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Abstract

Test collections are growing larger, and relevance data constructed through pooling are suspected of becoming more
and more incomplete and biased. Several studies have used evaluation metrics specifically designed to handle this
problem, but most of them have only examined the metrics under incomplete but unbiased conditions, using random
samples of the original relevance data. This paper examines nine metrics in more realistic settings, by reducing the
number of pooled systems. Even though previous work has shown that metrics based on a condensed list, obtained
by removing all unjudged documents from the original ranked list, are effective for handling very incomplete but
unbiased relevance data, we show that they are not necessarily superior to traditional metrics in the presence of system
bias. Using data from both TREC and NTCIR, we first show that condensed-list metrics overestimate new systems
while traditional metrics underestimate them, and that the overestimation tends to be larger than the underestimation.
We then show that, when relevance data is heavily biased towards a single team or a few teams, the condensed-list
versions of Average Precision (AP), Q-measure (Q) and normalised Discounted Cumulative Gain (nDCG), which we
call AP, Q' and nDCG@/, are not necessarily superior to the original metrics in terms of discriminative power, i.e., the
overall ability to detect pairwise statistical significance. Nevertheless, AP’ and Q’ are generally more discriminative

than bpref and the condensed-list version of Rank-Biased Precision (RBP), which we call RBP’.

1 Introduction

Test collections are growing larger, and relevance data con-
structed through pooling are suspected of becoming more and
more incomplete and biased [6, 7, 9]. Relevance data are in-
complete if there exist some relevant documents among the un-
judged documents in the test collection. Furthermore, incom-
plete relevance data are biased if they represent some limited
aspects of the complete set of relevant documents. For exam-
ple, if the number of pooled systems is small, the resultant test
collection may overestimate these systems and underestimate
systems that did not contribute to the pool, since these new sys-
tems are likely to retrieve relevant documents that are outside
the set of known relevant documents. We will refer to this phe-
nomenon as system bias. Bias may also be caused by shallow
pools: If only documents at the very top of submitted ranked
lists are judged, the resultant relevance data may contain rele-
vant documents that are very easy to retrieve, but not those that
are difficult to retrieve. For example, Buckley et al. [7] report
that the TREC 2005 HARD/Robust test collection is biased to-
wards documents that contain topic title words due to shallow
pools. We will refer to this phenomenon as pool depth bias.

The objective of this paper is to examine the robustness of
retrieval effectiveness metrics in the presence of system bias,
with an emphasis on those that can handle graded relevance.
Several researchers have proposed evaluation metrics specif-
ically for handling the incompleteness of relevance data, but
most of them have only examined the metrics under incom-
plete but unbiased conditions, using random samples of the
original relevance data [1, 4, 6, 15, 17, 25]. While random
sampling may mimic a situation where the number of judged
documents is extremely small compared to the entire docu-
ment collection, it does not address the problems due to sys-
tem bias and pool depth bias. Therefore, this paper examines
metrics in more realistic settings, by reducing the number of
pooled systems. We have also examined the effect of pool

depth bias, but will report on the results elsewhere [18].

The main contributions of this paper are as follows. First,
we examine as many as nine metrics for handling system bias
in test collections. The metrics examined are: 4verage Preci-
sion (AP), O-measure (Q) [13], normalised Discounted Cumu-
lative Gain (nDCG) [10], Rank-Biased Precision (RBP) [12],
binary preference (bpref) [6], AP’, Q', nDCG’ and RBP'. The
latter four metrics are AP, Q, nDCG and RBP applied to a
condensed list [15], obtained by removing all unjudged docu-
ments from the original ranked list. Thus, just like bpref, these
four metrics assume that retrieved unjudged documents are
nonexistent, while traditional metrics assume that the unjudged
documents are nonrelevant. Even though previous work has
shown that condensed-list metrics are effective for handling
very incomplete but unbiased relevance data, we show that
they are not necessarily superior to traditional metrics in the
presence of system bias. This discrepancy suggests that the
results reported in previous studies that used random sampling
should be interpreted with caution. Second, our extensive ex-
periments cover two independent evaluation efforts, TREC and
NTCIR, and utilise their graded relevance data. This is in con-
trast to most existing studies that are limited to TREC data and
binary-relevance metrics [1, 6, 25]. Since our results are con-
sistent across all of our data sets, we believe that our findings
are general. Our main findings are:

1. Condensed-list metrics overestimate systems that did not
contribute to the pool while traditional metrics underes-
timate them, and the overestimation is larger than the un-
derestimation.

2. When runs from a single team or a few teams is used for
forming the relevance data, AP’, Q", nDCG’ are not nec-
essarily superior to AP, Q and nDCG in terms of discrim-
inative power, i.e., the overall ability to detect pairwise
statistical significance [16]. Nevertheless, AP’ and Q' are
generally more discriminative than bpref and RBP'.

717



The first observation above substantially generalises a finding
by Biittcher et al. [9], who analysed a TREC Terabyte data set
and observed that “Where AP underestimates the performance
of a [new] system, bpref overestimates it.”

Section 2 discusses previous work, and Section 3 formally
defines the nine metrics considered in this study. Section 4
describes the graded-relevance data and runs from TREC and
NTCIR which we use for comparing the metrics. Section 5
reports on our leave-one-team-out experiments for examining
how our metrics handle new systems. Section 6 reports on our
take-just-one-team and take-just-three-teams experiments for
examining the robustness of our metrics to heavy system bias.
Finally, Section 7 concludes this paper.

