
Crypt-CNN(I): Secure Two-party Computation of
Large-scale Matrix-vector Multiplication

Wen-jie Lu1 Jun Sakuma1,2,3

Abstract: Matrix-vector multiplication is a fundamental computation of many machine learning algorithms,
such as deep learning which involves large-scale matrices. However, practical secure two-party computations
for large-scale matrix-vector multiplication are absent in the literature. The absence of practical approach
for large-scale matrix-vector multiplication hinders the development of private evaluation of deep learning
algorithms. We propose two practical approaches for the large-scale matrix-vector multiplication using fully
homomorphic encryption under the secure two-party computation setting. Our approaches are efficient re-
garding computation time and bandwidth consumption. Our secure matrix-vector multiplication protocol
can process a matrix with more than 4000× 2000 elements within 8 seconds, which is about 3.6 times faster,
and save about 93.8% bandwidth computation than the previous approach.

Keywords: PWS, matrix-vector multiplication, 2PC, Message Packing, Machine Learning

1. Introduction

Matrix-vector multiplication is a fundamental computa-

tion of many machine learning algorithms, such as deep

learning which involves large-scale matrices. For instance,

the state-of-the-art deep learning model [12] includes large-

scale matrices up to 4096 × 100352 elements. In the plain-

text domain, highly optimized libraries, such as BLAS and

Eigen, enable us to process such large-scale matrix-vector

multiplications efficiently.

Also, the concerns of data privacy motivate researchers

to develop methods and protocols that privately evaluate

machine learning algorithms without leaking the informa-

tion of the data [1], [14], [15]. One approach for that is

to use homomorphic encryptions, by which we can perform

arithmetic operations above ciphertexts without knowing

the plain messages.

Under the secure two-party computation setting [6], we

can easily design a secure protocol for the matrix-vector mul-

tiplication using additively homomorphic encryption such as

Paillier cryptosystem [10]. For instance, Alice encrypts el-

ements of the matrix using the Paillier cryptosystem, and

sends the ciphertexts to Bob. Then Bob can evaluate the

matrix-vector multiplication with public-key operations of

the Paillier cryptosystem. Unfortunately, such direct ap-

proach costs too much computation time or consume too

many network bandwidth when the matrix is large. In this

work, under the secure two-party computation setting, we

propose two practical methods for large-scale matrix-vector

1

University of Tsukuba
2 JST CREST
3 RIKEN center of AIP

multiplication. We show (in our second paper) that we can

evaluate a 10-layer deep learning model using these two

methods within one minute, which is about 10 times faster

than the previous work [5].

Related Works. Yasuda et al. [17] proposed an computa-

tion efficient method for inner product of encrypted vectors.

This method can be directly employed to the secure matrix-

vector multiplication, by processing each row of the matrix

separately. However, as we will show in Section 4.1, this di-

rect approach is communication inefficient when the matrix

contains too many number of rows. We empirically show

that, when to process 4000 rows, this approach requires to

transfer more than 4GB data, which is far from practical.

Our Contributions. We present two practical fully

homomorphic encryption (FHE)-based building blocks for

matrix–vector multiplication of these two types, separately.

We show experimentally that our building blocks are 3.6

times faster in computation time and they reduce 93.8%

bandwidth consumption, compared with methods described

in past works.

2. Preliminaries

2.1 Notation

We begin with some related notations. For a positive in-

teger n, we write [n] to denote {0, 1, . . . , n − 1}. We write

e
$← E to denote that e is chosen uniformly at random from

the set E . We denote vectors as bold lower case Roman

characters, e.g., v. We write [v0, v1, . . .] to explicitly de-

note the elements of a row vector. We designate matrices

with bold upper case Roman characters, e.g., M . We access

elements of vectors with (·)i. For example, (v)i is the i-th

element of v. Similarly, tensors are shown with indices such

Computer Security Symposium 2017
23 - 25 October 2017

－765－c⃝ 2017 Information Processing Society of Japan

as (M)i,j . The concatenation of vectors is denoted as a‖b.

|v| returns the length of v. The transpose is written with

·>. The inner product of two column vectors is written as

u>v; matrix–vector multiplication is denoted as Mv. We

write M [i:] to denote the i-th row vector of the matrix M

and write M [:j] to denote the j-th column vector.

We use non-bold upper case Roman characters to denote

polynomials. Specifically, symbol X is used to denote the

indeterminate of polynomials. For an odd modulus t, Zt is

interpreted in the range (−t/2, t/2). Zt[X] denotes a set of

polynomials whose coefficients are in Zt. We access coef-

ficients of a polynomial P with [·]i. For example, the 1-st

coefficient of the polynomial P = 1 + 2X + 3X2 is given as

[P]1 = 2. Indices start from 0.

2.2 Matrix-vector Multiplication

We consider two kinds of matrix–vector multiplications.

Specifically, for the first one, Alice’s input is a long vector,

and Bob’s input is a large-scale matrix. Only one large-scale

matrix-vector multiplication is needed for the evaluation.

For the second one, Alice’s input consists of small matrices,

and Bob’s input consists of same number of small vectors.

A batch of small-scale matrix-vector multiplications must

be used. Based on this subtle but significant difference, we

design a secure 2PC protocol separately for these two kinds.

Put abstractly, our constructions are reduced to the se-

cure 2PCs presented in Table 1. MvM-v signifies the matrix–

vector multiplication with a vector as Alice’s input. MvM-m

denotes the matrix–vector multiplication with matrices as

Alice’s input. In this work, we present these 2PCs in a

manner that the input of Alice is in a form of secret shares,

and the evaluation result is also in a form of secret shares.

