
Efficient Implementation of discrete Gaussian
sampling for Lattice-based Cryptography using

JavaScript

Junting Xiao1 Ye Yuan1 Kazuhide Fukushima2 Shinsaku Kiyomoto2

Tsuyoshi Takagi3,4

Abstract: For the sake of new cryptographic algorithms to resist attacks from the quantum computers, the
researches of post-quantum cryptography (PQC) has attracted much more attentions. Lattice-based cryptog-
raphy, including lattice-based encryption and digital signature, has become one of the most popular research
field in PQC. However, a number of lattice-based cryptographic schemes suffer from large-scale numbers sam-
pled from discrete Gaussian distribution which could affect their efficiency remarkably. By using appropriate
sampling methods, the performances of lattice-based cryptographic schemes could be more efficient under
multiple circumstances. Certainly, most discrete Gaussian sampling methods need computations of high
precision floating-point numbers which could be unsupported in some cases such as running on JavaScript
platforms. In this paper, we propose the approaches to implement several classical discrete Gaussian sam-
pling methods efficiently and compare them on several JavaScript platforms. We also implemented certain
lattice-based encryption schemes and digital signature schemes for the security level of 128 bits by JavaScript.
The results show that our sampling methods run efficiently in both digital signature schemes and encryption
schemes on JavaScript platforms. After comparisons, we indicate the sampling method which has the best
performance to these lattice-based cryptographic schemes.

Keywords: Post-Quantum cryptography, Lattice-based cryptography, Discrete Gaussian sampling, Digital
signature, JavaScript platform

1. Introduction

Universally used public-key cryptography schemes such as

RSA or elliptic curve cryptography (ECC), could not meet

the needs of resisting attacks from the quantum computers

since Shor’s algorithm [28] was proposed. National Institute

of Standards and Technology (NIST) had released the plan

for new algorithms and will publish the adoption results in

the next few years. In practice, lattice-based cryptography,

whose security is arguably based on the hardness of well-

studied lattice problems [1], is one of the most promising

candidates in PQC. Since a number of initial constructions of

lattice-based cryptography have been proposed [1], [11], [14],

more lattice-based encryption schemes [26], [17] and digital

signatures [5], [12], [20] with probable security have been

put forward over the past years.

It is well-recognized that discrete Gaussian sampling

(DGS) plays an important role in lattice-based cryptog-

raphy. Each sampling method has its own dominant po-

sition and the performances of different sampling meth-

ods might be quite different under certain condition. A-

1 Graduate School of Mathematics, Kyushu University
2 KDDI Research, Inc
3 Institute of Mathematics for Industry, Kyushu University
4 CREST, Japan Science and Technology Agency

mong the various sampling methods, rejection sampling

method [7], [10], [18], inversion method [24], discrete Ziggu-

rat method [2], and Knuth-Yao method [15] are the most

classical. In general, rejection sampling is slow while it

doesn’t need too many storages. On the contrary, inver-

sion method is fast but need to store the cumulative dis-

tribution function (CDF) of the sampled distribution in a

relatively large look-up table. Discrete Ziggurat method is

aimed at getting a speed-memory trade-off. The storage

and speed are alterable when different numbers of rectangles

are used [2]. Knuth-Yao method also needs to precompute

probabilities and store them in a look-up table. It requires

a minimal number of random bits and is well suited for high

precision sampling [27].

Under various circumstances, the implementation of dis-

crete Gaussian sampling faces different challenges. For

many sampling methods, it is unavoidable to do high preci-

sion floating-point arithmetic which could be very hard or

complicated to compute in some cases such as running on

JavaScript platforms. At the mention of JavaScript, it is a

kind of scripting language which had been widely used in

Web application development. JavaScript programs could

execute on multi-platforms (such as Windows, Linux, An-

droid, iOS, etc.) owning to its cross-platform feature. How-

Computer Security Symposium 2017
23 - 25 October 2017

－272－c⃝ 2017 Information Processing Society of Japan

ever, with the limited computational capacity, varieties of

lattice-based cryptographic schemes could not be applied to

JavaScript platforms which also need to defend future post-

quantum attacks.

In this work, we propose the general solutions of high pre-

cision floating-point arithmetic for discrete Gaussian sam-

pling by JavaScript. Several JavaScript platforms were cho-

sen to measure the performances of the sampling method-

s. We have also implemented two lattice-based encryption

schemes and a digital signature scheme. The first one is Bi-

modal Lattice Signature Scheme (BLISS) [5], which is one

of the lattice-based signature schemes. Moreover, two en-

cryption schemes with provable security are a multi-bit ver-

sion of Regev’s LWE-based scheme [8], [21], [25], [26] and

an encryption scheme which we refer to LP11 [16]. After

comparisons of sampling methods on JavaScript platform-

s, we apply them to the lattice-based encryption schemes

and digital signature scheme. To the best of our knowl-

edge, it is the first time that these sampling methods are

implemented and applied to both digital signatures and en-

cryption schemes in JavaScript environment. We will give

detailed introductions of these lattice-based cryptographic

schemes in the next section and the performance results will

be analysed in section 4. The parameters have been selected

from Léo Ducas et al. [5], Tore Kasper Frederiksen [8], and

Lindner and Peikert [16] to provide the 128-bit security.