2 Related Work

A decade ago, Zobel [26] examined the effect of pool depth
and that of leaving out one run for forming the TREC relevance
data. As TREC test collections at that time, i.e., TRECs 3-5,
were based on binary relevance, he used binary-relevance met-
rics such as 11-point average precision. Subsequently, TREC
adopted his leave-one-out methodology for validating their test
collections, but chose to leave out one participating team at
a time since each team usually contributes multiple runs to a
pool [7, 21]. The present study also includes leave-one-team-
out experiments as well as “take-just-one-team” experiments
which relies on runs from a single team to form the relevance
data. Sanderson and Joho [19] have examined a “take-just-
one-run” approach, but they considered AP only, using data
from TRECs 5-8. The present study compares nine metrics,
and our analysis covers recent TREC and NTCIR data.

Biittcher et al. [9] and Aslam and Yilmaz [2] have pro-
posed methods for “expanding” the original incomplete rele-
vance data. Neither of these studies used graded relevance. In
contrast, the focus of the present study is on the choice of met-
rics given a set of relevance assessments which may or may
not be incomplete and biased.

Most existing studies that compared metrics for evalua-
tion with incomplete data used the aforementioned random
sampling [1, 4, 6, 15, 17, 25]. For example, Yilmaz and
Aslam [25] used this approach to evaluate their proposed met-
rics, including Induced AP which is exactly what we call
AP, and Inferred AP which aims to estimate the true value
of AP. An exception is the aforementioned work by Biittcher
et al. [9] which included leave-one-team-out experiments to
address the system bias issue. Their experiments covered a
condensed-list version of precision at document cut-off 20 and
RankEffT1]. However, precision is an unreliable metric [5, 13],
and RankEff is in fact as unreliable as bpref by definition, as
we shall clarify in Section 3.3.

Among the studies that used random sampling, Sakai [15]
compared condensed-list metrics such as AP, Q’, nDCG’ and
bpref along with traditional metrics, using data sets from NT-
CIR. Sakai and Kando [17] repeated the experiments using
graded-relevance data from TREC and NTCIR, and added
RBP to their candidate metrics; they did not examine RBP'.
The study showed that, under very incomplete but unbiased
conditions, AP, Q’, nDCG’ are superior to AP, Q, nDCG,
bpref and RBP. In contrast, the present study shows that AP,
Q', nDCG’ are not necessarily superior to AP, Q, nDCG in the
presence of system bias.

Traditional metrics assume that retrieved unjudged docu-
ments are nonrelevant, while condensed-list metrics assume
that retrieved unjudged documents are nonexistent. As a third
approach, Baillie, Azzopardi and Ruthven [3] have proposed
to quantify the uncertainty in system comparisons by report-
ing the proportion of unjudged documents within ranked lists,
along with metric values such as AP.

3 Formal Definitions of Metrics

This section formally defines the nine metrics examined in
this paper. It also explains why RankEff [9] is not included in
our experiments.

3.1 AP, Q,nDCG and RBP

Let R denote the number of judged relevant documents.
For any given ranked list of documents, let isrel(r) be 1
if the document at rank r is relevant and 0 otherwise. Let
count(r) = Y. isrel(i). Clearly, precision at rank r is
given by P(r) = count(r)/r. Hence AP is defined as:

AP = % S isrel(r)P(r). o)

Let £ denote a relevance level, and let gain(L) denote
the gain value for retrieving a judged L-relevant document.
Without loss of generality, we follow the NTCIR tradition and
let £ € {S,A, B} [11]. As for the TREC graded relevance
data, we treat “highly relevant” documents as S-relevant and
“relevant” documents as B-relevant. We chose not to treat
the latter as A-relevant as it is known that binary relevance
data created at TREC contain a considerable amount of par-
tially or marginally relevant documents [20]. Moreover, we let
gain(S) = 3, gain(A) = 2 and gain(B) = 1 hereafter as Q
and nDCG are robust to the choice of gain values [13].

Let g(r) = gain(L) if the document at rank r is L-relevant
and g(r) = 0 otherwise, i.e., if the document at rank 7 is either
judged nonrelevant or unjudged. The cumulative gain at rank r
is given by cg(r) = Y, _, ., g(4). Consider an ideal ranked
list of documents, which satisfies g(r) > 0 for1 < r < R
and g(r) < g(r — 1) for r > 1. For NTCIR, listing up all S-,
A- and B-relevant documents in this order produces an ideal
ranked output. Let cgr(r) denote the cumulative gain of the
ideal list. Q is defined as:

Q-measure = -;% Z isrel(r)BR(r) )

Beg(r) + count(r)

R pr—— (©)]
cgr(r) +r

where (3 is a parameter for reflecting the persistence of the

user [14]. Clearly, 3 = 0 reduces Q to AP; we let 3 = 1

throughout this paper.

For a given logarithm base a, let the discounted gain at
Rank 7 be dg(r) = g(r)/log,(r) forr > aand dg(r) = g(r)
for r < a. Similarly, let dg;(r) denote the discounted gain for
an ideal ranked list. nDCG at document cut-off / is defined as:

nDCGi =Y dg(r)/ Y dor(r). 0]

1<r<i 1<r<i

BR(r) =



Throughout this paper, we let I = 1000 as it is known that
small document cut-offs hurt the stability of nDCG [13]. This
original definition of nDCG is “buggy” in that a relevant docu-
ment retrieved at rank 1 and one retrieved at rank a receive the
same credit. We adhere to the original nDCG but let a = 2 to
alleviate the effect of the bug'.

Let H denote the highest relevance level across all topics.
In all of our experiments, 7 = S. Let p be the persistence
parameter that represents the fixed probability that the user
moves from a document at rank r to rank (r + 1). RBP is
defined as:

RBP = g:T(”H) S o ®)
T

Moffat and Zobel [12] explored p = 0.5, 0.8,0.95, and Sakai
and Kando [17] showed that p = 0.95 is the best choice among
these three values in terms of system ranking stability and dis-
criminative power. Hence we use p = 0.95 thoughout this pa-
per. RBP is different from the other metrics considered in this
paper in that it totally disregards recall. Sakai and Kando [17]
have pointed out some weaknesses of this metric, including the
fact that it does not average well and that it has low discrimi-
native power.