This secret-share manner allows combinations of our pro-

tocols with other secure computation tools, such as Yao’s

garbled circuit [16]. We remark that our protocols are not

designed for this secret-share manner specifically.

In both settings, we also assume Alice generates the (ho-

momorphic) key pair (sk, pk) while Bob can only access to

the public key pk. For the MvM-v (resp. MvM-m) setting,

Alice encrypts v+r (resp. {M i+Ri}i) with FHE and sends

the ciphertext(s) to Bob. The Bob performs homomor-

phic operations with the ciphertext(s) and its input {M , r}
(resp. {vi,Ri}i) to obtain the ciphertext of Mv (resp.∑
iM ivi). After the computation, Bob homomorphically

add its private share r′ to the resulting ciphertext(s). Then,

Bob sends the ciphertext(s) back to Alice. In the end, Alice

learns its share Mv +r′ (resp.
∑
iM ivi +r′) but nothing

else. The Bob learns its private share r′ but nothing else.

We respectively designate these two functionalities as

MvM-v(v + r, {M , r})→ (Mv + r′, r′),

MvM-m({M i + Ri}i, {vi,Ri}i)→ (
∑
i

M ivi + r′, r′).

We present our constructions of MvM-v and MvM-m in

Section 4 using existing primitives introduced in Section 3.

Table 1 Matrix-vector multiplication of two kinds.

Alice Bob
Input Output Input Output

MvM-v v + r Mv + r′ {M , r} r′

MvM-m {M i + Ri}
∑
iM ivi + r′ {vi,Ri} r′

3. Cryptographic Primitives

This section presents details about the cryptographic

primitives used in our construction.

3.1 (Fully) Homomorphic Encryption

We require an additively homomorphic asymmetric en-

cryption scheme. In this paper, we prefer the Ring-LWE [8]

variant of BGV’s scheme [2] whose properties enable us to

build practical matrix–vector multiplication protocols.

The setup parameters of BGV’s scheme consist of three

positive integers m, t, and L where t is an exponent of prime

values. In our construction, we specify m as an exponent of

2 for efficiency concerns. The message space of this scheme

is given as a ring At := Zt[X]/(Xm + 1).

We give brief descriptions related to the scheme. Let

(sk, pk) be a key pair generated with parameters m, t, and

L. For any element A,B ∈ At, we leverage the following

properties of BGV’s scheme in our construction.

• Asymmetric scheme:

Decsk(Encpk(A)) = A mod (Xm + 1, t)

• Additive homomorphism:

Decsk(Encpk(A)⊕ Encpk(B)) = A+B mod (Xm + 1, t)

Decsk(Encpk(A)⊕B) = A+B mod (Xm + 1, t)

• Multiplication with scalars:

Decsk(Encpk(A)⊗B) = A×B mod (Xm + 1, t)

The operators ⊕ and ⊗ respectively indicate homomorphic

addition and homomorphic multiplication. Also, we write 	
to denote the homomorphic subtraction. Indeed, the BGV

scheme also supports multiplication of encrypted values:

Decsk(Encpk(A)⊗ Encpk(B)) = A×B mod (Xm + 1, t).

However, we do not use this operation in our construction.

For the FHE implementation, we use the HElib library [11].

Furthermore, the input of CNNs includes real numbers,

whereas FHE handles integers. As described herein, we use

the fixed point presentation for real numbers. For a real

number x, we convert it to the integer dx · 2ξc using a posi-

tive integer ξ. In the following sections, we assume that all

real values are converted properly into fixed point integers.

3.2 Forward-Backward Packing

The technique of [7], [17] enables efficient private eval-

uation of inner products. We give a generalization of this

technique and show how to extend this technique to efficient

matrix-vector multiplication in Section 4. Let u,v ∈ Zmt be

vectors of integers. We introduce two functions
→
π and

←
π

that convert a vector of integers to a polynomial:

－766－c⃝ 2017 Information Processing Society of Japan

→
πm(u) =

m−1∑
i=0

uiX
i,

←
πm(v) =

m−1∑
j=0

vjX
m−1−j .

Let α be a scalar. We have the following properties.

→
πm(u) +

→
πm(v) =

→
πm(u + v) α ·→πm(u) =

→
πm(α · u)

←
πm(u) +

←
πm(v) =

←
πm(u + v) α ·←πm(v) =

←
πm(α · v).

In other words, we can operate the vector addition and the

vector-scalar multiplication with
→
π and

←
π . More impor-

tantly, the coefficient of Xm−1 of
→
πm(u) × ←πm(v) gives

the inner product u>v as follows.

[
→
πm(u)×←πm(v)]m−1 =

∑
i,j

:i+(m−1−j)=m−1

uivj = u>v.

Let ũ, ṽ ∈ Zm̃t be vectors such that m̃ ≥ m. We use
→
π

and
←
π to compute ũ>ṽ. To do so, we partition the vec-

tors into γ sub-vectors, that is ũ = ũ(0)‖· · · ‖ũ(γ−1) and

ṽ = ṽ(0)‖· · · ‖ṽ(γ−1). Also, we require |ũ(i)| = |ṽ(i)| and

|ũ(i)| ≤ m for i ∈ [γ]. We homomorphically compute the

inner product ũ>ṽ as followings.

R⊕
γ−1∑
i=0

→
πm(ũ(i))⊗ Encpk(

←
πm(ṽ(i))), (1)

where R is a degree-m polynomial such that [R]i
$← Zt for

i ∈ [m] except that [R]m−1 = 0. In the context of 2PC, we

can assume that Alice pre-processes his input vector ṽ with
←
π before the encryption, so that Bob can operate Eq. 1 with

his vector ũ and Alice’s ciphertext(s). The correctness and

security of Eq. 1 is given by Theorem 1.

