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Transparent Object Classification using 4D CNN
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Abstract: Despite the increasing popularity of image processing techniques for object classification, no efficient tech-
nique has been found to classify transparent objects. In this paper, we tackle this issue by proposing various uses of
Convolutionnal Neural Networks, and comparing their efficiency. The method considered as the most efficient will
then be more attentively studied, in order to identify its main features.
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1. Introduction

In recent years, image processing studies improved a lot,
wether through the developpement and exploitation of hand-made
features, or by the use of deep learning, and especially neural net-
works [1]. These improvements are essential for computer vision,
and most of us use softwares that need this kind of image pro-
cessing techniques. Object identification or facial recognition,
for example, are widely used by very popular sotfwares. Since
transparent objects like glasses or bottles are everywhere around
us, identifying them is as critical as identifying any other object.
However, despite the increasing amount of object classification
methods, no efficient and easy to use techniques have been found
yet for transparent object classification (TOC)[1], [2], [3]: De-
spite showing better results than usual object classification tech-
niques, hand-made feature detection using light field distortion
(LFD) [4], [5] is tedious to use and shows, in the best conditions,
an 85 % accuracy. In a previous paper [6], we tackle this issue by
using a 3 dimension CNN with a light field dataset. Nevertheless,
this paper presented only one kind of 3 dimension CNN, and did
not offer a better accuracy than the hand-made feature. In this
paper, we propose multiple approaches to tackle this challenge
using various CNN architectures and combinations. Comparing
those approaches’ pros and cons regarding their ressource con-
sumtion and final results can help us identify which method is the
most efficient, and why. With an easy to use and efficient deep
learning classification system, we can study in detail its features
and realize efficient TOC.

2. Analytics methodology

Our dataset is provided by a light field camera, and has four di-
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mensions: (s,t,u,v) [4]. However, some of the CNN studied here
use 3 dimensions only. This section will therefore present the
dataset, along with the method we used to adapt the 4D dataset to
3D CNN. Ensues a section explaining all of the caracteristics that
we use to compare our different approaches of TOC.

2.1 Light field dataset

The data used for this study was obtained with a ProFUSION-
25C [7] camera, capturing 5*5 VGA images simultaneously from
25 different viewpoints. Each image is originally 640%480 pixels,
but they have been cropped to 480%432 pixels, and set in black
and white.

Data obtained from a LFC extends on four dimensions (s,t,u,v):
the viewpoint plane (s,t) can be associated to the position of
the camera among the 5x5 ProFusion25 cameras, and the image
plane (u,v) can be associated to the usual width and height coor-
dinates of a pixel for each image captured by the ProFusion-25C
cameras(cf Fig. 1). Our dataset contains 20 different objects that
were captured in front of 10 backgrounds. In order to produce a
coherent dataset for CNNs, we split the data between a training
and a validation set, regarding the background repartition: data
obtained from 8 backgrounds are given to the training set, and
data from the 2 last backgrounds are used for the validation set.

One of the difficulty for TOC is the size of original images: un-
like usual object classification, the entire image changes with the
background. For this reason, when greatly reduced images can
be used for usual objects (28%28 for MNIST dataset), it cannot
be used for TOC, especially for the most complex features (for
example, LFD feature [4] could not be detected).

2.2 Light field data adaptation to CNN

4D CNN can use the dataset as it is, however it needs to be
adapted when using 3D CNNs: Following the same methodology
than our previous paper [6], viewpoints (u,v) from a single direc-
tion of the (s,t) plan has been used, representing five consecutive
viewpoints. If this direction is horizontal , viewpoints from the
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Fig. 1 Selection of viewpoints among LF data of dimension (s,t,u,v). Hor-
izontal direction (H) in orange, vertical direction (V) in green, and
diagonals (D1,D2) in blue.

3rd line of the (s,t) plan are used as shown in Fig. 1; If direction
is vertical, we use viewpoints from the 3rd column.

In the study on LFD hand-made features [4] , the best com-
bination of viewpoints for classification are using those on the
central raw and column of the (s,t) plan, along with the two main
diagonals. For this reason, we will use the same four axis in our
studies. Moreover, in order to compare them, each CNN of those
directions are using the same architecture and initial parameters.
Those directions will be referred as H (horizontal), V (vertical),
and D1 D2 for the diagonals. This could also allow us to realize a
complete transfer learning from one direction’s CNN to another.

2.3 Analytics strategy

For every different use of CNN, specific parameters will be
measured to compare their efficiency: their resoucre consumtion
and the results it produces.

e Resource consumtion: Our goal is to propose a practical,
cheap, fast method to classify transparent objects. We there-
fore consider RAM, memory storage, and processing time:
if these values are too high, the process is not a viable op-
tion. A particular note will be added regarding the training
process, since we only need to do it once to exploit our CNN.

e Final result: Once the data is processed, we consider the ac-
curacy of our system, with the objective to obtain a higher
accuracy than the hand made feature. However, for some
systems, the accuracy drastically decreases when inital pa-
rameters are slightly different from ideal values. We there-
fore consider this characteristic as the stability/robustness of
our system.