3.2 Bpref and Other Condensed-List Metrics

Sakai [15] showed that a family of metrics, which are exist-
ing metrics applied to a condensed list of documents obtained
by removing all unjudged documents from the original list,
are simpler and better solutions than bpref. Bpref itself can
be expressed as a metric based on a condensed list. Let 7/ de-
note the rank of a judged document in a condensed list, whose
rank in the original list was (> r’). Let N denote the num-
ber of judged nonrelevant documents. For any topic such that
R < N, bpref reduces to bpref-R:

min(R,r’ — count(r’))
R )
©
In fact, R < N holds for every topic used in our experiments,
and therefore bpref is always bpref-R. Whereas, for any topic
such that R > N, bpref reduces to bpref_N:

bpref R = % Z, isrel(r')(1—

1 . ) r’ — count(r’)
bpref N = = Zzsrel(r (11— -T) .

ot

™

Note that bpref_N does not require a minimum operator [15].

The only essential difference between bpref and AP applied
to a condensed list, which we call AP’, is that bpref lacks the
top-heaviness property of AP [15]. Note that, from Eq. 1, AP’
can be expressed as:

r’ — count(r

AP = 4 Yoy - =2

Thus, for each retrieved relevant document, AP’ uses ' while
bpref uses a very large constant (either R or N) for scaling
r’ — count(r’) i.e., the number of judged nonrelevant docu-
ments ranked above the relevant one at rank 7. Scaling by a

!The Microsoft version of nDCG uses dg(r) = g(r)/log, (r+1)
for all 7 [8], but this cancels out a, depriving nDCG of a persistence
parameter.

w

large constant is not good: For example, consider a condensed
list that has a judged nonrelevant document at rank 1 and a
relevant one at rank 2. For this relevant document, the “mis-
placement penalty” is r’ — count(r’) = 2 — 1 = 1 and and
P(r") = 1/2. Thus, the existence of the judged nonrelevant
document at rank 1 weighs heavily. In contrast, this nonrel-
evant document has very little impact on bpref, because the
same misplacement penalty is divided by R, or N which is
generally even larger than R. In addition to discussing these
inherent properties of AP’ and bpref, Sakai [15] demonstrated
experimentally that AP’ is in fact superior to bpref in terms
of system ranking stability and discriminative power, given in-
complete but unbiased relevance data.

Condensed-list versions of Q, nDCG and RBP will be de-
noted by Q’, nDCG’ and RBP'. Thus this paper considers four
metrics (AP, Q, nDCG and RBP) plus five condensed-list met-
rics (AP’, Q', nDCG’, RBP and bpref). Among these, AP, AP’
and bpref cannot handle graded relevance.

3.3 A Note on RankEff, a.k.a. Bpref N

Ahlgren and Gronqvist [1] have claimed that a binary-
relevance metric called RankEff provides more stable system
ranking than bpref-10 [6] and AP when the relevance data is
reduced at random. Let d be a judged relevant document, and
let I(d) denote the number of judged nonrelevant documents
ranked Jower than d. RankEff is defined as:

RankEff = %Z%. ©
d

However, let us rewrite RankEff using a condensed list. Re-
call that the number of judged nonrelevant documents ranked
above a relevant one at rank 1’ is given by ' — count(r’).
Hence the number of judged nonrelevant documents ranked
below ', including those not retrieved at all, is given by
N — (r' — count(r’)). Whereas, for each relevant document
not retrieved, I(d) = 0 by definition. That is, the summation
in Eq. 9 is essentially over retrieved relevant documents rather
than all judged relevant documents. Hence,

RankEff = zlz Zisrel(r')w .

(10)
Itis clear that RankEff is none other than bpref_N (Eq. 7) which
has been known as bpref_allnonrel in trec_eval.

As discussed earlier, both theory and experiments have
shown that bpref N (RankEff) is not a desirable metric, in
that it is very insensitive to change in the top ranked docu-
ments [15]. Ahlgren and Gronqvist [1] themselves report that
the metric correlates poorly with AP: In their study, a sys-
tem ranked at number 42 by AP was ranked at number 7 by
RankEff.

4 Data

Table 1 provides some statistics of the TREC and NTCIR
data we used for evaluating the nine metrics in the presence of
system bias. The “TREC03” and “TREC04” data are from the
TREC 2003 and 2004 robust track [22, 23], and the “NTCIR-
6]” (Japanese) and “NTCIR-6C” (Chinese) data are from the



Table 1. TREC and NTCIR data used.

TRECO03 TREC04 NTCIR-6] | NTCIR-6C
Fopics 50 5 50 30
#docs approx. 528,000 858,400 901,446
pool depth 125 100 100 100
average N 925.5 654.6 1157.9 999.4
range N [292,2050] | [132,1371] | [480,2732] | [414,1907]
average R 33. 412 95.3 88.1
range R [4,115] [3,161] [4,311] [15, 400]
S-relevant 8.1 125 25 21.6
A-relevant - - 61.1 304
B-relevant 25.0 28.8 31.7 36.1
#all runs 78 110 74 46
#teams 16 14 10(12) 1011)

NTCIR-6 CLIR task [11]. For forming system-biased rele-
vance data from the NTCIR data, we considered teams that
submitted at least one monolingual run. For example, we ex-
cluded two teams from the NTCIR-6]J data as they submitted
cross-lingual runs only.