2. Lattice-based cryptography

In this section, we present the relevant mathematical

background for discrete Gaussian sampling, BLISS, Regev’s

LWE, and LP11. Throughout this paper, we denote Zq as

the set of integers [−q/2,−q/2+1, ..., q/2). Polynomials are

denoted by bold italic small letters such as f . Matrices are

in the form of bold large letters such as M, while vectors

are denoted by bold small letters such as v.

2.1 Discrete Gaussian sampling

Given a real number σ > 0 and mean c ∈ R, the discrete

Gaussian distribution over integers is denoted by Dc,σ. For

each x ∈ Z, the probability is proportional to exp(−πx/s2)

with mean 0, where s = σ
√

2π. Different from the con-

tinuous Gaussian distribution, we need to choose a tail-cut

factor t > 0, therefore the sampled values locate in the range

of {−tσ, ..., tσ}.
In general, discrete Gaussian sampling needs to do

floating-point arithmetic. In order to ensure the accuracy

of sampled values, a high precision is always used [4]. How-

ever, dealing with high precision floating-point numbers is

unsupported in some cases. When applied to JavaScrip-

t platforms, we convert floating-point arithmetic to binary

arithmetic. A look-up table is made to store binary val-

ues with finite precision. A more detailed introduction for

the discrete Gaussian sampling methods will be discussed in

section 3.

2.2 Bimodal lattice signature scheme

There already have varieties of researches about

the provably-secure lattice-based signature schemes

[13], [19], [20], [22]. Léo Ducas et al. [5] proposed the

Bimodal lattice signature scheme (BLISS) originally. Oder

et al. [23] and Boorghany et al. [3] have implemented this

scheme on some constrained devices respectively in recent

years. These works implied that the implementation of

BLISS on multiple environments is feasible by the proper

ways.

Let n, q, d ∈ Z, q is a prime number and n is a power

of 2 such that q = 1 (mod 2n). Zq denotes a ring with

the interval [−q/2, q/2) ∩ Z and we define a quotient ring

Rq = Zq[x]/(xn+1) (thusR2q = Z2q[x]/(xn+1)). For every

integer x in the range [−q, q], bxed means the value obtained

by dropping d low-order bits from x. Set p = b2q/2dc and

we denote H to be a standard hash function. Given real

numbers δ1, δ2 ≥ 0 as densities such that δ1 + δ2 ∈ [0, 1],

compute d1 = dδ1ne and d2 = dδ2ne. Define ζ ∈ Z such

that ζ · (q−2) = 1 mod 2q. We denote ‖ ·‖2 for the `2-norm

and ‖ · ‖∞ for the `∞-norm. For an integer κ 6 n, Bnκ is

the set of binary vectors of length n and Hamming weight

κ. The Table 1 shows the summary of BLISS.

Table 1 Summary of the implemented BLISS

Key Generation

1. Generate polynomial f with d1 co-
efficients in {±1} and d2 coefficients in
{±2}, all other coefficients are set to
0. Polynomial f should be invertible in
R2q ;
2. Generate polynomial g with d1 co-
efficients in {±1} and d2 coefficients in
{±2}, all other coefficients are set to 0;
3. Compute aq = (2g + 1)/f ∈ Rq ;
4. The public key A = (a1,a2) =
(2aq , q − 2);
5. The secret key S = (s1, s2) =
(f , 2g + 1).

Signature

1. Sample y1, y2 ← DZn,σ ;
2. Compute u = ζ · a1 · y1 + y2 ∈ R2q ;
3. For a message µ, compute c′ =
H(bued mod p, µ) and generate c ∈ Bnκ
from c′ according to a random oracle;
4. Generate an integer b ∈ {0, 1} uni-
formly at random, compute z1 = y1 +
(−1)bs1c and z2 = y2 + (−1)bs2c;

5. Compress z2 by computing z†2 =
(bued − bu − z2ed) mod p;

6. The signature is (z1, z
†
2, c).

Verification

1. Given B2, B∞ ∈ Z as acceptance
bounds;
2. Reject the signature if either
‖(z1|2d · z†2)‖2 > B2 or ‖(z1|2d ·
z†2)‖∞ > B∞ is satisfied.;
3. Only accept if c = H(bζ · a1 · z1 +

ζ · q · ced + z†2 mod p, µ).

When a message µ is chosen, it is inescapable to do dis-

crete Gaussian sampling since each message has to be signed

online. For instance, when n = 512, one needs to sample

y1 = (y0, y1, ..., y511) and y2 = (y′0, y
′
1, ..., y

′
511) from DZn,σ

for the signature. When a new message is chosen, sampling

operations need to be executed again. Therefore, if dimen-

sion n becomes larger, more values have to be sampled from

－273－c⃝ 2017 Information Processing Society of Japan

Table 2 Summary of the selected parameters that provide about 128-bit security

Scheme Parameters Bit-security

BLISS
n q δ1 δ2 σ κ Dropped bits d B2 B∞ 128

512 11289 0.3 0 107 23 10 11074 1563

target discrete Gaussian distribution and more time is cost.

Hence, it becomes an imperative work to optimize discrete

Gaussian sampling methods as efficient as possible. We will

introduce our optimization techniques in section 3. We se-

lect the parameters [5] as shown in Table 2 which has the

128-bits security and will give the experimental results in

section 4.

2.3 Lattice-based encryption scheme

Besides digital signature, we will also investigate two en-

cryption schemes which belong to lattice-based cryptogra-

phy. The first one was the seminal scheme proposed by

Regev [26] which we refer to as Regev’s LWE in this paper.

