
IPSJ SIG Technical Report

A Generation Method of
ECU-Hardware-Dependent Description of
Complex Device Drivers in AUTOSAR

Hideki Hirose1 Hideki Takase1 Kazuyoshi Takagi1 Naofumi Takagi1

Abstract: In order to solve the increasing scale and complexity of automotive software development, AU-
TOSAR specification is provided as a standardized software development process. When developing au-
tomotive software based on AUTOSAR, it is required to develop the software by component-based way.
ECU-Hardware-dependent components such as CDDs (Complex Device Drivers) and the OS have to be
developed for each target ECU-Hardware. In this paper, we propose an automatic method for generating
ECU-Hardware-dependent descriptions and corresponding CDD SW-Cs. In our method, a CDD is generated
by combining Device Driver Form File and ECU-Hardware Configuration File. Device Driver Form File solves
the difference between ECU-Hardware. Descriptions that depend on target ECU-Hardware are abstracted
by DSL (Domain Specific Language). Such information is described in ECU-Hardware Configuration File.
In addition, ARXML descriptions of SW-Cs can be generated by just describing their configuration in DSL.
As a case study for the proposed method, we developed an automatic braking system using RC-car kit and
RC-car control system. The contribution of our method is that it makes it possible to automatically generate
a CDD SW-C compatible with AUTOSAR for each ECU-Hardware. When the ECU-Hardware is replaced
by a different kind of ECU-Hardware, a CDD SW-C for the new ECU-Hardware can be easily obtained.
Moreover, proper ARXML descriptions can be generated by the tool.Therefore, it is expected to bring the
reduction of developers’ load and the improvement of productivity in automotive software development.

1. Introduction

These days, the scale and complexity of automotive soft-

ware have been increasing along with a growing demand for

the functionality. In addition, the number of ECUs (Elec-

tronic Control Units) mounted on vehicles has increased.

For example, luxury cars contain more than 140 ECUs[1].

To solve the above issue, a consortium of several compa-

nies in automotive domain provided AUTOSAR (AUTomo-

tive Open System ARchitecture) [2] as an automotive soft-

ware specification. AUTOSAR aims to standardize automo-

tive software architecture and to realize component-oriented

development of automotive software[3]. In AUTOSAR, au-

tomotive software is split into multiple layers. Each com-

ponent is located in its corresponding layer. Since the ap-

plication layer does not depend on hardware, application

components can be reused in other automotive systems. In

contrast, CDDs (Complex Device Drivers) and part of the

OS are located in the layer which is dependent on hardware.

Thus, these components must be developed for each target

hardware.

When developing a CDD, it is required to describe the

design of the CDD component. It must be described

in ARXML, a specific XML format based on AUTOSAR

1 Kyoto University

schema. ARXML makes the development process compli-

cated due to the lack of readability.

In this paper, we propose an automatic method for gen-

erating a CDD SW-C (SoftWare Component). A CDD

SW-C can be generated just by writing its ECU-Hardware-

dependent information in DSL (Domain Specific Language).

In addition, ARXML description of the SW-C can be gen-

erated just by describing its configuration in DSL.

In the proposed method, CDD is generated by merg-

ing Device Driver Form File and ECU-Hardware Configu-

ration File. Device Driver Form File solves the difference

between various kinds of ECU-Hardware. ECU-Hardware-

independent description among the original device driver

is implemented in it. On the other hand, ECU-Hardware-

dependent information such as operating frequency and pin

location is described in ECU-Hardware Configuration File.

The information of SW-Cs which developers want to in-

tegrate into an existing automotive system is described in

Additional SW-C Configuration File. Integrated ARXML

files are generated by merging Additional SW-C Configura-

tion File and ARXML files in the existing system.