Theorem 1. From the decryption of Eq. 1, except ũ>ṽ

mod t no other information of ũ and ṽ can be learnt.

To prove this theorem, we introduce the following lemma.

Lemma 1. Let d be a positive integer, and let u and v

be integer vectors such that |u| = |v| ≤ d. For a modulo

polynomial Xd + β′ with any nonzero integer β′, we have

[
→
π d(u)×←π d(v)]d−1 = [

→
π d(u)×←π d(v) mod (Xd+β′)]d−1.

Proofs defer to Appendix A.1.

Eq. 1 requires O(dm̃/me) homomorphic operations. Re-

call that m is one of the FHE parameters which is usually

larger than 212. This means that we only need a few homo-

morphic operations to compute the inner product of vectors

with thousands of elements. We designate this technique as

forward-backward packing (FB-packing).

3.3 CRT-Packing

Aside from the FB-packing, the CRT-packing presented

in [13] is another technique commonly used for developing

efficient FHE-based protocols. CRT-packing leverages the

polynomial Chinese Remainder Theorem (i.e., CRT) to con-

vert a polynomial vector to an element of At. We prefer to

focus on the properties of this packing. See [13] for more

mathematical details.

Table 2 Summary of the two packing methods.

Input Specialization

→
π ,
←
π vectors of integer

inner product,
addition of vectors,
vector-scalar multiplication

πcrt vector of polynomials
element-wise addition,
element-wise multiplication

Given the parameters t and m of BGV’s scheme, we can

factorize Xm + 1 into ` distinct and degree-d polynomials

{Fj} such that Xm + 1 =
∏`−1
j=0 Fj mod t. In literature,

factors {Fj} are called plaintext slots. ` is the number of

slots. We write πcrt : (Ztd)` → At to denote the CRT-

packing function*1, and write π−1
crt as the reversing function.

The most important property of this packing is element-

wise operations. Let p and q be two length-` vectors of

polynomials, where (p)j , (q)j ∈ Zt[X]. The element-wise

polynomial addition and multiplication are given as(
π−1
crt (πcrt(p) + πcrt(q))

)
j

= (p)j + (q)j mod (Fj , t)(
π−1
crt (πcrt(p)× πcrt(q))

)
j

= (p)j × (q)j mod (Fj , t),

for j ∈ [`]. Here + and × indicate the addition and multipli-

cations of polynomials, respectively. Indeed, we can apply

this element-wise operation to vectors of integers since we

can view integers as degree-0 polynomials. In this case, we

achieve ` integer additions and integer multiplications.

If we pre-process vectors with πcrt, element-wise vector

addition and multiplication can be processed in a single op-

eration via the homomorphic operations. For instance, we

obtain ` additions from one homomorphic addition:

π−1
crt (Decsk (Encpk(πcrt(p))⊕ Encpk(πcrt(q)))) .

In other words, CRT-packing reduces the homomorphic

computation time by a factor of 1/`, and reduces the number

of ciphertexts by 1/`.

We give a summary of the FB-packing and the CRT-

packing in Table 2. We use these packings to convert multi-

ple values to a single element of At. This reduces the number

of ciphertexts which helps to save the communication band-

width drastically. In the meantime, the two packings also

helps to reduce the computation cost of specific operations,

e.g., the inner product and the element-wise operations.

Packing Long Vectors. Suppose the length of the vec-

tor a is |a| > m. To pack a with the FB-packing,

we need to partition a into multiple sub-vectors, that is,

a = a(0)‖a(1)‖· · · , where |a(i)| ≤ m. To encode a, we use

multiple
→
πm(·), that is,

→
πm(a(0)),

→
πm(a(1)), We sim-

ply write
→
πm(a) (resp.

←
πm(a)) to denote these multiple

applications of
→
πm(·) (resp.

←
πm(·)).

Similarly, for the case of employing πcrt on a long vec-

tor b such that |b| > `, we simply write πcrt(b) to de-

note πcrt(b
(0)), πcrt(b

(1)), . . . , where b = b(0)‖b(1) · · · and

|b(i)| ≤ `.

*1 Here Ztd indicates that the degree of polynomials is d and the
coefficients of the polynomial are from Zt.

－767－c⃝ 2017 Information Processing Society of Japan

Fig. 1 Block-matrix vector multiplication.

4. Proposed Protocols

We now present our constructions of MvM-v and MvM-m.

4.1 MvM-v in Scale

We firstly present a direct approach from the FB-packing.

This direct method is practical with respect to computa-

tion time but it introduces a large communication overhead.

Then we present a novel approach which achieves efficient

computation and communication.

4.1.1 A Direct Approach

We can achieve MvM-v by iterations of Eq. 1. The Alice

pre-processes its input v with
←
π . Then Alice sends cipher-

text(s) Encpk(
←
πm(v)) to Bob. Let the size of M be n̂2× n̂1.

The Bob pre-processes each row of M with
→
π , and thus it

obtains
→
πm(M [i:]) for i ∈ [n̂2]. After receiving the cipher-

text(s) from Alice, Bob operates Eq. 1 with Encpk(
←
πm(v))

and
→
πm(M [i:]) for i ∈ [n̂2]. Then Bob sends the resulting

ciphertexts to Alice. The Alice decrypts all the ciphertexts

and obtains n̂2 scalars M [0:]v, . . . , M [n̂2−1:]v, which forms

Mv.