Given positive integers m,n, l, q, t, r and a real α > 0.

In key generation, a matrix S ∈ Zn×lq is generated u-

niformly at random as the secret key. Then a matrix

A ∈ Zm×nq is generated uniformly at random and a ma-

trix E ∈ Zm×lq is chosen randomly from discrete Gaus-

sian sampling. Compute B = AS + E and set the pair

(A,B) ∈ Zm×nq × Zm×lq as the public key. For encryp-

tion, a vector a ∈ {−r,−r + 1, ..., r}m is generated uni-

formly at random. For a message m ∈ Zlt, we output the

ciphertext (u, c) = (ATa,BTa + f(m)) ∈ Znq × Zlq where

f : Zlt → Zlq is the encode function. In decryption, the

plaintext m is obtained by computing f−1(c − STu) ∈ Zlt
where f−1 : Zlq → Zlt is the decode function.

The second one was proposed by Lindner and Peikert [16]

and we refer to as LP11 in this paper. Similar as Regev’s

LWE, the functions for encoding and decoding are also in-

tegral parts in the scheme. Given positive integers n, q

and a real s > 0. In key generation, matrices R1,R2 ∈
Zn×nq are generated randomly from discrete Gaussian sam-

pling and R2 is set to be the secret key. Then a matrix

A ∈ Zn×nq is generated uniformly at random. Compute

B = R1−AR2 ∈ Zn×nq . The pair (A,B) ∈ Zn×nq ×Zn×nq is

set to be the public key. For encryption, e1, e2, e3 ∈ Zn×nq

are chosen according to discrete Gaussian sampling. For

the message m ∈ {0, 1}n, we output the ciphertext [ct1 c
t
2]

= [et1 e
t
2 e

t
3 + f(m)t] ·

A B

I

I

 ∈ Z1×2n
q . The decryption

operation outputs f−1(ct1 ·R2 + ct2)t ∈ {0, 1}n.

Both Regev’s LWE and LP11 need to sample a plenty

of values from discrete Gaussian sampling (DGS). Howev-

er, DGS is only required in key generation of Regev’s LWE,

while it exists in both key generation and encryption stages

of LP11.

3. Efficient algorithms using JavaScript

In this section, we describe our implementation techniques

for four discrete Gaussian sampling methods by JavaScript.

3.1 Rejection sampling algorithm

In practice, rejection sampling doesn’t need to do a va-

rieties of precomputations since it generates random values

each time. However, if computing high precision floating-

point number is beyond the capacity of some devices or pro-

gramming languages, we need to compute some values and

store them in a look-up table in advance.

Let t > 0 be the tail-cut factor, for a real number σ > 0,

the sampled value is chosen uniformly at random from the

range {−tσ, ..., tσ}. In our case, we precompute all the num-

bers in the range and convert them to their binary expan-

sions. Both integer and decimal parts of the floating-point

number should be stored in a look-up table. There is no

doubt that the probability in floating-point form of any sam-

pled value x ∈ Z∩ [−tσ, tσ] is greater than 0. However, the

binary expansions with finite precision of some probabilities

equal to 0, so that we do not need to store them in the

look-up table.

Given l, n ∈ Z, l is the precision of binary expansion

of the probabilities in the range {−tσ, tσ}, while n mean-

s the number of binary expansions which are greater than

0. We store these probabilities p0,p1, ...,pn−1 ∈ Zl+1
2 in a

two-dimensional probability array P = (p0,p1, ...,pn−1) ∈
Zn×(l+1)
2 as our look-up table for algorithm 1. More mem-

ory could be saved by sampling an integer x ∈ Z ∩ [0, tσ]

since the target discrete Gaussian distribution is symmet-

ric. If x = 0, we accept with probability 1/2, otherwise

a sign bit s ∈ {−1, 1} is generated uniformly at random

and return sx. Algorithm 1 shows our method of rejection

sampling algorithm by JavaScript.

3.2 Inversion sampling algorithm

Different from rejection sampling method, inversion

method precomputes and stores the cumulative distribution

function (CDF) instead of dealing with the probability dis-

tribution function (PDF) of the sampled distribution. How-

ever, when applied to JavaScript platforms, we need to con-

vert the precomputed values to their binary expansions with

finite precision.

Given a tail-cut factor t > 0 and a real number σ > 0, we

use Ψ to denote the CDF of DZ,σ. Precompute the values

of Ψ(x) where x ∈ Z∩ [−tσ, tσ] and change the ratio of each

value by the same way to make sure the last value equals to

1. Let l ∈ Z be the precision of binary expansions of these

values. Let n ∈ Z, there are n binary expansions of the

values ϕ0,ϕ1, ...,ϕn−1 ∈ Zl+1
2 . We store these values in a

two-dimensional array Φ = (ϕ0,ϕ1, ...,ϕn−1) ∈ Zn×(l+1)
2

as the look-up table. When a l-bit precision value u whose

－274－c⃝ 2017 Information Processing Society of Japan

Algorithm 1: Rejction sampling algorithm (RS)

Input: n, l, t ∈ Z, σ ∈ R,

P = (p0,p1, ...,pn−1) ∈ Zn×(l+1)
2

Output: Sample value s ∈ Z ∩ [−tσ, tσ]