As a case study for the proposed method, we developed

an automatic braking system for RC-car kit and RC-car

control system. We implemented our method as a CDD

generator with python and developed Device Driver Form

c⃝ 2017 Information Processing Society of Japan 1

IPSJ ESW2017 Research Paper

5

Automotive software, electronic control unit (ECU), design automation

Keywords:

IPSJ SIG Technical Report

AUTOSAR	So)ware�

AUTOSAR	Middleware�

Basic	So)ware�
ECU-Hardware�

SW-C� SW-C� SW-C� SW-C�

AUTOSAR	RTE�

OS�

Services� ECU	
Abstrac=on�

Microcontroller	Abstrac=on�

Complex	
Device	
Drivers�

Fig. 1 ECU architecture in AUTOSAR

File for a range detection sensor with C. Next, we created

ECU-Hardware Configuration Files for two kinds of ECU-

Hardware. For each of them, we obtained a CDD SW-C for

the range detection sensor by inputting those files into the

generator. In addition, we developed an application SW-C

which automatically brakes the vehicle according to the dis-

tance the sensor provides. We described the configuration

of the CDD SW-C and the application SW-C in DSL, and

combined the descriptions with the existing ARXML files

by the generator. We executed the integrated system on the

RC-car kit and confirmed that it worked correctly.

The contribution of our study is that CDD SW-Cs can

be generated just by writing DSL descriptions. When the

ECU-Hardware is replaced by a different one, a CDD SW-C

for the new ECU-Hardware can be easily obtained. More-

over, a proper ARXML description can be generated from

the DSL descriptions of SW-Cs. It means that integrating

CDD SW-Cs into existing automotive systems can be com-

pleted with only our tool. Therefore, it is expected that the

labor and the cost for CDD development will be reduced.

2. AUTOSAR

2.1 ECU Architecture in AUTOSAR

As shown in Fig. 1, in AUTOSAR, ECU architecture con-

sists of four layers: AUTOSAR Software layer, AUTOSAR

Middleware layer, Basic Software layer and ECU-Hardware.

AUTOSAR realizes component-based development.

Therefore, development is carried out for each component.

Moreover, when developing components in higher layers,

developers don’t have to take account of physical config-

uration. Thus, it is easy to improve components and to

reuse them in other automotive systems, and it leads to

the reduction of the cost of development[4]. However, some

components in Basic Software layer, such as CDDs, depend

on ECU-Hardware. Thus, they need to be developed for

each target ECU-Hardware.

2.2 Software Development Flow

The flow of developing automotive software based on AU-

TOSAR is the following:

(1) SW-C Description

Determining what function to realize with each SW-C

and designing connections between SW-Cs.

(2) System Description

Describing the definitions of the system, including

ECUs and SW-Cs.

(3) ECU Configuration

Collecting information necessary for generating Basic

Software and RTE for each ECU.

(4) ECU Integration

Implementing initialization processing which depends

on ECUs, generating Basic Software and RTE, and

building the entire software.

All the information, such as composition of the system,

must be described in ARXML[5] ARXML is a specific XML

format based on AUTOSAR schema. A description example

of ARXML is shown in Fig. 2. Ports, runnables and inter-

faces are described with tags specified by AUTOSAR. Since

ARXML lacks readability, it is difficult to edit ARXML files

by hand.

3. AN AUTOMATIC GENERATION
METHOD OF COMPLEX DEVICE
DRIVERS

3.1 Overview

As a solution to the issues of CDD development, we pro-

pose a method to automatically generate CDD SW-Cs.

An overview of the CDD generator is shown in Fig. 3.

Device Driver Form File, ECU-Hardware Configuration File,

original ARXML files and Additional SW-C Configuration

File are input to the generator. SW-C Generator generates a

CDD SW-C by merging Device Driver Form File and ECU-

Hardware Configuration File. ARXML Generator appends

ARXML description of SW-Cs to original ARXML files.

3.2 SW-C Generator

Fig. 4 shows a description example of a Device Driver

Form File and an ECU-Hardware Configuration File.

In Device Driver Form File, only ECU-hardware-

independent descriptions among the original device driver

is implemented. ECU-Hardware-dependent codes are de-

scribed with “Abstract Expressions” like ‘@<desc>:<name>’.

In <desc>, what kind of code is abstracted is given, such as

function (func), value and code block (block). For example,

‘@func:READ_PWM’ means that a function is abstracted and

named ‘READ_PWM’. The ECU-Hardware-independent part is

written in the language used in the existing automotive sys-

tems, such as C.