This direct approach requires n̂2dn̂1/me homomorphic

multiplications. We remark that dn̂1/me is relatively a small

factor (e.g. 2 or 3) because we usually require m > 212

to achieve a reasonable security level (e.g., 80-bit security

level) of FHE. The Bob needs to send n̂2 ciphertexts to Al-

ice. This consumes too many bandwidth when n̂2 is large.

We remark that this direct approach is suitable for the case

that n̂1 � n̂2. We now present a novel approach for the

case that both n̂1 and n̂2 are large.

4.1.2 Double-Packing

Notice that Eq. 1 evaluates only a single inner product.

This is the reason why the direct approach introduces a large

bandwidth cost when tremendous amount of inner products

are needed. We propose double-packing which combines the

FB-packing and the CRT-packing in a delicate way, achiev-

ing both good computation and bandwidth efficiency for the

large-scale matrix-vector multiplication.

From a high level of view, we compute MvM-v by parti-

tioning the large-scale matrix into several blocks (i.e., sub-

matrices) and thus we decompose one matrix-vector mul-

tiplication into several submatrix-subvector multiplications.

Then we can apply the FB-packing to each slots of the CRT-

packing to evaluate ` submatrix-subvector multiplications

simultaneously. As a result, we can reduce the number of

generated ciphertexts by the factor of 1/`, and thus reduce

the bandwidth cost by the factor of 1/`.

Before we presenting the double-packing, we firstly

demonstrate that the MvM-v can be viewed as the block-

matrix vector multiplication (Figure 1). Let d′ be a positive

integer, and let γ = dn̂1/d
′e. The matrix M is vertically

partitioned into γ sub-matrices (referred to as blocks) where

each block contains at most d′ columns of M . We write the

set of blocks as {M (b)}. The vector v is also partitioned

into γ sub-vectors according to the partition of M so that

the length of v(b) is equal to the number of columns of M (b)

for b ∈ [γ]. Then we can convert the MvM-v to a sum of

multiplications of the sub-matrix and the sub-vector, that is,

Mv =
∑γ−1
b=0 M (b)v(b). Also, M (b)v(b) can be computed

through the following inner products

M
(b)
[0:]v

(b), . . . ,M
(b)
[n̂2−1:]v

(b). (2)

In other words, the computation of Mv is decomposed into

γn̂2 independent inner products followed by γ − 1 vector

additions.

The first component of our double-packing is to evaluate

the γ − 1 vector additions in the decomposed computation

using πcrt. Suppose we already have {Encpk(πcrt(zb))}γ−1
b=0

where the i-th element of the vector zb is (zb)i = M
(b)
[i:]v

(b)

for i ∈ [n̂2] (i.e., Eq. 2). Then, the element-wise addition

property of πcrt allows Mv be homomorphically computed

through the homomorphic additions
∑γ−1
b=0 Encpk(πcrt(zb)).

These homomorphic additions result at dn̂2/`e ciphertexts.

Thus, we reduce the number of resulting ciphertexts from

n̂2 to dn̂2/`e, compared with the direct approach.

The second and core component of our double-packing is

to compute the inner products of Eq. 2 by employing
→
π and

←
π inside the plaintext slots of πcrt. To demonstrate this em-

ployment, we let {ai, bi}`−1
i=0 be vectors of integers such that

|ai| = |bi| = d′ < m. With a proper constraint on d′, the

following multiplication of polynomials

πcrt([
→
π d′(a0), . . . ,

→
π d′(a`−1)])× πcrt([

←
π d′(b0), . . . ,

←
π d′(b`−1)])

(3)

correctly give the inner products a>0 b0, . . . ,a
>
`−1b`−1, using

Lemma 1 and the element-wise operations of πcrt. Thereby,

Eq. 2 is evaluated by iterations of Eq. 3.

We now show the constraint of d′. Under some specific

combinations of m and t, we can factorize Xm + 1 into

Xm + 1 =

`−1∏
j=0

(Xd − β′j) mod t (all β′j 6= 0).

In other words, the plaintext slots of the CRT-packing be-

come Fj = Xd − β′j for j ∈ [`]. According to Lemma 1, we

can correctly compute the inner product of length-d vec-

tors using the FB-packing under the modulo polynomial

Fj = Xd−β′j . That is [
→
π d(a)×←π d(b) mod Fj]d−1 = a>b

mod t for any vectors a, b ∈ Zdt . Since m = d`, for the given

m and `, the maximum value of d′ in Eq. 3 is d.

To achieve this factorization, we need to determine β′js

appropriately. More precisely, we need to make sure that

－768－c⃝ 2017 Information Processing Society of Japan

Table 3 Usable parameters for the double-packing.

HHHHm
`

8 16 32 64 128

212 113;401 353;673 577;193 641;1153 769;3329
213 113;338 353;673 577;193 641;1153 7937;3329

Algorithm 1 PrivateMvM-v.
Input of Alice: random share of private vector ṽ = v + r, private

key sk.
Input of Bob: matrix M , random share of private vector r.
Output of Alice: random share of the output vector Mv + r′.
Output of Bob: random share of the output vector r′.
Notes: v, r ∈ Zn̂1

t , M ∈ Zn̂2×n̂1
t , γ = dn̂1/de .

1: The Bob vertically partitions M into γ blocks {M(b)} where
each block contains at most d columns, and Bob then pre-

processes the block as
→
π w(M

(b)) for b ∈ [γ].

2: The Alice partitions ṽ into γ sub-vectors {ṽ(b)} and pre-

processes
←
π w(ṽ

(b)) for b ∈ [γ].

