TR AL 2 2 80 [[R

6H-09

Reducing Jitter and Energy in Hard Real-Time
Systems using Intra-task DVFS Technique

Boyu Tseng
School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

I. INTRODUCTION

In real-time embedded systems, energy consumption
is one of significant issues. To reduce energy dissipation
without violating timing constraint, Dynamic Voltage
and Frequency Scaling (DVFS) has been widely applied
in many researches. Moreover, DVFS enables the system
to control the actual execution/response times of periodic
tasks, thus it is also applicable to reduce finish time jitter.
Especially predictability of response times is another high
demand in particular applications like control system or
data acquisition.

With above concerns, we propose a jitter-aware intra-
task DVFS scheme for mitigating finish time jitter whilst
keeping energy efficiency in hard real-time systems. In
this paper, we mainly extend the implementation of
intra-task DVFS from [3]-[5] which exploits program
control flow and data flow analysis. Furthermore, we
select benchmark programs [2] as a target set of periodic
tasks to simulate multitasking and evaluate jitter/energy
reduction.

II. PRELIMINARIES
A. Related Work

During the execution of a task, actual execution time
may vary from time to time, consequently generating
some slack time. Those slack times give a system oppor-
tunity of slowing down the execution speed whilst still
meeting deadline. To identify/predict presence of slack
time during runtime, the previous works [3], [4] proposed
worst-case execution path evaluation to trace required
execution cycles through different execution paths of
every single task’s control flow graph (CFG). These
assess a feasible frequency-updated ratio to make task
complete as late as possible without deadline miss.

B. Causes of Finish Time Jitter

In periodic task scheduling, finish time jitter may arise
from runtime variation in execution time and preemp-
tion/interference. Regarding task’s running behaviour in
the form of CFG, every feasible execution path may con-
tain different workload which ranges from cost of best-
case execution path (BCEP) to cost of worst-case execu-
tion path (WCEP). BCEP and WCEP are the certain paths
of task’s CFG resulting in best-case execution cycles
(BCECs) and worst-case execution cycles (WCECs), re-
spectively. Consequently execution time variation among

1-113

Kiyofumi Tanaka
School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

task’s instances would occur. Additionally, interference
time variation is equivalent to execution time variation of
higher priority tasks.

III. JITTER-AWARE INTRA-TASK DVFS SCHEME

To avoid large finish time jitter, we propose a usage
of DVFS technique which changes the execution speed
to adapt to the actual execution path of task’s CFG
and actual interference time, i.e., controls the actual
response time by proactive approach. The procedures of
the proposed intra-task DVFS scheme is as follows:

A. Execution Cycle Estimation

Target task’s C source code is converted into CFG.
Then the number of cycles needed for executing each
basic block is calculated on a WCET basis [2] regardless
of cache/pipelining behavior, as an example shown in
figure. 1.

b
50 cycles,
KN b
cond 1 = funcl(); b, Scydes)
- = 2 5cycles | cycles
cond 2 = func2();
while (cond 1 == func3()) { e P
| if (cond 2) (100 22s) b
- unEa () B 100 cycles, 50 cycles,
func5() ; £
) b
20 cycles,
if (cond 3) b,
- 5 cycles

funcé () ;
) func7();

(a) Source code of target task (b) CFG of target task

Fig. 1: Execution cycle estimation of target task

B. Control and Data Flow Analysis

This step aims at identifying specific instruction points
where the runtime variation on execution time will arise.
In the CFG’s point of view, searching for branch and loop
are our target. This is because branches decide the actual
execution paths in CFG and different loop iteration counts
lead to different execution cycles. In addition, we also
identify the loop dependency [5] using data flow analysis.
The loop dependency is the variable which determines the
actual number of iterations through one loop.

C. Scaling Point Placement

In the work of [4], they inserted checkpoints into task’s
program right after branch instructions as an additional
sequence of instructions. Those checkpoints evaluate the

Copyright ©2018 Information Processing Society of Japan.

All Rights Reserved.

TR AL 2 2 80 [[R

remaining execution cycles (REC) of successive execu-
tion paths by referring to the Mining Table'. Accord-
ingly, we classify all checkpoints into three different
types: B-type (for branch), L-type (for loop), and P-type
(for instruction of value assignment of loop dependency).
When a checkpoint is executed in a task’s program, the
system compares REC with a given timing constraint (tar-
get response time described in the next step) and conducts
voltage frequency scaling if the current frequency cannot
meet the constraint.

D. Frequency-Updated Ratio

For each task, a target response time is determined.
All frequency scaling points inside a task try to adjust its
frequency so that actual response time of every instance is
close to the target response time, which shortens the range
of response time variation. In this paper, we propose two
different directions:

1) Static Target Response:

REOTICY = BORT; + a; x (WORT; — BORT;) o)
REC;

i

frnew = @
Rrtarget

; — timecgecuted — lworst (i)

For task i, target response time (rt*"9¢t) is calculated with
response time analysis [1], task i’s best-case response
time (scrr;), and worst-case response time (wcorr;). o
is a user-defined ratio. r,,,...;(:) 1S worst-case interference
time and time . 1s time for which task i has been
executed.