3. Different CNN approaches

Light field dataset offers a vast possibility of approaches to pro-
cess its data, that has different computationnal cost, accuracy and
stability. Here are the different approaches that we studied in this
paper, along with their characteristics.

e 3D CNN from all directions: For each of the four directions
(H, V, D1, D2), our 3 dimension CNNs use the same ar-
chitecture presented if Fig. 2, along with the same initial
values for training (learning rate, random initial weights and
biases...). 3D CNNs are the easiest and lightest studied op-
tion, however accuracy from cross validation still remains
low and unstable.

e 3D CNN Combination: From those four 3D CNNs, we ex-
tract the last layer’s output, associated to the probability for
each element of the batch to belong to one of the classifica-
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Fig. 3 3D CNN Combination, using the output of all four directions to pro-
duce its result.

tion category. Considering the estimations made by theses
four CNN allows us to overcome the error of one CNN with
the output of the 3 others. It is more complex to realize than
simple 3D CNN, but gives way better results with the high-
est stability. Illustration of 3D Combination is given in Fig.
3

e 3D transfer learning: Since CNNs for all 4 directions use
the same architercture, we can train one direction with the
trained values of another direction as initial values (For ex-
ample, retrain the final V CNN for the horizontal direction:
V is the original CNN, and H is the transferred CNN.).
Transfer learning is easier to realize than 3D Combination
and gives similar accuracy, but does not offer the same sta-
bility.

Additionally, various 3D combination can also be done with
3D CNNs from transfer learning. We combine transfer learn-
ing CNN having the same original direction, therefore four
combination can be produced.

Multiple transfer learning has also been studied, by training a
direction from another transfer learning CNN values. How-
ever, the increase of accuracy were not proven convincing
(about 1.5% increased accuracy, for a higher complexity).

e Hybrid approach (3D to 4D CNN): Using the four 3D CNN,
we extract the ouput of the third pooling layer (just after the
last convolutionnal layer) recompose it as a 4D data follow-
ing the (s,t,u,v) correspondences, before using it as the in-
put of a 4D CNN. The complexity of this system rapidly re-
vealed itself too ressource-consuming, and its accuracy were
found relatively low. For these reasons, a quantitative study
of this approach were considered enough to disband this op-
tion.
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Fig. 4 Results for all approaches.

e 4D CNN: Unlike 3D CNN, 4 dimension CNN uses the en-
tire data obtained from a light field camera, making its im-
plementation way easier than any other approach. Moreover,
the standard architecture of our 4D CNN is extremely sim-
ple, with only two convolutional layer and one fully con-
nected layer. While it still consumes more resources than a
single 3D CNN, it gives comparable results than 3D combi-
nation process, way faster. However, its memory consump-
tion (especially RAM) is higher than other methods, and
changing this CNN (by adding a convolutionnal layer, for
example) makes it even worse.

By studying different approaches to classify transparent object
features, we can select the most efficient technique, and dive into
the features it has learnt to in order to produce a cheaper, more
efficient TOC technique. Optimization is also a key to improve
this TOC technique.

4. Results and interpretation

The entire set of results is held in Fig. 4.

4.1 General observation for resources consumption

Memory storage is, for every approach, almost entierly con-
sumed by the saved model of our CNN. For this reason, all
3D CNN approaches have the same memory storage consump-
tion. 3D CNN Combination needs models for each direction, and
therefore costs four times as much as a single 3D CNN approach.
4D CNN’s saved model is, without surprises, way bigger than 3D
approaches.

The maximum use of RAM is also mostly done by the CNN
process, and each 3D CNN cost as much as the other. Moreover,
since combining 3D CNN is made by obtaining probabilities of
each CNN sucessively, the maximum RAM consumption is al-
most the same as a single 3D CNN. 4D CNN, however, is unsur-
prisingly higher.

Processing time is also the same for each 3D CNN, and four
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times as much for combined 3D CNN.

The actual values of those parameters are not so important,
since it can change on other machines and codes: comparing them
together is what is important here.

4.2 Interpretation

As described earlier, the less efficient technique is, by far, the
3D to 4D CNN approach. Immediatly after comes single 3D
CNNE.

Since each 3D CNN is using the same initial parameters, each
CNN is not using the best values for their specific direction (H,
V, D1 or D2). It should not change the final result by much, how-
ever, because of our relatively small dataset, 3D CNN are not very
robust, which is why cross validation accuracies are so low ( av-
erage 73.66% ). However, its resource consumtion is the lowest
possibility in every domain.