1 Let s = 0

2 Let a = (a0, a1, ..., al) ∈ Zl+1

3 Let b = (b0, b1, ..., bl) ∈ Zl+1

4 while true do

5 s← {0, 1, ..., n− 1} uniformly at random

6 if s = 0 then b← {0, 1} uniformly at random

7 if b = 0 then return s

8 else continue

9 for j = 0 to l by 1 do

10 aj = P[s][j]

11 Let b0 = 0

12 for i = 1 to l by 1 do

13 bi ← {0, 1} uniformly at random

14 for m = 0 to l by 1 do

15 if bm < am then sign← {−1, 1} uniformly at random

16 return sign ∗ s
17 if bm > am then break

decimal expansion locates in the range [0, 1) is generated u-

niformly at random, we use the binary search to scan the

look-up table and get the sampled value from it eventual-

ly. Algorithm 2 shows the inversion sampling algorithm by

JavaScript.

Algorithm 2: Inversion sampling algorithm (IS)

Input: n, l, t ∈ Z, σ ∈ R,

Φ = (ϕ0,ϕ1, ...,ϕn−1) ∈ Zn×(l+1)
2

Output: Sample value s ∈ Z ∩ [−tσ, tσ]

1 Let s = 0, beginindex = 0, endindex = n− 1

2 Let a = (a0, a1, ..., al) ∈ Zl+1

3 Let b = (b0, b1, ..., bl) ∈ Zl+1

4 Let c = (c0, c1, ..., cl) ∈ Zl+1

5 for i = 0 to l by 1 do

6 ai ← {0, 1} uniformly at random

7 while beginindex ≤ endindex do

8 Let temp = 0,midindex = (beginindex+ endindex)/2

9 for j = 0 to l by 1 do

10 bj = Φ[midindex][j]

11 for m = 0 to l by 1 do

12 cm = Φ[midindex− 1][m]

13 for k = 0 to l by 1 do

14 if ak < bk then

15 for q = 0 to l by 1 do

16 if ak > ck then return midindex

17 else endindex = midindex− 1

18 else if ak > bk then beginindex = midindex+ 1

19 else if ak = bk then temp = temp+ 1

20 if temp = l + 1 then return midindex

3.3 Discrete Ziggurat algorithm

Classical rejection sampling aspires for less memory but

has to spend much more time, while inversion method as-

pires for higher speed with a larger look-up table, the dis-

crete Ziggurat sampling method proposed by Buchmann et

al. [2] allows for a flexible speed-memory trade-off. Some

horizontal rectangles are settled to cover the target proba-

bility distribution. When there are more rectangles, more

values need to be stored in the look-up table and therefore

the efficiency is improved. However, it is not a wise choice

to set too many rectangles because an oversized look-up ta-

ble is also a notable problem. Hence, a balance between

memory and speed is essential.

Same as rejection sampling and inversion sampling

method, the sampled value is chosen uniformly at random

from the range {−tσ, ..., tσ}. Let m ∈ Z be the number

of horizontal rectangles. Given l, n ∈ Z, l is the precision

of binary expansion of the probabilities while n means the

number of binary expansions which are greater than 0. Both

integer and decimal parts of the floating-point number have

to be stored in a look-up table.

In our case, four look-up tables are necessary. A two-

dimensional array P = (p0,p1, ...,pn−1) ∈ Zn×(l+1)
2

which stores the probabilities of all sampled values is set

to be the first look-up table. The second look-up ta-

ble stores all the x−coordinates of rectangles, denoted by

x = (x0, x1, ..., xm) ∈ Zm+1 and the third look-up ta-

ble stores all the y-coordinates of rectangles, denoted by

Y = (y0,y1, ...,ym) ∈ Z(m+1)×(l+1)
2 . In addition, we

compute the difference between neighboring y-coordinates

ri = yi − yi+1 ∈ Zl+1
2 for i ∈ Z ∩ [0,m) and store them

in the last look-up table. Since there are some leading zeros

in each ri for i ∈ Z ∩ [0,m) , a sign bit is set to repres-

nent the numbers of leading zeros. When the look-up table

is scanned, we could skip these leading zeros directly which

the efficiency could be improved a lot. Figure 1 gives an

example of four values with 4-bit precision, the first column

of R shows the number of leading zeros in each row.

𝐑 =

𝐫0
𝐫1
𝐫2
𝐫3

=

1 0 1 0 1
2 0 0 1 1
2
3

0
0

0 1 0
0 0 1

Sign bit

Fig. 1 The optimized array R

Algorithm 3 is our method of discrete Ziggurat sampling

by JavaScript. In step 12 of Algorithm 3, the method

generate() could generate a (l+1)-bit precision binary num-

ber less than or equal to the inputted value.

3.4 Knuth-Yao algorithm

Donald E. Knuth and Andrew C. Yao proposed an algo-

rithm which aims to sample values from the non-uniform

distribution [15]. Knuth-Yao algorithm precomputes the

probabilities of sampled values and uses a special way to

construct the look-up table [9], [27].

Given a tail-cut factor t > 0 and a real number σ > 0.

Let l, n ∈ Z, we make a probability matrix Pmat =

－275－c⃝ 2017 Information Processing Society of Japan

Algorithm 3: Discrete Ziggurat sampling algorithm (DZ)

Input: n, l, t,m ∈ Z, σ ∈ R, P = (p0,p1, ...,pn−1) ∈ Zn×(l+1)
2 , Y = (y0,y1, ...,ym) ∈ Z(m+1)×(l+1)

2 ,

x = (x0, x1, ..., xm) ∈ Zm+1, R = (r0, r1, ..., rm−1) ∈ Zm×(l+1)
2 .

