮橋を検出、また検出した浮橋の矩形領域から 浮橋の中心位置・姿勢を計測することが可能と なる.

3 計測精度の評価実験

3.1 実験概要

本実験では, 提案手法の有用性を示すために, 浮橋モデルを用いた計測精度の評価実験を行っ た. 今回の実験構成を図4に示す. 実験では、横 幅 180mm,縦幅 130mm の浮橋モデル 4 つを,浮橋 の中心間の距離 20cm の間隔で横一列に配置した. カメラは地上から 1.0m の高さに設置し、カメラ で撮影された画像を基に浮橋の位置・姿勢計測 を行った. 浮橋の位置・姿勢は, 空撮画像中で 最も左端に映る浮橋の中心座標を基準とし、他 の3つの浮橋の位置と姿勢を計測,連続100フレ

表1 浮橋1に対する各浮橋の位置・姿勢			
	x[cm]	y[cm]	angle[deg]
浮橋2の位置・姿勢	20.2	0.5	-0.427
浮橋3の位置・姿勢	40.7	-0.4	0.433
浮橋4の位置・姿勢	60.1	-0.2	0.45

ームの平均値を実験データとして計測した.

3.2 実験結果

図5にカメラ画像から浮橋を検出した結果を示す. 図5を見ると、浮橋の周囲を緑色の線で囲むこと が出来ている事から、浮橋を検出できている事 がわかる.次に、図5に映る浮橋を左から順に浮 橋1, 浮橋2, 浮橋3, 浮橋4とし, 浮橋1の中心 から横方向を x 軸,縦方向を y 軸の基準として計 測した他の浮橋の中心位置,姿勢を表1に示す. 今回の実験では、浮橋モデルの中心間の距離を 20cm間隔で配置しており、表1を見ると浮橋の位 置が約 20cm 間隔で増加している事がわかる. ま た、位置計測誤差は最も大きい時で x 軸方向に 7mm, y 軸方向で 5mm, 姿勢の計測誤差は最大で 0.45 度となった.

おわりに 4

本稿では、空撮画像に基づく応急浮橋の位 置・姿勢計測について提案した.実験結果より. 浮橋モデルにおいて位置計測誤差が最大で 7mm, 姿勢計測誤差は最大で 0.45 度となった. 姿勢計 測誤差は, 浮橋の架橋・船位保持作業を自動化 するのに十分な精度であると考えられる.しか し, 位置計測誤差は横幅 180mm のモデル船で 7mm の誤差であり、横幅 7.5m ある実際の浮橋での利 用を考えると約 30cm の誤差が出ることが考えら れる結果となった. 今後の取り組みとしては, 線分特徴の抽出時にサブピクセルを算出するこ とで、さらなる精度向上が考えられる.

参考文献

- [1] Y. Hirono, Y. Mizuchi, Y. Kim and Y. Choi: "Positional Displacement easurement of Floating Units Based on Aerial Images for Pontoon Bridges", AETA, Volume415, pp.309-315, 2016.
- [2] Redmon, Joseph et al: "You Only Look Once: Unified, Real-Time Object Detection." IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.779-788, 2016.
- Gioi, Rafael Grompone von et al: "LSD: a Line [3] Segment Detector." IPOL Journal Volume2, pp.35-55, 2012.