When looking at the obtained results, we observed that, for sin-
gle 3D CNN, estimated class for an input was often a tie, whith
two or three classes having almost the same probability. When
combining 3D CNN together, more data could be considered for
the same object from different processing techniques, which in
the end corrected those errors. 3D Combination therfore has an
accuracy of 95.67%, and is the most robust technique. However
its processing time is four times higher than a simple 3D CNN.

Transfer learning process also shows great results, with an ac-
curacy around 95 %, however its robustness is still a huge prob-
3D CNN
Combination from transfer learning is the most accurate system,

lem, being sensively the same than usual 3D CNNs.

however its improvements comparing to normal 3D Combination
is still relatively small: With the same resources consumtion re-
sults as standard 3D combination, its higher accuracy is counter-
balanced by its increased complexity and training process. Com-
bination using transfer learning is one of the best option, with one
main flow: its processing time. Using only 3 out of 4 directions
could save 25 % of the processing time, with little impact on ac-
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Fig. 5 Image from the background 7: red, orange, yellow, the shapes of dif-
ferent transparent objects. In blue, characterisit shapes of this back-
ground: the similarity between them and object shapes explain the
loss of accuracy faced by our CNN.

curacy. Further improvements could be made, but its processing
time would still be important.

5. 4D CNN: the most efficient option

Two major approaches can be considered as the best options
for TOC: 4D CNN, and Combination of 3D CNN. However, 3D
CNN combination is way more complex than 4D CNN, and its
processing time can hardly be reduced to the same level than 4D
CNN. Moreover, the main reason our 4D CNN has a lower accu-
racy is due to the size of our dataset (which can be improved when
applying this approach in another enivronment than research),
and one specific element that we will explain.

5.1 Comparison with 3D CNN Combination
5.1.1 Resources consumption

The complexity of 3D CNN combination makes it harder to
modify: our previous study [6] shown that the currently used ar-
chitecture is the most efficient, therefore modifying it would only
damage the current results. Moreover, the 3D CNN combination
is 3.2 times slower than 4D CNN, and can hardly be improved.
5.1.2 Final results

3D comparison approach gives better accuracy than 4D CNN
(95.67% against 94% ), because of its stability: 4D CNN is ex-
tremely small, and with such a small dataset, it is even more sen-
sitive to changes in its initial values, validation set, and number
of training steps, even getting a 60 % accuracy with a specific
validation set. As explained before, our validation set contains
all images captured from two different backgrounds. Cross val-
idation process revealed that, when a specific background was
contained in the validation set, accuracy would drop drastically,
unlike 3D CNN combination (for which accuracy drops less than
5 %). Unlike other backgrounds, this one display shapes very
similar to transparent object edges: LRP analysis and our pre-
vious study showed that 3D CNN were sensitive to the edge of
the transparent object. Since 4D CNN shows the same tendancies
than our 3D CNN (accuracy drops and increases for the same val-
idation sets), it also seems to grasp this kind of features too. Fig.
5 shows an image of this background, illustrating this idea.

© 2018 Information Processing Society of Japan

Vol.2018-CVIM-212 No.3
2018/5/10

Ist CONV
LAYER

2nd CONV
LAYER

Fig. 6 4D Convolution explanation. The output contained in the yellow hy-
percube (bottom) uses data from all viewpoint located in the yellow
square (top).

If processing time is not a key point of the classification pro-
cess, 3D Combination is worth considering, especially when it is
combined with transfer learning.

5.2 4D convolution: a tool for LFD detection

Since our dataset is produced from a LF camera, 3D convo-
lution could compare a specific area in the (u,v) plane from the
same area, along the third axis. For every convolutionnal layer,
we could compute datas processed from the surrounding view-
points: For example, at the first conv layer using the third axis
(’depth”), viewpoint N could be compared to viewpoints N and
N-1. On the second convolutionnal layer, outputs from view-
points N-2, N-1, N could be compared with output from view-
points N-1, N, N+1. This way, features like distortion could be
eventually identified by the CNN, however, considering only one
axis greatly limitated the range of viewpoints that we can com-
pare.

4D CNN extends this property even further, comparing a view-
point with its surrounding viewpoints in the (s,t) plan, and not
only one axis. For this reason, as illustrated in Fig. 6, even with
only two convolutionnal layers, the number of viewpoints con-
sidered to produce the output of a (sy, #1, u;, v; ) point is more
important.

Considering more viewpoints can greatly help identifying
Transparent object features, and especially distortion.