Output: Sample value s ∈ Z ∩ [−tσ, tσ]

1 Let a = (a0, a1, ..., al) ∈ Zl+1, b = (b0, b1, ..., bl) ∈ Zl+1, c = (c0, c1, ..., cl) ∈ Zl+1

2 while true do

3 i← {1, 2, ...,m} uniformly at random; sign← {−1, 1} uniformly at random; x← {0, ..., xi} uniformly at random

4 if 0 < x ≤ xi−1 then return s = sign ∗ x
5 else

6 if x = 0 then d← {0, 1} uniformly at random

7 else

8 for j = 0 to l by 1 do

9 aj = Y[i][j]

10 for j = 0 to l by 1 do

11 bj = R[i− 1][j]

12 c = generate(b)

13 for j = 0 to l by 1 do

14 bj+ = aj + cj

15 if bj > 1 then

16 bj− = 2; bj−1+ = 1

17 for j = 0 to l by 1 do

18 aj = P[x][j]

19 for j = 0 to l by 1 do

20 if bj > aj then return s = sign ∗ x
21 else continue

22 if d = 0 then return s = sign ∗ x
23 else continue

Algorithm 4: Optimized generate algorithm

Input: l ∈ Z, an array c′ = (c′0, c
′
1, ..., c

′
l) ∈ Zl+1

2

Output: An array a′ = (a′0, a
′
1, ..., a

′
l) ∈ Zl+1

2

1 for t = 0 to c′0 − 1 by 1 do

2 a′t = 0

3 while true do

4 for i = c′0 to l by 1 do

5 a′i ← {0, 1} uniformly at random

6 for j = 0 to l by 1 do

7 if a′j < c′j then

8 return a′

9 else if a′j > c′j then

10 break

11 if a′l = c′l then return a′

(p0,p1, ...,pn−1) ∈ Zn×l2 where each pi ∈ Zl2 is the binary

expansion of the corresponding probability. In other words,

each row of the matrix stores one probability. When ap-

plied to JavaScript platforms, the probability matrix Pmat

is divided into l blocks k0,k1, ...,kl−1 ∈ Zn2 . Each block

is one of the columns of Pmat. A one-dimensional array

k = (k0,k1, ...,kl−1) ∈ Zln2 is stored as our look-up table.

Figure 2 shows an example of four probabilities with 5-bit

precision. We store the probabilities in a probability matrix

Pmat, then it is divided into 5 blocks. An array k stores

each block in sequence as the look-up table. Similarly, it us-

es less memory if the algorithm only stores the probabilities

of sampled value x ∈ Z ∩ [0, tσ].

The look-up table could be optimized since there are many

𝐏𝑚𝑎𝑡 =

𝐩0
𝐩1
𝐩2
𝐩3

=

1 0 0 1 0
0 1 0 0 1
0
0

0
0

0 1 1
0 1 0

𝐤 = 𝐤1, 𝐤2, 𝐤3, 𝐤4, 𝐤5
= (1,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,0,1,1,0)

block

block

Fig. 2 Probability array k including l blocks

leading zeros in each block of the probability array k. These

zeros can be compressed [6] to reduce the size of our look-up

table. Figure 3 shows that the new array k′ is obtained by

storing the values at the left side of dotted line and a sign bit

which represents the difference between neighboring block is

added to each k′i for i ∈ Z∩ [0, n− 1]. This method also ac-

celerates the speed remarkablely since Knuth-Yao algorithm

can skip the leading zeros when it scans the look-up table.

Note that if all values in a block are zeros, it is impossible

to sample value from the block, therefore we will delete the

whole block. However, even if these blocks are not stored,

we still need to generate numbers for each block, in oth-

er words, these blocks still have meanings to sampling. By

deleting them from the array, we save a lot of time to scan

these blocks.

Algorithm 5 shows the optimized Knuth-Yao algorithm.

－276－c⃝ 2017 Information Processing Society of Japan

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,

1,1,1,1,0,0,0,0,0,0,0,0,0,0, (0,1,1,1,1,

1,1,0,0,1,1,1,0,0,0,0,0,0,0, 3,1,1,0,0,1,1,1,

0,0,1,0,1,0,1,1,0,0,0,0,0,0, 1,0,0,1,0,1,0,1,1,

1,0,1,1,0,0,0,1,0,0,0,0,0,0, 0,1,0,1,1,0,0,0,1,

0,1,0,0,1,1,1,1,1,1,1,0,0,0, 3,0,1,0,0,1,1,1,1,1,1,1,

1,1,0,0,1,0,1,0,1,1,1,0,0,0, 0,1,1,0,0,1,0,1,0,1,1,1,

0,0,1,0,0,0,1,1,1,1,1,0,0,0, 0,0,0,1,0,0,0,1,1,1,1,1,

0,0,1,1,0,1,0,0,0,0,1,1,1,0) 2,0,0,1,1,0,1,0,0,0,0,1,1,1)

𝐤0

𝐤1

𝐤2

𝐤3

𝐤4

𝐤5

𝐤6

𝐤7

𝐤8

𝐤9

Sign bit

𝐤′0

𝐤′1

𝐤′2

𝐤′3

𝐤′4

𝐤′5

𝐤′6

𝐤′7

Fig. 3 Optimized probability array by deleting zeros at the right
side of dotted line, the sign bit indicates the difference
between two consecutive block lengths

Let q ∈ Z represents the numbers of the first several block-

s whose elements are all zeros. Let h ∈ Z be the total

length of all blocks which have been scanned, and g ∈ Z
be the length of probability array k′ = (k′0,k

′
1, ...,k

′
l−1) =

(k′0, k
′
1, ..., k

′
g−1). In step 1, 21, and 22 of Algorithm 5,

FirstBlockLength means the length of the first block in

the optimized probability array k′.