Consider a particular topic. Let ¢t denote a participating
team, and let D; denote the set of documents contributed to the
pool by this team. For TREC03, for example, D; is the union
of the top 125 documents of each run submitted by ¢. The set of
unique contributions by t is defined as Uy = Dy — Uy Dy
Similarly, let D*(C D;) denote the set of judged relevant
documents obtained from ¢. The set of unique relevant doc-
uments from ¢ is defined as Uy® = Dj®' — Uy, DI, Ta-
ble 2 shows the participating teams that we used, along with
some statistics on UJ®. For example, Table 2(c) shows that
a team called NICT contributed as many as 229.7 unique rel-
evant documents per topic on average, and this was achieved
by submitting 20 runs (including cross-lingual runs). For one
topic, this team contributed 721 unique relevant documents.

Let J denote the complete set of judged documents for a
topic. Our leave-one-team-out experiments reported in Sec-
tion 5 replace J with J — U for each ¢. That is, unique con-
tributions from ¢ are removed from the original relevance data,
so that ¢ can be treated as a “new” team. In Section 6, we go
to the other extreme and replace J with D;. That is, runs from
a single team is used for forming the relevance data. In these
“take-just-one-team” experiments, the teams labelled with a
“}” in Table 2 failed to contribute a relevant document (i.e.,
D}e! = ¢) for at least one topic, and were therefore excluded
from our analysis. In addition, we chose three teams from each
data set to conduct “take-just-three-teams” experiments, by re-
placing J with Uier Dy, where T is the set of chosen teams.
As indicated by “+™’s in Table 2, we chose three “ordinary”
teams: Ones with the smallest number of unique relevant doc-
uments.

5 Leave one team out

To compare the robustness of our metrics to runs that did
not contribute to the pool, we formed leave-one-team-out rele-
vance data J — Uy for each team ¢, as explained earlier. Then,
for each t, we randomly selected one monolingual run from
t and evaluated this run using J — U;. Recall that all runs
submitted by ¢ have been left out to form J — Uj.

Table 3 shows, for each ¢ from NTCIR-6J, how a selected
monolingual run from ¢ is affected when the original relevance
data J is replaced by J — U;. For example, when a run from
“BRKLY” is evaluated using nDCG with this team’ s leave-
one-team-out relevance data, the run’s absolute score goes
down by .0016, and its rank among the 10 selected runs goes

down from rank 6 to rank 8. In contrast, a run from “HUM”
goes up from rank 6 to rank 5 according to nDCG’ and this
team’s leave-one-team-out relevance data. It can be observed
that, according to condensed-list metrics, i.e., AP’, Q’, nDCG’,
RBP’ and bpref, the scores and the ranks tend to go up with
the use of each leave-one-team-out relevance data, while, ac-
cording to traditional metrics, i.e., AP, Q, nDCG and RBP, the
scores and the ranks tend to go down. Moreover, the “average
absolute performance change” row of Table 3 shows that the
average score changes are higher for the condensed-list met-
rics than for the traditional ones. For example, for AP, this is
computed as (.0021+.0002+.0005+.0000+.0013+.0050+
.0011 + .0000 + .0003 + .0003)/10 = .0011. Whereas, the
average for AP’ is .0062. The trends are similar for TRECO3,
TREC04 and NTCIR-6C, but the results are omitted due to
lack of space. Hence, our first observation is that condensed-
list metrics overestimate new systems while traditional metrics
underestimate them, and that the overestimation tends to be
larger than the underestimation. A new run contains many
unjudged documents. Therefore, condensing its ranked list
may move up the ranks of retrieved relevant documents dra-
matically. This is why condensed-list metrics, including bpref,
overestimate new systems.

Our main criterion for comparing metrics is Sakai’s dis-
criminative power [16]. Let C be the set of all pairs of runs
that are being considered. For a given significance level ¢, let
C.(C C) be the set of pairs of runs with a statistically sig-
nificant performance difference in terms of a given metric ac-
cording to a two-sided, paired bootstrap hypothesis test. Then
discriminative power is defined as C,/C: It means how often
a metric manages to detect a statistically significant difference
for a fixed probability of Type I Error. Although C./C can
also be defined using a significance test other than the boot-
strap test, one of the advantages of Sakai’s method is that it can
also estimate the minimum performance difference required to
achieve statistical significance.

Suppose that C, was obtained using a given metric and the
original relevance data. Now, let C. denote the set of pairs of
runs with a statistically significant difference in terms of the
same metric but with a different relevance data set. Assum-
ing that the results based on the original relevance data are the
ground truth, we can quantify the discrepancy between C. and
C.. by reporting the number of misses |C. — C.| and that of
Jalse alarms |C.. — C.|. Bompada et al. [4] have also exam-
ined misses and false alarms for comparing bpref, nDCG and
Inferred AP, but they used random sampling and did not con-
sider system bias.

Table 4 summarises the results of our discriminative power
experiments using o = 0.05 with the leave-one-team-out rel-
evance data. For example, Table 4(a) shows that Q manages
to detect a statistically significant difference for 80 run pairs
out of 120 (66.7%) using the original relevance data, and this
is the highest discriminative power achieved across all metrics
for TRECO3, as indicated in bold. Moreover, given the 50 top-
ics of TRECO03, the performance difference required to achieve
a significance level of & = 0.05 is around 0.07 in Q. On the
other hand, Table 4(a) also shows the corresponding results
averaged over the 16 leave-one-team-out relevance data. For
example, it can be oberved that, by replacing the original rel-
evance data of TRECO03 with a leave-one-team-out relevance
data, the discriminative power of Q' goes up from 64.2% to
64.9%, but this is due to false alarms, which occur 0.81 times



Table 2. Participating teams, #runs and #unique relevant documents per topic (mean and range).