5.3 4D CNN: Evolution and optimization

As seen earlier, 4D CNN is resource consuming on every as-
pect, and improving its accuracy is as important as reducing its
memory consumtion and processing time. Various ways to op-
timize our 4D CNN can be established, either by limitating the
original input, or by deleting some channels.
5.3.1 Reduce the input

In the default situation, we transmit to the CNN all 25 view-
points obtained from the ProFusion-25C camera. Since the differ-
ences between objects is mostly caused by distortion of the back-
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Fig. 7 Various possibilities of reduced input, along with their accuracies (percentage). Other kinds of
input have been tested, with the same structure.Average accuracy with 9 viewpoints: 85,055%. 15
viewpoints: 89,523%. 16 viewpoints: 89,135 %. 20 viewpoints: 88,96 %. With smaller amount
of viewpoints, accuracy is around: 6 viewpoints: 77.29% ,4 viewpoints: 75.18 % , 3 viewpoints:
70.61 % , 2 viewpoints: 67.818 % , 1 viewpoint: 63.67 % .

ground, which is contained in a small part of the image, reducing
the size of each image in the (u,v) plan cannot be overused. How-
ever, reducing the number of viewpoints transmitted can help re-
ducing the computation cost without damagin the accuracy. Fig.
7 presents different options that were studied, along with their
accuracy.

Reducing the data along the (s,t) plan seems to be a powerful
option, but its impact on the accuracy and stability is important.
However, considering those options, interesting results are ob-
tained:

Interestingly, unlike we could expect, accuracy with 15 view-
points is higher than accuracy with 16 or 20 viewpoints: this can
be explained by the high standard deviation of 16 and 20 view-
points’ possibilities. This high standard deviation is caused by
the fact that, when using 16 viewpoints (4*4 viewpoints on the
(s,t) plan), one of the four possibility only has 76.94 % cross-
validation accuracy, and when using 20 viewpoints, one possibil-
ity only has 82.34 %.

Some specific images (or combination of images) are ex-
tremely useful for classification, when others are not. Since we
cannot predict which viewpoint will be useful or not for a new
dataset, such method has limited results on optimization.

Despite those surprising results, 4D CNN stays the best option
when using the full dataset.

5.3.2 Delete some channels

Even though our CNN is already small, deleting some chan-
nels might reveal itself a viable option: by considering the impact
of each channel in a similar way than our previous paper [6], we
can identify the least useful channels, and delete it completely. If
It doesnot impact the final accuracy, the CNN would have been
optimized efficiently.

However, results showed that, for our 4D CNN, every channel
was important, and even deleting the least efficient channel would
still impact the final accuracy. This method is not viable for 4D
CNN, but using it on 3D CNN Combination actually helped re-
ducing its computationnal cost (Nevertheless, this optimization
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was not enought to make it competitive).
5.3.3 Change the architecture of the CNN

The standrad architecture only uses 2 convolutionnal layers and
a fully connected layer: it is not deep enough to grasp complex
features, and mainly focuses on the shape of objects it can identify
( along with relexion of light ...). A deeper CNN could eventu-
ally learn to identify features like distortion. However, adding a
third convolutionnal layer between a pooling layer indtroduced
a strong overfitting, that could not be corrected through regu-
larization. Moreover, adding a single layer greatly increase the
resource consumption of our system, and the processing time is
almost three times as important as two convolutionnal layers.

Increasing the dataset with new LF images submitted to differ-
ent background and illumination could allow us to use a deeper
CNN, in order to learn more complex features like distortion. Us-
ing deep learning techniques and a LF dataset, we could eventu-
ally extend this study to develop a 3D map of the distortion caused
by transparent object refraction.
5.3.4 Improving the dataset

As presented earlier, we have a rather small dataset, which
causes our CNN to overfit rapidly before learning complex fea-
tures (which are exacly what we need in this study). As a result,
the architecture of our CNN must stay simple, and classification
is highly unstable. Fig. 8 illustrates this instability in the results.

However, with a bigger dataset, overfitting can be prevented,
and accuracy can increase. All previous methods to optimize the
CNN can then be used.

5.4 Conclusion

Since transparent object are everywhere around us, develop-
ping efficient techniques to identify them is very important in
computer vision and robotics. However, usual object identifi-
cation techniques do not work with transparent object, and new
approaches must be used to tackle this problem. This paper pro-
poses different approaches in neural networking for transparent
object classification using a light field dataset, and identifies two
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Accuracy / cross-validation set

Cross-validstion set

Accuracy for each validation set. Each element of the horizontal axis
represents a new distribution of images between the validation and
the training set. As explained before, our dataset is made of 200 LF
images (20 objects, 10 backgrounds). If images from background 6
and 7 are kept in the validation set, on the horizontal axis will appear
”67”. Standard deviation is 7.4 %.

major techniques: 3D CNN Combination, which uses the output
of four 3D CNN, and 4D CNN. Because of its result and potential,
4D CNN are identified as the best option for TOC, and a deeeper
study of this option is made in order to optimize it, whether by

changing its architecture, deleting the less useful channels or re-

ducing the input size. In this case, none of those methods were
viable option, since 4D CNN need a much bigger dataset to grasp
good features.
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