Algorithm 5: Optimized Knuth-Yao algorithm

(KY O)

Input: g, q ∈ Z, k′ = (k′0, k
′
1, ..., k

′
g−1)∈ Zg2

Output: Sample value s ∈ Z ∩ [−tσ, tσ]

1 Let d = 0, len = FirstBlockLength, sign = 0, h = 0

2 for j = 0 up to q − 1 by 1 do

3 r ← {0, 1} uniformly at random

4 d = 2d+ r

5 while true do

6 r ← {0, 1} uniformly at random

7 d = 2d+ r

8 for i = len− 1 down to 0 by 1 do

9 d = d− k′i+1+h

10 if d = −1 then

11 if i = 0 then sign← {0, 1} uniformly at random

12 else

13 sign← {−1, 1} uniformly at random

14 return s = sign ∗ i
15 if sign = 1 then return s = i

16 else

17 d = 0

18 for j = 0 up to q − 1 by 1 do

19 r ← {0, 1} uniformly at random

20 d = 2d+ r

21 len = FirstBlockLength

22 h = −FirstBlockLength− 1

23 continue

24 h = h+ len+ 1

25 if k′h > 0 then

26 len+ = k′h

4. Performance on Web browsers

In this section, we introduce the implementation platform-

s of PC*1 Web browsers and report the performance results

of running discrete Gaussian sampling methods and lattice-

based cryptographic schemes on certain Web browsers.

4.1 Implementation platforms

Note that even the same JavaScript program has the d-

ifferent performance results when applied to different Web

browsers. In our implementations, we have chosen four wide-

ly used PC browsers as our benchmark platforms, namely,

Google Chrome, Firefox, Opera and Microsoft Edge. We

will describe the more detailed performance results in the

next section.

4.2 Performance results of discrete Gaussian

sampling on Web browsers

The discrete Gaussian sampling methods were car-

ried out on chosen Web browsers. With precision

l = 128 bits, we selected the standard deviation σ =

3.3311, 55.5649, 107, [16], [21], [5], respectively. The tail-

cut factor t is set to 13 to meet the minimum statistical

distance. The number of rectangles is 63 for discrete Zig-

gurat algorithm [2]. As shown in Table 3, we compared the

performance of four sampling methods: rejection sampling

algorithm (RS, algorithm 1), inversion sampling algorithm

(IS, algorithm 2), discrete Ziggurat algorithm with opti-

mization by using algorithm 4 (DZO), and Knuth-Yao al-

gorithm with optimization (KY O, algorithm 5) executing

on Oprea. The speed of four methods is measured by the

number of values sampled in each millisecond and the stor-

age is measured by Kbytes.

Apparently, KY O has the better performance than other

methods for both speed and storage. For instance, the speed

of KY O is about 67.51 times, 22.6 times, and 10.48 times

faster than RS, IS,DZO for σ = 3.3311, respectively. In

addition, with σ = 107, the storage of KY O is 13.75 Kbytes,

which is a few less than 19064 bytes (≈ 18.62 Kbytes) from

[23]. Figure 4 shows the total experimental results for DZO,

RS , IS and KY O with σ = 3.3311, 55.5469, 107 running

on Google Chrome, Opera, Microsoft Edge and Firefox, re-

spectively. It implies that KY O has the best performance

on whichever of four Web browsers.

4.3 Performance results of lattice-based crypto-

graphic schemes on Opera

After the comparisons of discrete Gaussian sampling

*1 The test PC has the following specifications:
CPU: Intel(R) Core(TM) i7-6500U @ 2.5-3.1GHz;
Memory: 8GB DDR3L RAM;
Hard disk: 1TB 5400rpm;
OS: Windows 10 Pro x64;
Java(JDK) version: jdk1.8.0 131;
JavaScript version: 1.3;
Web browser: Google Chrome 60.0.3112.90; Firefox 54.0.1;

Opera 47.0.2631.55; Microsoft Edge 38.14393.1066.0.

－277－c⃝ 2017 Information Processing Society of Japan

Table 3 Experimental Results for discrete Ziggurat, rejection sampling , inversion sam-
pling and Knuth-Yao

Rejection sampling Inversion sampling discrete Ziggurat Knuth-Yao
Speed Storage Speed Storage Speed Storage Speed Storage

σ = 3.3311 25.5493 0.71 179.2115 0.71 657.8947 2.74 5882.3529 0.48
σ = 55.5649 24.9813 11.75 83.4028 11.75 602.4096 13.75 1428.5714 7.19
σ = 107 24.6063 22.63 53.9374 22.63 544.7126 24.63 862.069 13.75

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

DZO RS IS KYO

S
p

e
e

d
 (

S
a

m
p

le
s/

m
s)

𝜎=3.3311

Chrome Opera Edge Firefox

0

500

1000

1500

2000

2500

3000

3500

DZO RS IS KYO

S
p

e
e

d
 (

S
a

m
p

le
s/

m
s)

𝜎=55.5649

Chrome Opera Edge Firefox

0

500

1000

1500

2000

2500

DZO RS IS KYO

S
p

e
e

d
 (

S
a

m
p

le
s/

m
s)

𝜎=107

Chrome Opera Edge Firefox

Fig. 4 Results for DZO, RS, IS , and KY O for σ = 3.3311, 55.5649, 107 respectively on
four Web browsers.