3: The Alice computes γ ciphertexts {Encpk(
←
π w(ṽ

(b)))} and sends
them to Bob.

4: The Bob partitions r into γ sub-vectors {r(b)}γ−1
b=0 , and com-

putes Encpk(
←
π w(v

(b))) = Encpk(
←
π w(ṽ

(b)))	←π w(r
(b)).

5: The Bob samples its new share r′
$← Zn̂2

t . Then Bob randomly

generates degree-d polynomials {Ri} such that [Ri]j
$← Zt for

j ∈ [d] except [Ri]d−1 = (r′)i for i ∈ [n̂2].
6: The Bob homomorphically computes

πcrt([R0, . . . , Rn̂2−1])⊕
γ−1∑
b=0

→
π w(M

(b)
)⊗ Encpk(

←
π w(v

(b)
)).

Then Bob sends the resulting ciphertexts to Alice.
7: The Alice decrypts all the ciphertexts to obtain Mv + r′.

the multiplicative order of all the β′js in Zt is 2`. We em-

pirically confirmed that finding such β′js is not difficult for

t,m, and ` with a reasonable size (see Section 4.3.1).

We now introduce the notation of the double-packing. For

the block M (b) and the sub-vector v(b), we write
→
πw(M (b))

and
←
πw(v(b)) to denote the double packing as

→
πw(M (b)) = πcrt

(
[
→
π d(M

(b)
[0:]), . . . ,

→
π d(M

(b)
[n̂2−1:])]

)
←
πw(v(b)) = πcrt([

←
π d(v(b)), . . . ,

←
π d(v(b))︸ ︷︷ ︸

n̂2 copies

]).

The subscript w indicates “double”.
→
πw(M (b))×←πw(v(b))

(i.e., Eq. 3) evaluates Eq. 2, and thus evaluates M (b)v(b).

4.1.3 Private Evaluation of MvM-v

We now present the private evaluation of MvM-v in Alg. 1

using the double-packing. In Alg. 1, we assume the param-

eters d and ` are shared in advance by Bob and Alice. We

also assume that the private input vector of Alice is shared

by Alice and Bob, in the from of random shares. That is,

Alice holds the share ṽ = v + r while Bob holds the share

r where r is a randomly generated vector. At the end of

Alg. 1, Mv is also possessed in the form of random shares

between Alice and Bob. {Ri} in Step 5 and R in Eq. 1 are

different in two points. One is that the degree of {Ri} is

d while the degree of R is m. The other is that [Ri]d−1

contains Bob’s new share (r′)i while [R]m−1 = 0 in Eq. 1.

Thereby, the combination of the element-wise addition of

πcrt and the vector addition of the FB-packing allows Bob

to homomorphically add his new private share r′ into the

resulting ciphertexts in Step 6.

Theorem 2. Assume Alice and Bob behave semi-honestly.

Algorithm 2 PrivateMvM-m.

Input of Alice: random shares of private matrices {M̃k = Mk +
Rk}c−1

k=0 and private key sk.
Input of Bob: vectors {vk}ck=0 and random shares of private ma-

trices {Rk}c−1
k=0.

Output of Alice: random share of the output vector∑c−1
k=0 Mkvk + r′.

Output of Bob: random share of the output vector r′.
Notes: The size of Rk,Mk is n′ × h′. The length of vk is h′.

1: The Alice pre-processes each column of M̃k with
→
π and obtains

→
π (M̃k[:j]) for k ∈ [c] and j ∈ [h′].

2: The Alice computes {Encpk
(→
π (M̃k[:j])

)
}k∈[c],j∈[h′] and sends

the ciphertexts to Bob.

3: For each Ri, Bob applies
→
π to the columns of Ri to obtain

→
π (Ri[:j]) for j ∈ [h′].

4: The Bob samples its new private share r′
$← Zn

′

t and performs

the packing to obtain
→
π (r′).

5: For k ∈ [c] and j ∈ [h′], Bob computes

Encpk
(→
π (Mk[:j])

)
= Encpk

(→
π (M̃k[:j])

)
	→π (Rk[:j]).

6: The Bob homomorphically computes

→
π (r

′
)⊕

c−1∑
k=0

h′−1∑
j=0

Encpk
(→
π (Mk[:j])

)
⊗ (vk)j .

The Bob then sends the resulting ciphertexts to Alice.
7: The Alice obtains

∑c−1
i=0 M ivi + r′ after decrypting all the ci-

phertexts.

Then Alg. 1 privately and correctly computes MvM-v. The

Alice learns the share Mv + r′ but nothing else. The Bob

learns the share r′ but nothing else.

The proof defers to Appendix A.2.

Tunable Workloads. We have presented two methods for

private evaluation of MvM-v. We show how to decide which

approach to use, aiming at less communication overhead.

For the first method, number of the ciphertexts being

transferred is dn̂1/me + n̂2. For the second method, Al-

ice and Bob, in total, transfer dn̂1/de+ dn̂2/`e ciphertexts.

We can see that when d · n̂2 > n̂1, it would be better to

use the second method. Otherwise, the first method is rec-

ommended. Also, we should set ` as
√
n̂2/n̂1 ·m for the

second method to achieve the optimal communication cost

by solving argmin
`

n̂1

d + n̂2

` with the constraint m = d`.

4.2 MvM-M in Scale

In the MvM-m setting, the input of Alice is a set of matri-

ces. We arrange these matrices in a compact form so that we

can reduce the number of ciphertexts when we encrypt the

matrices. Thus it helps to reduce the communication cost.