2) Profile-based Target Response:

execute

REC
expect _ .
R; = timeeggecuted t X ®
feurrent + Iaverage (i)
min expect min
Rtarget _ R, Ry < Rj
¢ B t
max expec mazx
R1 N Ri > Ri
; REC; .,
new = “Farget] ; @
RTIY —timeggecuted — laverage (i)

i

In the profiling approach, the target response time is de-
termined by the average-case response time and average-
case interference time (roverage(@))-

IV. EVALUATION
A. Experimental Setup

For experiment, we built a CFG-based multitask-
ing simulator in C++11. For target tasks, we se-
lected four different CFGs of benchmark programs
[2] and made another simple CFG. The target tasks
were simulated with Rate-Monotonic scheduling for their
hyperperiod. The frequency-power combinations used
in the simulation are 300MHz-114.38mW, 600MHz-
303.15mW, 720MHz-437.49mW, 800MHz-542.73mW,
and 1000MHz-736.08mW. In the evaluation, we used the
same scheduling patterns for environments with DVFS
and without DVFS to see how much jitter and energy
consumption can be reduced.

Mining Table records addresses of branch instructions, RECs of successive execution paths, etc.

1-114

B. Experimental Results

We simulated the same scheduling patterns with differ-
ent execution paths in each task 10 times. Table 1 presents
the mean values of tasks’ absolute finish time jitter. In
this experiment, we defined bs.c and ludcmp.c as jitter-
sensitive tasks. The other ones (compress.c, cfg.1, and
matmult.c) were defined as lower-energy demand tasks.

Task WCEC Period Jitter NonDv Fs| Jitterpyv s
(cycle) (ns) (ns) (ns)
bs.c 9750 286765 14784 11061
compress.c| 11950 62895 N/A N/A
cfg.1 1810 36200 N/A N/A
matmult.c | 1890395 42963523 N/A N/A
ludcmp.c 27546 272733 9967 4895
TABLE I: Reduction of finish time jitter
Task Energynonpvrs | Energypvrs Energy
(ul) (ul) Saving
(%)
bs.c 345860 202110 41.2
compress.c| 1697631 1156270 24.8
cfg.1 276316 227091 17.8
matmult.c | 5768 4957 15.6
ludemp.c 113686 71937 36.7

TABLE II: Reduction of energy consumption

V. CONCLUSIONS

In this paper, we proposed a jitter-aware intra-task
DVEFS scheme which takes both execution and inter-
ference time variations into account. According to the
experimental results, our proposed scheme can reduce
finish time jitter for two jitter-sensitive tasks by 24.8%
and 47.8%, respectively. In addition, even for aiming at
lower jitter performance, the total energy consumption
is reduced as a side effect. However, there are some
limitations on our approach in that jitter reduction is
feasible only for certain tasks. In future work, we aim at
addressing effective boundary of jitter reduction on any
task (any kind of task’s CFG structure) and add practical
transition overhead of DVFS to simulation.

REFERENCES

[1] Anton Cervin, Bo Lincoln, Johan Eker, Karl-Erik Arzén, and
Giorgio Buttazzo. The jitter margin and its application in the
design of real-time control systems. In Proceedings of the 10th
International Conference on Real-Time and Embedded Computing
Systems and Applications, pages 1-9. Gothenburg, Sweden, 2004.

[2] Diego Pinheiro, Rawlinson Gongalves, Eduardo Valentin, Horécio
de Oliveira, and Raimundo Barreto. Inserting dvfs code in hard real-
time system tasks. In Computing Systems Engineering (SBESC),
2017 VII Brazilian Symposium on, pages 23-30. IEEE, 2017.

[3] Dongkun Shin and Jihong Kim. Optimizing intratask voltage
scheduling using profile and data-flow information. [EEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, 26(2):369-385, 2007.

[4] Tomohiro Tatematsu, Hideki Takase, Gang Zeng, Hiroyuki
Tomiyama, and Hiroaki Takada. Checkpoint extraction using
execution traces for intra-task dvfs in embedded systems. In
Electronic Design, Test and Application (DELTA), 2011 Sixth [EEE
International Symposium on, pages 19-24. IEEE, 2011.

[5] Burt Walsh, Robert Van Engelen, Kyle Gallivan, Johnnie Birch, and
Yixin Shou. Parametric intra-task dynamic voltage scheduling. In
Proceedings of the Workshop on Compilers and Operating Systems
for Lower Power (COLP 2003), 2003.

Copyright ©2018 Information Processing Society of Japan.

All Rights Reserved.