(DGS) on several Web browsers, we apply KY O to BLISS,

Regev’s LWE, and LP11, respectively. We also run these

lattice-based cryptographic schemes on Google Chrome,

Opera, Microsoft Edge and Firefox and list the performance

results of them executing on Opera in Table 5. Note that

BLISS needs to sample values from DGS when in sign op-

eration, while Regev’s LWE generates random values from

DGS for key generation and LP11 generates random values

from DGS in the stages of key generation and encryption.

Table 4 shows the performance result of BLISS on Opera.

The results of Regev’s LWE and LP11 are listed in Table

4 of [29]. Table 5 shows the performance results of KY O

in BLISS, Regev’s LWE and LP11 on Opera respectively.

Compare to [29] for Regev’s LWE and LP11, our method

has better performance running in LP11, the speed is about

1 time faster.

Certainly, both speed and storage of discrete Gaussian

sampling methods still have large optimize space. Not only

the standard deviation and dimension could effect the per-

formance remarkably, but also there are some factors which

are always ignored. Under the condition of satisfying the

minimum statistical distance, when the precision of floating-

point numbers becomes larger, the look-up table will then

become larger. In the meantime, more time is spent to s-

can the look-up table. Accordingly, the speed of discrete

Gaussian sampling will decrease. Moreover, the way of s-

toring and searching the look-up table could have a notable

effection on efficiency, especially for binary arithmetic.

Table 4 Performance results on Opera

Scheme
Average running time (ms)

Security
Key generation Signature Verification

BLISS 130.33 3.196 0.211 128 bits

Table 5 Results of KYO in BLISS, Regev’s LWE and LP11 on
Opera

Scheme
Average running time of DGS (ms)

Signature Key Generation Encryption

BLISS 1.18 - -
Regev’s LWE - 910.59 -

LP11 - 3.57 0.065

5. Conclusions

We have implemented and optimized four well-known

discrete Gaussian sampling methods: rejection sampling

method, inversion method, discrete Ziggurat method and

Knuth-Yao method by JavaScript. Using different pa-

rameter sets, we compared their performances on multiple

JavaScript platforms. According to the performance result-

s, we have found that our proposed Knuth-Yao algorith-

m with optimization (KY O, algorithm 5) is the most effi-

cient method. In addition, several lattice-based encryption

schemes and digital signature schemes have been implement-

ed using JavaScript. We applied the proposed Knuth-Yao

－278－c⃝ 2017 Information Processing Society of Japan

algorithm to these schemes and tested their performance on

several JavaScript platforms. However, there still have a

lot of work to do, we expect to do further optimization of

discrete Gaussian sampling and apply the sampling method-

s to more lattice-based cryptographhic schemes on various

platforms and devices in the future.

References

[1] Miklos Ajtai. “Generating hard instances of lattice problem-
s.” In Proceedings of the 28th Annual ACM Symposium on
Theory of Computing, pp. 99–108, 1996.

[2] J. Buchmann, D. Cabarcas, F. Göpfert, A. Hülsing, and
P. Weiden. “Discrete Ziggurat: A time-memory trade-off for
sampling from a Gaussian distribution over the integers.” In
Selected Areas in Cryptography - SAC ’13, Burnaby, BC,
Canada, (P. Lisonek et al., eds.), LNCS, vol. 8282, pp. 402–
417, 2013.

[3] A. Boorghany, S. B. Sarmadi, and R. Jalili. “On constrained
implementation of lattice-based cryptographic primitives and
schemes on smart cards.” In ACM TECS, volume 14 issue
3, pp. 42:1–42:25, 2015.

[4] D. Cabarcas, P. Weiden, and J. Buchmann. “On the efficien-
cy of provably secure NTRU.” In Proceedings of PQCrypto
2014, pp. 22–39, 2014.

[5] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky.
“Lattice Signatures and Bimodal Gaussians.” In IACR Cryp-
tology ePrint Archive, 2013:383, 2013. To appear at CRYP-
TO 2013.

[6] N. Dwarakanath and S. Galbraith. “Sampling from Discrete
Gaussians for Lattice-based Cryptography on a Constrained
Device.” In Applicable Algebra in Engineering, Communica-
tion and Computing, vol. 25, no. 3, pp. 159–180, 2014.

[7] Leo Ducas and Phong Q. Nguyen. “Faster Gaussian lattice
sampling using lazy floating-point arithmetic.” In Proceed-
ings of ASIACRYPT 2012, pp. 415–432, 2012.

[8] Tore Kasper Frederiksen. “A practical implementation of
Regev’s LWE-based cryptosystem.” Technical report, 2010.
http://daimi.au.dk/~jot2re/lwe/

[9] S. D. Galbraith and N. C. Dwarakanath. “Efficient sampling
from discrete Gaussians for lattice-based cryptography on a
constrained device.” Preprint, 2012.