Consider matrix-vector multiplication Ukvk where the size

of Uk is n′×h′. We simply rewrite it as the equivalent form

Ukvk =
∑h′−1
j=0 Uk[:j] · (vk)j . We note that Uk[:j] · (vk)j is

a vector-scalar multiplication. Thereby, the required oper-

ations to evaluate MvM-m include vector-scalar multiplica-

tions and vector additions only. These operations are sup-

ported by both of the FB-packing and the CRT-packing. In

this work, we prefer to use the FB-packing for MvM-m be-

cause the packing time of the FB-packing is faster than that

of the CRT-packing.

We present MvM-m in Alg. 2. Similar to Alg. 1, we as-

sume the input matrices are already distributed as random

－769－c⃝ 2017 Information Processing Society of Japan

Table 4 Asymptotic analysis of the building blocks.

computation
communication

Alice → Bob Bob → Alice

MvM-v
n̂2d

n̂1

m
e d

n̂1

m
e n̂2(FB-packing)

MvM-v
d
n̂2

`
ed
n̂1

d
e d

n̂1

d
e d

n̂2

`
e

(double-packing)

MvM-m ch′d
n′

m
e ch′d

n′

m
e d

n′

m
e

(a) Evaluations of MvM-v using the FB-packing and the double-
packing. The matrix size was n̂1 × n̂2.

(b) Evaluation of PrivateMvM-m. The matrix size was n′ × h′ and
the number of matrices was c.

Fig. 2 The computation time of the MvM-v and MvM-m evalu-
ations, and the amount of transferred data. The commu-
nication time is excluded.

shares between Alice and Bob. In Step 4, Bob samples its

new share r′, and homomorphically adds it to the evaluation

result in Step 6. We give the following theorem.

Theorem 3. Suppose Alice and Bob behave semi-honestly.

Then Alg. 2 privately and correctly computes MvM-m. The

Alice learns the share
∑c−1
i=0 M ivi + r′ but nothing else.

The Bob learns the private share r′ but nothing else.

The proof defers to Appendix A.3.

More Compact MvM-m. We can merge the resulting ci-

phertexts in Step 6 of Alg. 2. To do so, we need to “rotate”

the encrypted vector. Let a and b be length-d vectors such

that 2d ≤ m. It is easily to see that

Encpk(
→
πm(a))⊕

(
Encpk(

→
πm(b))⊗Xd

)
= Encpk(

→
πm(a‖b)).

In other words, we can homomorphically merge multiple ci-

phertexts into one single ciphertext. By doing this, we re-

duce the number of ciphertexts in Step 6 of Alg. 2 from

c′dn′/me to dc′n′/me. When c′ > n′, this compact form

helps to reduce the bandwidth cost significantly.

4.3 Asymptotic Analysis

We give a brief description of the asymptotic analysis of

our building blocks. Let the size of the matrix used in

MvM-v be n̂2 × n̂1, and n′, h′ and c be the sizes used in

MvM-m. Table 4 summarizes the asymptotic complexity of

the building blocks. In this table, we count the number of

ciphertexts sent by Alice (i.e., Alice→ Bob) and the number

of ciphertexts sent by Bob (i.e., Bob → Alice). Thus, the

total bandwidth of the building block can be given as the

sum of these two counting. Also, the second column denotes

the number of homomorphic operations done by Bob.

4.3.1 Double-packing Revisit

Given a combination of m and t, the double-packing re-

quires at least ` distinct values of Zt such that the multi-

plicative order of the value is 2` over Zt. The number of

slots ` is determined by the combination of m and t. That

is ` = m/d, where td = 1 mod 2m.

Given the parameter m, we can perform a grid search for

such prime value t that satisfies the requirement. In Table 3,

we present some of the usable combinations of m and t for

the double-packing. Here, we present two combinations of

m and t for each `. For instance, the (m, t) combinations of

(212, 113) and (212, 401) both satisfy the requirement for the

double-packing. These combinations provide ` = 8 plaintext

slots, and thus d = 512.

5. Experiments

Settings. Our implementations are built with the C++-

based FHE library, i.e., HElib [11]. All experiment codes

were run by machines with a 2.60GHz Xeon E5-2640 v3

processor and 32GB of RAM. The network speed in our ex-

periments was about 940 Mbps. Multi-threads programming

was not employed.

We used the parameters m = 213, t = 2574, and L = 5 of

BGV’s scheme, which provides at least 128-bit security level

according to the security analysis of [4]. The combination

of these parameters provides ` = 128 plaintext slots and

about 32-bit plaintext space. This combination satisfies the

requirement of the double-packing. Under this parameters

setting, the size of pk was around 5.4 MB and the size of

one FHE ciphertext was about 1.2 MB.

Measurements. We measured the computation time and

the bandwidth cost for one call of the FHE-based building

blocks. The computation time consists of three: time for en-

cryption on Alice’s side, time for homomorphic operations

on Bob’, and the decryption time on Alice’s side. The pack-

ing on Bob’s side can be considered as a pre-processing, and

thus was not included in our experiments.

The bandwidth cost consists of the upstream and down-

stream cost. The upstream cost means the total amount of

data that sent by Alice, and the downstream cost means the

total amount of data sent by Bob.

5.1 Protocol Scalability

To see the scalability of our protocols, we separately mea-

sured the performance of them with various input sizes.

MvMv. We can instantiate the private MvM-v using ei-

ther the FB-packing or the double-packing. Fig. 2(a) shows

the performances of these two instantiations where d and `

denote the parameters used by the double-packing. The ma-

－770－c⃝ 2017 Information Processing Society of Japan

trix size we used was n̂2 × n̂1 where n̂2 ∈ {100, 1000, 4000}
and n̂1 was changed from 100 to 2000. In other words, the

matrix was changed from a 100×100 small matrix to a huge

4000× 2000 matrix.