(a) TREC03 (b) TREC04 (c) NTCIR-6] (d) NTCIR-6C

MUO03rob 5 | 47.1[5,145] | Juru 10 | 15.310,161] | BRKLY 8 64.84,239] BRKLY 8 | 166.8[11,355]
NLPRO3xt 5 51[0,38] | NLPRO4x | 11 | 62[091] | HUM 5 | 120.6[95199] | CCNUx | 2 12.9[0,87]
SABIR03 3| 24.1[1,171] SABIR04 6 16.2[0,62] | JSCCLx 4 12.8[0,99] HUM 5 | 130.9[95,225]
Sel 5 16.9 [0,73] aplO4rs 5 15.0[0,57] | KLE 3 28.8[0,152] I2R* 4 22.3[0,107]
THUIR:030x | 5 | 9.0[0,51] fub04 10 | 84[0,80] | NCUTWt | 5 | 544[1,232] | ISQUTt | 3 | 82.8[6,183]
UAmsTO3R 5 31.0[1,82] humR04 10 23.2[0,95] NICT 20 229.7[5,721] NCUTW | 5 25.4[0,90]
UIUCO03R % 5 11.1[0,129] icl04pos 9 | 42.9[6,123] | OKSAT 5 65.9 [2,216] NTNUt 4 32.9[0,115]
vT 5 | 26.6[1,201] mpi04rt 10 | 62.7[4,176] | TSBt 12 37.5[0,270] UniNE* 5 13.4 [0,76]
aplrob03 5 15.0[0,114] | pircRBO4x | 10 6.4 [0,27] UniNEx 5 14.3[0,130] WTG 4 66.6 [0,186]
fub03It 5 12.9[0,94] polyu 6 | 260[1,94] | YLMSx 3 7.90,73] pircs 4 59.6 [0,177]
humR03 5| 18.0[0,82] | uic0401% 1| 12.6[0,68]

oce03 5 39.5[1,135] uogRobx* 10 6.2[0,101]

pircRB 5 | 30.6[1,200] | vtum 8 | 95[0,55]

rutcor03f 5 | 103.6[7,262] | wdo 4 | 16.7[0,91]

uic030t 5 22.6[1,81]

uwmtCR 5| 174[0,72]

TNot used for take-just-one-team experiments; *Used

or take-just-three-teams experiments (See Section 6).

Table 3. Performance change and rank change when leaving out one team and evaluating a run
from that team (NTCIR-6J). A “+” indicates that a run is overestimated; a “—” indicates that it
is underestimated. Rank changes are indicated in bold: For example, “675” means going up

from rank 6 to rank 5.

AP’ Q nDCG’ RBP’ bpref AP Q nDCG RBP

BRKLY +.0071 +.0059 +.0025 | +.0030 +.0083 —.0021 —.0019 —.0016 —.0009
4—4 4—4 55 4—4 4—4 = = 618 4—4

HUM +.0069 | +.0065 | +.0035 | +.0016 | +.0074 —.0002 | +.0001 [ +.0003 | —.0004
8—8 8—8 615 8—8 8—8 9—-9 8—8 5—5 8—8

JSCCL +.0031 +.0024 +.0013 +.0013 —+.0044 —.0005 —.0004 —.0005 —.0001
6—6 6—6 4—4 55 614 5—5 5—5 4—4 55

KLE +.0037 +.0036 | +.0022 | +.0010 +.0038 .0000 .0000 —.0002 —.0011
717 716 7—7 6—6 77 6—6 617 7.8 6—6

NCUTW +.0055 +.0048 +.0029 | +.0043 +.0067 —.0013 —.0013 —.0013 —.0009
918 9—9 9—9 9—9 918 819 9—9 9—-9 9—9

NICT +.0138 | +.0133 | +.0079 | +.0027 | +.0125 +.0050 | +.0053 | +.0038 | —.0002
514 514 8—8 7—17 514 415 415 8—8 7—7

OKSAT +.0145 | +.0120 | +.0080 | +.0086 | +.0156 —.001T | —.0007 [ —.0003 | —.0010

10—10 10—10 10—10 10—10 10—10 10—10 10—10 10—10 10—10

TSB +.0033 | +.0028 | +.0018 | +.00I1 | +.0029 .0000 —.0002 | +.0001 | —.0002
1—1 1—1 1—1 1—1 1—1 1—1 1—1 1—-1 1—1

UniNE +.0040 +.0033 +.0021 +.0021 +.0052 +.0003 +.0004 +.0001 —.0001
33 33 22 33 3-3 353 33 2—2 353
YLMS +.0005 -+.0003 .0000 +.0002 | +.0007 —.0003 —.0003 —.0005 .0000
2—2 2—2 33 2—2 252 2—2 2—-2 33 2—-2

[average abs. performance change || 0062 | .0055 [ 0032 | .0026 [ .0065 .001T ] 0010 [ .0009 [ .0005 |

on average.

The results with the original relevance data in Table 4 con-
firm those by Sakai and Kando [17], in that AP, Q, nDCG
and their condensed-list versions are more discriminative than
bpref and RBP. In addition, they are also more discriminative
than RBP’, which has been examined for the first time. It can
also be observed that our discriminative power results using
leave-one-team-out relevance data are similar to the ones us-
ing the original relevance data. This is because the only dif-
ference between the two relevance data sets is Uz, the unique
contributions from one team.

6 Take Just one team

The leave-one-team-out experiments replaced J with J —
U;. We now discuss a more extreme case of system bias, by
replacing J with Ds, the contributions from a single team. As
we have explained in Section 4, we also form relevance data
using contributions from three teams with the smallest number
of unique relevant documents.