In ECU-Hardware Configuration File, information which

is dependent on ECU-Hardware, such as operating frequency

and pin location, is described in DSL. The codes correspond-

ing to the Abstract Expressions in Device Driver Form File

are described with separating symbol ‘:’ and closing symbol

‘$$’ like following:

<name> : <codes>$$

Abstract Expressions can represent various kinds of codes,

c⃝ 2017 Information Processing Society of Japan

IPSJ ESW2017 Research Paper

6

IPSJ SIG Technical Report

<COMPLEX-DEVICE-DRIVER-SW-COMPONENT-TYPE>	
					<SHORT-NAME>CddRadarControl</SHORT-NAME>	
					<PORTS>	

	<P-PORT-PROTOTYPE>	
						<SHORT-NAME>DistanceSrv</SHORT-NAME>	
						<PROVIDED-INTERFACE-TREF	DEST="CLIENT-SERVER-INTERFACE">	
	 	/RcCar/IfDistance	

															</PROVIDED-INTERFACE-TREF>	
	</P-PORT-PROTOTYPE>	

					</PORTS>	
					<INTERNAL-BEHAVIORS>	

	<SWC-INTERNAL-BEHAVIOR>	
						……	
						<RUNNABLES>	
	 	<RUNNABLE-ENTITY>	
	 						<SHORT-NAME>MeasureDistance</SHORT-NAME>	
	 						<MINIMUM-START-INTERVAL>0.0</MINIMUM-START-INTERVAL>	
	 						<CAN-BE-INVOKED-CONCURRENTLY>false</CAN-BE-INVOKED-CONCURRENTLY>	
	 						<SYMBOL>MeasureDistance</SYMBOL>	
	 	</RUNNABLE-ENTITY>	
						</RUNNABLES>	
	</SWC-INTERNAL-BEHAVIOR>	

					</INTERNAL-BEHAVIORS>	
</COMPLEX-DEVICE-DRIVER-SW-COMPONENT-TYPE>	

Fig. 2 A description example of ARXML

SW-C�
generator�
ARXML�

generator�

ARXML�

DSL�

DSL�

C,	DSL�

ARXML�

C�

CDD	Generator�

	Device	Driver		
Form	File�

ECU-Hardware	
ConfiguraBon	File	�

AddiBonal	SW-C	ConfiguraBon	File�

original	ARXML	files�

CDD	SW-C�

integrated	ARXML	files�

Fig. 3 An overview of CDD generator

	

<driver.c>	
#include	“driver.h”	
void	sensor_sense(void){	
		...	
		pulse	=	@func:READ_PWM(PIN_P);	
		...	
}	
void	sensor_trigger(void){	
		…	
		@func:WRITE_TRIG(PIN_T,	LOW);	
		wait(CYCLES);	
		@func:WRITE_TRIG(PIN_T,	HIGH);	
		...	
}	
	
<driver.h>	
#define	CYCLES	@value:FREQ	/	1000�

/*	HSB-RH850F1L100	*/	
	

FREQ	:	80000000$$	
READ_PWM	:	sil_reh_mem$$	
WRITE_TRIG	:	sil_wrh_mem	
	

Device	Driver	Form	File� ECU-Hardware	Configurabon	File�

/*	DE0-Nano	*/	
	

FREQ	:	50000000$$	
READ_PWM	:	sil_rew_iop$$	
WRITE_TRIG	:	sil_wrw_iop	

Fig. 4 A description example of files input to SW-C Generator

such as parameters and functions. In Definition File, what

kind of code should be described in ECU-Hardware Config-

uration File for each Abstract Expression is described. As

shown in Fig. 5, Definition File is described in XML. A brief

description, name and type are provided for each Abstract

Expression in <exp>. If an Abstract Expression represents

a function, the type of the value the function returns and

the arguments of the function are also designated. <args>

contains a certain number of <arg>. A brief description,

number and type are contained in each <arg>. The num-

ber stands for the order of the argument. It is supposed that

Definition File is provided for each device along with Device

Driver Form File.