MvMm. In this experiment, we used h′ = 4, c = {3, 8, 12},
and changed n′ from 42 to 1242.

5.2 Discussion and Conclusion

From Fig. 2, we can know that when n̂2 is relatively small,

the FB-packing can provide a better solution for the private

MvM-v. However, the large communication overhead of this

method hinders us to use it for the evaluation on a large

matrix. On the other hand, the double-packing is extremely

efficient even for the case of large matrices. For instance, one

private MvM-v using the double-packing on a 4000 × 2000

matrix only required about 8 seconds and consumed less

than 12 MB bandwidth. The same evaluation from the past

FHE-based solution [17] might require 29 seconds and con-

sume more than 195 MB bandwidth.

Also, the MvM-m is practical regarding to the computa-

tion time. For instance, it cost less than 0.8 seconds to pri-

vately compute the MvM-m with 12 matrices each of more

than 61504 (i.e., 1242× 4) elements. Moreover, we can even

accelerate the computation time with a multi-threads pro-

gramming since the convolution is independent on each ker-

nel. We note that the private MvM-m consumes a modest

amount of bandwidth which can be reduced by using a more

compact FHE implementation, such as [3], [9].

Conclusion. We conclude that our FHE-based approaches

are practical enough for large-scale matrix-vector multipli-

cation under the secure two-party computation setting. We

consider our approaches are useful for the development of

secure protocol of evaluating deep learning algorithm such

as convolutional neural networks.

Acknowledgment. This work is supported by JST

CREST program “Advanced Core Technologies for Big Data

Integration”.

References

[1] Mauro Barni, Claudio Orlandi, and Alessandro Piva. A
privacy-preserving protocol for neural-network-based compu-
tation. In Proceedings of the 8th workshop on Multimedia
and security, pages 146–151, Geneva, Switzerland, Septem-
ber 26 - 27, 2006.

[2] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
(Leveled) fully homomorphic encryption without bootstrap-
ping. In Innovations in Theoretical Computer Science 2012,
pages 309–325, Cambridge, MA, USA, January 8-10, 2012.

[3] Hao Chen, Kim Laine, and Rachel Player. Simple encrypted
arithmetic library - SEAL v2.1. IACR Cryptology ePrint
Archive, 2017:224, 2017.

[4] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomor-
phic evaluation of the AES circuit. In Advances in Cryp-
tology - CRYPTO 2012 - 32nd Annual Cryptology Confer-
ence, pages 850–867, Santa Barbara, CA, USA, August 19-
23, 2012.

[5] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E.
Lauter, Michael Naehrig, and John Wernsing. Cryptonets:
Applying neural networks to encrypted data with high
throughput and accuracy. In Proceedings of the 33nd In-
ternational Conference on Machine Learning, ICML 2016,
pages 201–210, NY, USA, June 19-24, 2016.

[6] Oded Goldreich. Foundations of cryptography: volume 2,

basic applications. Cambridge University Press, 2009.
[7] Wen-Jie Lu, Yoshiji Yamada, and Jun Sakuma. Privacy-

preserving genome-wide association studies on cloud envi-
ronment using fully homomorphic encryption. BMC medical
informatics and decision making, 15(5):S1, 2015.

[8] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On
ideal lattices and learning with errors over rings. In Advances
in Cryptology - EUROCRYPT 2010, 29th Annual Interna-
tional Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 1–23, French Riviera, May 30 -
June 3, 2010.

[9] Michael Naehrig, Kristin E. Lauter, and Vinod Vaikun-
tanathan. Can homomorphic encryption be practical? In
Proceedings of the 3rd ACM Cloud Computing Security
Workshop, CCSW 2011, pages 113–124, Chicago, IL, USA,
October 21, 2011.

[10] Pascal Paillier. Public-key cryptosystems based on compos-
ite degree residuosity classes. In International Conference on
the Theory and Applications of Cryptographic Techniques,
pages 223–238, 1999.

[11] Victor Shoup Shai Halevi. HELib. http://shaih.github.
io/HElib, 2017. Accessed: 2017-04-10.

[12] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[13] Nigel P Smart and Frederik Vercauteren. Fully homomor-
phic SIMD operations. Designs, codes and cryptography,
71(1):57–81, 2014.

[14] Wai Kit Wong, David Wai-lok Cheung, Ben Kao, and Nikos
Mamoulis. Secure knn computation on encrypted databases.
In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2009, pages 139–
152, Providence, Rhode Island, USA, June 29 - July 2, 2009.

[15] David J. Wu, Tony Feng, Michael Naehrig, and Kristin E.
Lauter. Privately evaluating decision trees and random
forests. PoPETs, 2016(4):335–355, 2016.

[16] Andrew C Yao. Protocols for secure computations. In 23rd
Annual Symposium on Foundations of Computer Science,
pages 160–164, Chicago, Illinois, USA, 3-5 November 1982.

[17] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro
Yokoyama, and Takeshi Koshiba. Secure pattern match-
ing using somewhat homomorphic encryption. In Proceed-
ings of the 2013 ACM Cloud Computing Security Workshop,
Co-located with CCS 2013, pages 65–76, Berlin, Germany,
November 4, 2013.

Appendix

A.1 Proof of Theorem 1

We now give the proof of Theorem 1.