Table 5 summarises our take-just-one-team and take-just-
three-teams results for NTCIR-6J in a way similar to Table 3.
Thus, for each team ¢, the table shows how a particular mono-

lingual run from ¢ (which is the same as the one we used for
the leave-one-team-out experiments) is affected when the orig-
inal relevance data J is replaced by D;. For example, when
a run from “BRKLY” is evaluated using Q' with this team’s
contributions only, the run goes down from rank 4 to rank 8.
In contrast, when the same run is evaluated using Q with this
team’s contributions only, it goes up from rank 7 to rank 4.
As we have explained in Section 4, two teams with a “}” in
Table 2 are excluded here. It can be observed that, if a single
team t is used for forming the relevance data, the run score for
t goes up for all metrics (except for RBP and RBP'); however,
while traditional metrics overestimate the rank of a run from
t, condensed-list metrics understimate it. Condensed-list met-
rics underestimate the rank of a run from ¢ because all the other
runs from t'(s t) are substantially overestimated: These other
runs are “new” to the take-just-one-team relevance data of ¢,
and we have already observed in Section 5 that condensed-list
metrics overestimate new runs. As for RBP and RBP’, replac-
ing J with D, does not substantially affect the run score for ¢,
because this merely turns some relevant documents below the
pool depth within that run, i.e., those that belong to J — D,
into nonrelevant documents. The stability of scores for RBP
and RBP' reflects the fact that they totally disregard recall, and
not necessarily that they are superior: Note that the ranks ac-



Table 4. Discriminative power at o = 0.05:

leaving one team out.

For each experimental

condition, the highest dlscrlmlnatlve power is indicated in bold.

(a) TRECO3 (16 runs Q’ nDCG’ RBP’ bpref AP Q nDCG RBP
original disc. power 77/120 777120 71/120 55/120 69/120 77120 80/120 71/120 55/120
relevance =64.2% | =64.2% | =59.2% | =45.8% | =57.5% =64.2% | =66.7% | =59.2% | =45.8%
data diff. required 0.09 0.07 0.08 0.04 0.08 0.07 0.07 0.08 0.04
average over 16 disc. power 64.3% 64.9% 59.1% 46.0% 57.1% 64.2% 66.7% 59.2% 46.0%
leave-one-team-out | #misses 0.00 0.00 0.13 0.69 0.00 0.00 0.00 0.00 0.00
#false alarms 0.06 0.81 0.06 0.38 0.19 0.00 0.00 0.00 0.19
(b) TREC04 (14 runs AP’ Q’ nDCG’ RBP’ bpref AP Q nDCG RBP
original disc. power 61/91 62/91 58/91 46/91 5719 61/91 63/91 58/91 45/91
relevance =67.0% | =68.1% =63.7% =50.5% | =62.6% =67.0% =69.2% =63.7% =49.5%
data diff. required 0.07 0.08 0.09 0.05 0.09 0.07 0.08 0.08 0.05
average over 14 disc. power 67.0% 68.1% 63.1% 50.1% 62.3% 67.1% 69.0% 62.8% 49.4%
1 t #mi 0.14 0.07 0.57 0.36 043 0.00 0.29 0.93 0.07
#false alarms 0.14 0.07 0.00 0.00 0.14 0.07 0.07 0.07 0.00
(c) NTCIR-6J (10 runs) AP’ Q nDCG’ RBP’ bpref AP Q nDCG RBP
original disc. power 25/45 28/45 33/45 26/45 23/45 26/45 28/45 33/45 26/45
relevance =55.6% | =62.2% | =73.3% | =57.8% | =51.1% =578% | =622% | =73.3% | =57.8%
data diff. required 0.07 0.09 0.08 0.04 0.08 0.08 0.07 0.08 0.05
average over 10 disc. power 55.6% 62.4% 73.3% 57.6% 52.0% 57.6% 62.4% 733% 57.8%
1 t #mi 0.40 0.00 0.00 0.20 0.10 0.10 0.20 0.00 0.00
#false alarms 0.40 0.10 0.00 0.10 0.50 0.00 0.30 0.00 0.00
(d) NTCIR-6C (10 runs) AP’ Q nDCG’ RBP’ bpref AP Q nDCG RBP
original disc. power 36/45 34/45 34/45 32/45 34/45 37/45 36/45 34/45 32/45
relevance =80.0% | =75.6% | =75.6% | =71.1% | =75.6% =82.2% | =80.0% | =75.6% | =71.1%
data diff. required 0.07 0.06 0.07 0.07 0.07 0.08 0.07 0.08 0.06
average over 10 disc. power 79.8% 75.8% 75.4% 71.5% 75.4% 82.2% 79.6% 75.6% 71.1%
leave-one-team-out | #misses 0.10 0.10 0.10 0.00 0.20 0.00 0.20 0.00 0.00
#false alarms 0.00 0.20 0.00 0.20 0.10 0.00 0.00 0.00 0.00

Table 5. Performance change and rank change when taking one team
that team (NTCIR-6J). A “+” indicates that a run is overestimated;

and evaluating a run from

a “—” indicates that it is

underestimated. Rank changes are indicated in bold.