In the example code shown in Fig. 4, three Abstract Ex-

pressions are defined. As described in Definition File in

Fig. 5, ‘READ_PWM’ is a function for reading the PWM pin

connected to the sensor. It returns a uint16 value and has

one void * argument as the target pin. ‘WRITE_TRIG’ is a

function for writing data into the TRIGGER pin connected

to the sensor. Its return-value is void and it has two argu-

ments. One is for the pin and its type is void *, and the

other is for data, with its type uint16. ‘FREQ’ stands for the

int value of the frequency of ECU-Hardware in use.

The generator refers to Definition File and checks if the

code described in ECU-Hardware Configuration File is cor-

rect. It confirms the type of code, the number of arguments

and the type of arguments.

When using this tool, developers have to create ECU-

Hardware Configuration File for the target ECU-Hardware

according to Definition File. Inputting ECU-Hardware Con-

figuration File and Device Driver Form File into the SW-C

generator, they can obtain a CDD SW-C for the target ECU-

Hardware. As a use case for SW-C Generator, we suppose

developments to replace ECU-Hardware in the existing au-

tomotive systems. In such cases, developers don’t have to

re-create CDD SW-Cs for the new target ECU-Hardware.

Instead, they write some description in DSL to obtain those

CDD SW-Cs.

3.3 ARXML Generator

Fig. 6 shows a description example of Additional SW-C

Configuration File. The part written in red corresponds to

the ARXML description in Fig. 2. This file contains the in-

formation of SW-Cs which developers want to integrate into

the existing automotive systems, interface for those SW-

c⃝ 2017 Information Processing Society of Japan 3

IPSJ ESW2017 Research Paper

7

IPSJ SIG Technical Report

<abstract-expressions>	
	<exp>	
	 	<desc>read	the	PWM	pin</desc>	
	 	<name>READ_PWM</name>	
	 	<exp-type>func@on<exp-type>	
	 	<return-value-type>uint16</return-value-type>	
	 	<args>	
	 	 	<arg>	
	 	 	 	<desc>target	pin</desc>	
	 	 	 	<arg-number>1</arg-number>	
	 	 	 	<type>void	*</type>	
	 	 	</arg>	
	 	</args>	
	</exp>	
	<exp>	
	 	<desc>write	the	data	into	the	TRIGGER	pin</desc>	
	 	<name>WRITE_TRIG</name>	
	 	<exp-type>func@on</exp-type>	
	 	<return-value-type>void</return-value-type>	
	 	<args>	
	 	 	<arg>	
	 	 	 	<desc>target	pin</desc>	
	 	 	 	<arg-number>1</arg-number>	
	 	 	 	<type>void	*</type>	
	 	 	</arg>	
	 	 	<arg>	
	 	 	 	<desc>data	to	write</desc>	
	 	 	 	<arg-number>2</arg-number>	
	 	 	 	<type>uint16</type>	
	 	 	</arg>	
	 	</args>	
	</exp>	
	<exp>	
	 	<desc>clock	frequency	of	the	target	ECU-Hardware</desc>	
	 	<name>FREQ</name>	
	 	<exp-type>int</exp-type>	
	</exp>	

</abstract-expressions>�

Fig. 5 A description example of Definition File

	

#DESCRIPTION	
##INTERFACE	
IfDistance:	
		Protocol:	ClientServer	
		Opera=ons:	
				OpGetIfDistance:	
						Args:	
								command:	
										Type:	IDT_Distance	
										Direc=on:	OUT$$	
##COMPONENTS	
###Applica=ons	
###ComplexDeviceDrivers	
CddRadarControl:	
		P-Ports:	
				DistanceSrv:	
						Interface:	IfDistance	
		Internal:	
				…	
				MeasureDistance:	
						MinimumStartInterval:	0.0	
						CanBeInvokedConcurrently:	false$$	
##CONNECTORS	
CddRadarControl_DistanceSrv_to_AutoBrakeManager_DistanceClt:	
		Provider:	CddRadarControl/DistanceSrv	
		Requester:	AutoBrakeManager/DistanceClt$$	
#CONFIGURATION	
CddRadarControl:	
		MeasureDistance:	
				Event:	DistanceSrv_OpGetIfDistance$$	
	

Fig. 6 A description example of Additional SW-C Configuration
File

Cs, and connectors which connects the existing SW-Cs with

them. The information to be added to System Description

File and Configuration File is described in Description sec-

tion and Configuration section, respectively.