Proof of Correctness. The polynomial

(R +

γ−1∑
i=0

→
πm(ũ(i))×←πm(ṽ(i))) mod (Xm + 1, t)

is given by the decryption of Eq. 1. According to Lemma 1

we know that

[

(
R +

γ−1∑
i=0

→
πm(ũ(i))×←πm(ṽ(i))

)
mod (Xm + 1, t)]m−1 =

[R +

γ−1∑
i=0

→
πm(ũ(i))×←πm(ṽ(i)) mod t]m−1 =

[

γ−1∑
i=0

→
πm(ũ(i))×←πm(ṽ(i)) mod t]m−1 = ũ>ṽ mod t.

We use [R]m−1 = 0 in the last step.

Proof of Security. The value of [R]j is distributed uni-

formly in Zt for 0 ≤ j < m − 1. Thereby, the value of

[R+
∑γ−1
i=0

→
πm(ũ(i))×←πm(ṽ(i)) mod (Xm+ 1, t)]j is also

－771－c⃝ 2017 Information Processing Society of Japan

uniformly distributed in Zt for 0 ≤ j < m− 1. Thereby, no

extra information is leaked.

A.2 Proof of Theorem 2

Proof of Correctness. The element-wise operation prop-

erty of πcrt enables Bob to homomorphically remove its se-

cret share r from Alice’s ciphertexts. SP can homomorphi-

cally add its new secret share r′ to the resulting cipher-

texts. It thus suffice to prove that we can learn Mb from∑γ−1
b=0

→
πw(M (b))×←πw(v(b)).

γ−1∑
b=0

→
πw(M (b))×←πw(v(b))

=

γ−1∑
b=0

πcrt([
→
π d(M

(b)
[0:])×

←
π d(v(b)), . . . ,

→
π d(M

(b)
[n̂2−1:])×

←
π d(v(b))])(element-wise mult.),

=πcrt([

γ−1∑
b=0

→
π d(M

(b)
[0:])×

←
π d(v(b)), . . . ,

γ−1∑
b=0

→
π d(M

(b)
[n̂2−1:])×

←
π d(v(b))])(element-wise addition)

According to the properties of the FB-packing, we

know that the coefficient of Xd−1 of the polynomial

[
∑γ−1
b=0

→
π d(M

(b)
[j:]) ×

←
π d−1(v(b))]d−1 is equal to the value∑γ−1

b=0 M
(b)
[j:]v

(b) for j ∈ [n̂2]. It is equivalent to Mv.

Proof of Security. First, we prove security against a semi-

honest Bob. Intuitively, security against a semi-honest Bob

follows from the fact that Bob’s view of the execution of

Alg. 1 consists only of FHE ciphertexts and independently

generated random values. Thus, the security against a semi-

honest SP is reduced to the semantic security of the FHE

scheme.

The view of Alice in the execution of Alg. 1 consists of n̂2

polynomials of degree d, that is,

VMvM-v
Alice = {Ri +

γ−1∑
b=0

→
π (M

(b)
[0:])×

←
π (v(b))}n̂2−1

i=0 .

Since the coefficient of the polynomials {Ri} was indepen-

dently sampled from Zt (Step 5) uniformly at random, the

coefficient of the polynomial Ri+
∑γ−1
b=0

→
π (M

(b)
[0:])×

←
π (v(b))

is also distributed uniformly on Zt for i ∈ [n̂2]. Thus, Alice’s

view can be simulated.

A.3 Proof of Theorem 3

Proof of Correctness. The FB-packing supports vector ad-

dition. It enables Bob to homomorphically remove its secret

share {Ri[:j]} from Alice’s ciphertexts. Also, it enables Bob

to homomorphically add the new secret share r′ in the re-

sulting ciphertexts. Thus, it suffice to prove that we can

obtain
∑c−1
k=0 Mkvk from the computation of

c−1∑
k=0

h′−1∑
j=0

→
π (Mk[:j]) · (vk)j .

The following proof use the vector-scalar multiplication and

vector-addition properties of the FB-packing.

c−1∑
k=0

h′−1∑
j=0

→
π (Mk[:j]) · (vk)j

=

c−1∑
k=0

h′−1∑
j=0

→
π (Mk[:j] · (vk)j) (vector-scalar mult.)

=

c−1∑
k=0

→
π (

h′−1∑
j=0

Mk[:j] · (vk)j) (vector-addition)

=

c−1∑
k=0

→
π (Mkvk) (mat-vec mult. by column vectors)

=
→
π (

c−1∑
k=0

Mkvk) (vector addition).

This completes our proof.

Proof of Security. The proof for the security of Alg. 2

against a semi-honest Bob is similar to that of Alg. 1. Bob’s

view in the real execution of Alg. 2 consists of two compo-

nents: ch′ ciphertexts sent by Alice, and a vector r′ which

is sampled from Zn
′

t uniformly at random.

VMvM-m
Bob = {{Encpk(

→
π (M̃k[:j]))}k∈[c],j∈[h′], r′}.

By semantic security of the FHE scheme,

{Encpk(
→
π (M̃k[:j]))} is computationally indistinguish-

able from independent encryption of 0.

The view of Alice in the execution of Alg. 2 consists only

of a length-n′ vector
∑c−1
k=0 Mkvk + r′. Since the vector r′

was sampled from Zn
′

t uniformly at random (Step 4), the

vector
∑c−1
k=0 Mkvk + r′ is also distributed uniformly on

Zn
′

t .

Thus, we can construct simulators that can simulate views

that are computationally indistinguishable to the views of

Alice and Bob in the real execution of Alg. 2.

－772－c⃝ 2017 Information Processing Society of Japan