AP’ Q nDCG’ RBP’ bpref AP Q nDCG RBP

BRKLY +.0770 | +.0790 | +.0399 .0000 +.0646 +.0741 +.0724 | +.0377 | —.0003
4.8 418 517 4.8 418 714 714 614 4—4

HUM +.1002 | +.1065 | +.0643 | —.0001 | +.0785 +.1020 | +.1054 | +.0647 | —.0003
8—8 8—8 615 8—8 819 914 8174 514 815

JSCCL +.1038 | +.1043 | +.0622 .0000 +.0877 -+.0980 | +.0963 [ +.0598 | —.0003
617 617 4—4 517 617 512 513 44 514

KLE +.0951 +.1011 +.0580 .0000 +.0726 +.0879 | +.0908 | +.0548 —.0004
7.8 718 77 618 718 613 614 714 614

NICT +.0333 | +.0354 | +.0193 | +.0001 | +.0261 +.0244 | +.0256 | +.0156 .0000
5.8 5|8 8—8 718 518 4—4 4—4 874 716

OKSAT +.1083 | +.1172 | +.1017 .0000 +.0871 +.1049 | +.1099 | +.1006 | —.0001
10—10 | 10—10 | 10—10 | 10—10 | 10—10 1017 1018 1019 1016

UniNE +.0978 | +.0957 | +.0462 .0000 +.0829 +.0934 | +.0897 | +.0445 —.0003
33 33 22 353 33 312 312 22 312

YLMS +.1174 | +.1148 | +.0494 —.0002 | +.1024 +.1213 | +.1176 | +.0511 —.0005
22 22 33 22 252 271 211 312 211

average abs. performance change .0916 .0943 .0551 .0001 .0752 .0882 .0885 .0536 .0003

&

cording to RBP and RBP’ are altered just like the other met-
rics. Similar results for TREC03, TREC04 and NTCIR-6C are
omitted due to lack of space.

Table 6 compares, for each data set and metric, the rank-
ing of the aforementioned selected runs based on the origi-
nal relevance data and that based on a take-just-one-team or
a take-just-three-teams relevance data. The similarity between
two rankings is quantified using Kendall’s tau rank correlation,
which would be 1 if the two rankings are identical and —1
if the two rankings are the exact inverse of each other. The
rank correlation values for the take-just-one-team relevance
data have been averaged across teams. It can be observed that
the correlation values are generally very high. That is, it is
possible to replace the original relevance data with one that is
based on a single team (or three teams) and still maintain a
similar system ranking. As mentioned in Section 2, this gen-
eralises a finding by Sanderson and Joho [19] who considered
only AP and binary-relevance TREC data. However, obtaining
a system ranking that is similar to the full relevance data is not

sufficient for sound evaluation: We later show that strong sys-
tem bias can introduce much noise in statistical significance
tests.

For the two NTCIR data sets, the take-just-one-team rank-
ings with AP’, Q’, nDCG’ appear to be more consistent with
the original rankings than those with AP, Q and nDCG. How-
ever, we refrain from making a claim based on these results
because the NTCIR rankings contain only eight teams (See
Table 2) and the trend is not clear for the two TREC data sets.

Table 7 summarises the results of our discriminative power
experiments using o = 0.05 with the take-just-one-team and
take-just-three-teams relevance data, in a way similar to Ta-
ble 4. The “original relevance data” rows have been copied
from Table 4. For example, Table 7(a) shows that replacing the
original relevance data with a take-just-three-teams relevance
data superficially raises the discriminative power of Q from
66.7% to 68.3%, but this is due to four false alarms with two
misses. False alarms in particular are not welcome in retrieval
experiments: the take-just-three-teams relevance data declared



Table 6. Kendall’s rank correlation: the original ranking vs. that by taking one team / three

teams.

AP’ Q’ nDCG’ | RBP’ | bpref AP Q nDCG | RBP
(a) TRECO03 take-three-teams 950 | .917 .900 967 933 933 933 933 967
average over 12 take-one-team 951 [ 918 929 958 944 932 | .920 935 947

(b) TREC04 take-three-teams 978 | .956 978 .934 956 1 1 956 1
average over 12 take-one-team || .932 | .936 898 | .903 .903 906 | .907 860 | 926
(c) NTCIR-6J take-three-teams 956 | 911 956 .867 956 .822 | .822 956 956
average over 8 take-one-team 876 | 880 925 893 894 756 | 782 883 849

(d) NTCIR-6C | take-three-teams 1 .956 1 911 .956 1 1 1 1
average over 8 take-one-team 960 | .929 991 880 .920 853 | .867 898 .907

Table 7. Discriminative power at oo = 0.05: take one team / three teams. For each experimental
condition, the highest discriminative power is indicated in bold.