[10] N. Göttert, T. Feller, M. Schneider, J. Buchmann, and
S. Huss. “On the design of hardware building blocks for
modern lattice-based encryption schemes.” In Proceedings of
CHES 2012, pp. 512–529, 2012.

[11] O. Goldreich, S. Goldwasser, and S. Halevi. “Public-key cryp-
tosystems from lattice reduction problems.” In Advances in
cryptology, vol. 1294 of Lecture Notes in Comput. Sci., p-
p. 112-131. Springer, 1997.

[12] T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. “Prac-
tical lattice-based cryptography: A signature scheme for em-
bedded systems.” In Emmanuel Prouff and Patrick Schau-
mont, editors, Cryptographic Hardware and Embedded Sys-
tems - CHES 2012, vol. 7428 of Lecture Notes in Computer
Science, pp. 530–547, Leuven, Belgium, September, 2012.
Springer, Berlin, Germany.

[13] C. Gentry, C. Peikert, and V. Vaikuntanathan. “Trapdoors
for hard lattices and new cryptographic constructions.” In
Proceedings of STOC 2008, pp. 197–206, 2008.

[14] J. Hoffstein, J. Pipher, and J. H. Silverman. “NTRU: A
ring-based public key cryptosystem.” In Joe Buhler, editor,
ANTS, vol. 1423 of Lecture Notes in Computer Science, p-
p. 267–288. Springer, 1998.

[15] Donald E. Knuth and Andrew C. Yao. “The complexity of
non uniform random number generation.” In Algorithms and
complexity: New directions and recent results, pp. 357–428,
1976.

[16] R. Lindner and C. Peikert. “Better key sizes (and attack-
s) for LWE-based encryption.” In Proceedings of CT-RSA
2011, pp. 319–339, 2011.

[17] V. Lyubashevsky, C. Peikert, and O. Regev. “On ideal lat-
tices and learning with errors over rings.” In Proceedings of
EUROCRYPT 2010, pp. 1–23, 2010.

[18] V. Lyubashevsky. “Lattice-based identification schemes se-
cure under active attacks.” In Ronald Cramer, editor, PKC
2008: 11th International Conference on Theory and Prac-
tice of Public Key Cryptography, vol. 4939 of Lecture Notes

in Computer Science, pp. 162-179, Barcelona, Spain, 2008.
Springer, Berlin, Germany.

[19] V. Lyubashevsky. “Fiat-Shamir with Aborts: Applications to
Lattice and Factoring – Based Signatures.” In Mitsuru Mat-
sui, editor, Advances in Cryptology – ASIACRYPT 2009,
no. 5912 in Lecture Notes in Computer Science, pp. 598–616.
Springer, 2009.

[20] V. Lyubashevsky. “Lattice Signatures without Trapdoors.”
In Proceedings of the 31st Annual international conference
on Theory and Applications of Cryptographic Techniques,
EUROCRYPY’12, pp. 738–755, Berlin, 2012. Springer-
Verlag.

[21] D. Micciancio and O. Regev. “Lattice-based cryptography.”
In Post-Quantum Cryptography, pp. 147–191. Springer, 2008.

[22] D. Micciancio, and C. Peikert. “Trapdoors for lattices: Sim-
pler, tighter, faster, smaller.” In Advances in Cryptology-
EUROCRYPT 2012, vol. 7237 of Lectures Notes in Com-
puter Science, pp. 700-718, Cambridge, UK, April, 2012.
Springer, Berlin, Germany.

[23] T. Oder, T. Pöppelmann, and T. Güneysu. “Beyond ECDSA
and RSA: Lattice-based Digital Signatures on Constrained
Devices.” In Proceedings of the 51st Annual Design Automa-
tion Conference, DAC ’14, pp. 110:1–110:6, New York, NY,
USA, 2014. ACM.

[24] Chris Peikert. “An effcient and parallel Gaussian sampler
for lattices.” In Tal Rabin, editor, Advances in Cryptology-
CRYPTO 2010, vol. 6223 of Lecture Notes in Computer Sci-
ence, pp. 80–97, 2010.

[25] C. Peikert, V. Vaikuntanathan, and B. Waters. “A frame-
work for efficient and composable oblivious transfer.” In Pro-
ceedings of CRYPTO 2008, pp. 554–571, 2008.

[26] Oded Regev. “On lattices, learning with errors, random lin-
ear codes, and cryptography.” Journal of the ACM, 56(6):34,
pp. 1–40, 2009.

[27] S. S. Roy, F. Vercauteren, and I. Verbauwhede. “High Pre-
cision Discrete Gaussian Sampling on FPGAs.” In Select-
ed Areas in Cryptography - SAC 2013, ser. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2014, p-
p. 383–401.

[28] P. W. Shor. “Algorithms for quantum computation: dis-
crete logarithms and factoring.” In Foundations of Computer
Science, 1994 Proceedings., 35th Annual Symposium on, p-
p. 124–134. IEEE, 1994.

[29] Y. Yuan, C. M. Cheng, S. Kiyomoto, Y. Miyake, and T. Tak-
agi, “Portable implementation of lattice-based cryptography
using JavaScript.” In International Journal of Networking
and Computing, vol. 6, no. 2, pp. 309–327, 2016.

－279－c⃝ 2017 Information Processing Society of Japan