(a) TRECO3 (16 runs) AP’ Q nDCG’ RBP’ bpref AP Q nDCG RBP
original disc. power 777120 717/120 71/120 55/120 69/120 777120 80/120 71/120 55/120
relevance =64.2% | =64.2% | =59.2% | =45.8% | =57.5% =64.2% | =66.7% | =59.2% | =45.8%
data diff. required 0.09 0.07 0.08 0.04 0.08 0.07 0.07 0.08 0.04
take-three-teams | disc. power 61.7% 62.5% 55.0% 42.5% 55.8% 67.5% 68.3% 63.3% 49.2%
relevance #misses 5 6 8 8 3 2 2 2 1
data #false alarms 2 4 3 4 1 6 4 7 5
average over 12 disc. power 59.6% 59.0% 54.4% 43.1% 51.7% 66.4% 67.6% 61.6% 52.6%
take-one-team #misses 8.42 9.50 8.92 9.25 8.83 5.67 5.50 4.67 317
#false alarms 2.92 3.33 3.17 6.00 1.83 8.33 6.58 7.58 11.25
(6) TREC04 (14 runs) AP Q nDCG’ | RBP bpref AP Q nDCG RBP
original disc. power 61/91 62/91 58/91 46/91 5719 61/91 63/91 58/91 45/91
relevance =67.0% | =68.1% | =63.7% | =50.5% | =62.6% =67.0% | =69.2% | =63.7% | =49.5%
data diff. required 0.07 0.08 0.09 0.05 0.09 0.07 0.08 0.08 0.05
take-three-teams | disc. power 63.7% 65.9% 56.0% 40.7% 54.9% 69.2% 70.3% 61.5% 48.4%
relevance #misses 3 2 7 10 8 0 0 2 1
data #false alarms 0 0 0 1 1 2 1 0 0
average over 12 disc. power 61.6% 62.3% 53.5% 45.9% 56.4% 64.4% 67.0% 59.7% 50.1%
take-one-team #misses 7.92 7.00 11.50 9.00 9.67 717 7.00 7.50 3.75
#false alarms 3.00 1.75 2.25 4.75 4.00 4.83 5.00 3.83 4.33
(c) NTCIR-6J (10 runs) AP’ Q nDCG’ RBP’ bpref AP Q nDCG RBP
original disc. power 25/45 28/45 33/45 26/45 23/45 26/45 28/45 33/45 26/45
relevance =55.6% | =62.2% | =733% | =57.8% | =51.1% =57.8% | =62.2% | =733% | =57.8%
data diff. required 0.07 0.09 0.08 0.04 0.08 0.08 0.07 0.08 0.05
take-three-teams | disc. power 57.8% 64.4 71.1% 422% 44.4% 66.7% 68.9% 71.1% 62.2%
relevance #misses 1 1 1 7 3 2 1 1 0
data #false alarms 2 2 0 0 0 6 4 0 2
average over 8 disc. power 61.9% 66.7% 66.1% 49.2% 50.6% 66.4% 67.2% 67.8% 61.4%
take-one-team #misses 1.00 1.13 3.38 5.13 3.00 4.13 4.25 4.25 3.50
#false alarms 3.88 3.13 0.13 1.25 2.75 8.00 6.50 1.75 5.13
(d) NTCIR-6C (10 runs) AP’ Q nDCG’ RBP’ bpref AP Q nDCG RBP
original disc. power 36/45 34/45 34/45 32/45 34/45 37/45 36/45 34/45 32/45
relevance =80.0% | =75.6% | =75.6% | =71.1% | =75.6% =82.2% | =80.0% | =75.6% | =71.1%
data diff. required 0.07 0.06 0.07 0.07 0.07 0.08 0.07 0.08 0.06
take-three-teams | disc. power 71.1% 73.3% 75.6% 66.7% 64.4% 82.2% 80.0% 77.8% 71.8%
relevance #misses 4 1 0 2 5 0 0 0 0
data #false alarms 0 0 0 0 0 0 0 1 3
average over 8 disc. power 73.9% 75.0% 71.1% 72.5% 70.3% 80.3% 79.7% 75.0% 75.0%
take-one-team #misses 3.00 1.50 2.13 225 4.25 3.63 338 2.63 2.00
relevance data #false alarms 0.25 1.25 0.13 2.88 1.88 2.75 3.25 2.38 3.75

that the four run pairs are significantly different, even though
they are not significantly different according to the original
relevance data.

According to Table 7, take-just-one-team relevance data
generally yield more misses and false alarms than take-three-
teams relevance data. Hence we observe that, even though
take-just-one-team relevance data may produce a system rank-
ing that is very similar to that produced by the original rel-
evance data, pooling runs from several teams is better than
pooling runs from a single team for obtaining reliable conclu-
sions based on statistical significance tests. The focus of this
study, however, is on the comparison of different metrics un-
der the same condition, and not on how many and what kind
of teams are required to obtain reliable conclusions.

Table 7 also shows that AP, Q and nDCG are generally
more discriminative than AP/, Q' and nDCG’, respectively,
even with take-just-one-team or take-just-three-teams rele-
vance data. For example, for TRECO03, the discriminative

power of Q averaged over 12 take-just-one-team relevance data
is 67.6% while the corresponding value for Q' is only 59.0%,
even though the number of misses and that of false alarms are
more or less comparable. Thus, condensed-list metrics are not
necessarily superior to traditional metrics when the relevance
data is heavily biased towards one team or a few teams. On
the other hand, even with take-just-three-teams and take-just-
one-team relevance data, AP’, Q' and nDCG’ are generally
more discriminative than bpref, RBP and RBP’, although bpref
sometimes does as well as nDCG’.

7 Conclusions

Several recent studies [1, 4, 6, 15, 17, 25] discussed the ef-
fect of incomplete relevance data in retrieval evaluation using
random samples of the original relevance data. Hence they
discussed neither system bias nor pool depth bias.



This paper examined the effect of system bias. Even though
Sakai [15] and Sakai and Kando [17] showed that AP, Q" and
nDCG’ are effective for handling very incomplete but unbi-
ased data, we showed that these results do not hold in the pres-
ence of system bias. Using data from both TREC and NTCIR,
we first showed that condensed-list metrics overestimate new
systems while traditional metrics underestimate them, and that
the overestimation tends to be larger than the underestimation.
We then showed that, when relevance data is heavily biased to-
wards a sigle team or a few teams, AP’, Q’ and nDCG’ are not
necessarily more discriminative than AP, Q and nDCG. Nev-
ertheless, AP’ and Q' are generally more discriminative than
bpref and RBP’ in the presence of system bias.

Our separate study [18] shows that AP/, Q" and nDCG’ are
not necessarily superior to AP, Q and nDCG in the presence
of pool depth bias either. Hence previous studies that used
random sampling should be interpreted with caution. In real-
ity, relevance data formed through pooling are never a random
sample of the full relevance data.

Traditional metrics assume that retrieved unjudged docu-
ments are nonrelevant, while condensed-list metrics, includ-
ing bpref, assume that they are nonexistent. The present study
showed that the latter assumption is no better than the for-
mer. In our future work, we would like to couple efficient
and reliable test construction methods with reliable graded-
relevance metrics. We also plan to establish quantitative crite-
ria for choosing good evaluation metrics: Although we believe
that discriminative power is one important criterion, there are
probably other aspects that need to be examined, including the
ability to predict performance on new topics in terms of “user-
oriented” metrics such as precision-at-ten [24].
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