Description section starts with ‘#DESCRIPTION’, fol-

lowed by blocks for communication interfaces, SW-

Cs and connectors, which start with ‘##INTERFACE’,

‘##SWCS’, ‘##CONNECTORS’, respectively. The block for

SW-Cs consists of two sub-blocks for Application SW-Cs

and CDD SW-Cs, starting with ‘###Applications’ and

‘###ComplexDeviceDrivers’, respectively. In each block,

the component name with separating symbol ‘:’ is written

in the first line. In the following lines, the information of the

component is described at one indention level (two spaces)

deeper. The blocks end with closing symbol ‘$$’. Items to

describe in Description section are listed in Table 1. An

item and its corresponding description are separated by a

separating symbol ‘:’. When enumerating parameters for

operations and data, the item name is declared in the first

line and the name of the operations or the data is described

in the next line with one indention level deeper, followed by

an enumeration of the parameters with another indention

level deeper.

Configuration section starts with ‘#CONFIGURATION’. In

the following lines, startup information for runnables of a

SW-C is described in a block. The symbols and the inden-

tion rules are the same as those in Description section. The

items to describe in this section are listed in Table 2.

The System Description File and the Configuration File

of the existing system are input to the tool. The generator

refers to Additional SW-C Configuration File and integrates

the information into those ARXML files.

With ARXML generator, developers can complete CDD

integration into existing systems without using expensive

commercial tools. Therefore, it reduces the cost of the de-

velopment of CDDs.

4. CASE STUDY

We implemented the proposed method as CDD genera-

tor with Python. With the use of it, we developed a CDD

of a range detection sensor for two kinds of ECU-Hardware:

HSBRH850F1L100[6] and DE0-Nano[7]. In addition, we de-

veloped an automatic braking application which works ac-

cording to the distance provided by the sensor. We inte-

grated the application and the CDD SW-C into the existing

system and confirmed that the integrated system worked

Table 1 Items to describe in Description section

Item Description

Protocol The protocol of an interface between SW-Cs

Operations
Enumerate operations called in
communication with Client-Server protocol

Args Enumerate data exchanged in the operation
Type The type of data
Direction The direction of data

P-Ports Enumerate sending ports of a SW-C
R-Ports Enumerate receiving ports of a SW-C
Interface The interface the port connects to

Internal Enumerate internal behaviors of a SW-C
Provider Sender SW-C and its port
Requester Receiver SW-C and its port

Table 2 Items to describe in Configuration section

Item Description

Event Events which wake the runnable

c⃝ 2017 Information Processing Society of Japan

IPSJ ESW2017 Research Paper

8

IPSJ SIG Technical Report

Fig. 7 The appearance of RC-car kit

Input	to	
COMP/TRIG	pin	

Output	from	
PWM	pin�

The	pulse	width	is	in	propor;on	to	the	distance.	
(50μs	=	1cm)�

Trigger�

High�

Low	

High�

Low	

Voltage�

Fig. 8 Behavior of URM37

correctly on the RC-car kit.

4.1 Target

4.1.1 RC-car Kit

RC-car kit[8], which realizes to control RC-cars by the

use of microcomputer boards and FPGA boards as ECU-

Hardware, is available on the market. HOKUTO DENSHI’s

HSBRH850F1L100 and Altera’s DE0-Nano can be used as

ECU-Hardware. This kit makes it possible to simulate de-

velopment of automotive software for real cars on a small

scale. The appearance of the kit is shown in Fig. 7.

4.1.2 RC-car Control System

Center for Embedded Computing Systems, Nagoya Uni-

versity and its cooperators developed RC-car control

system according to AUTOSAR specification. TOP-

PERS/ATK2[9], provided by TOPPERS Project[10], is em-

ployed for the OS of the system. The target hardware of

this program is HSBRH850F1L100 and DE0-Nano. In addi-

tion, the program for HSBRH850F1L100 has two versions:

the OS task version and the SW-C version. In the OS task

version, all the applications are implemented as OS tasks.

On the other hand, they are implemented as SW-Cs in the

SW-C version of the program. Only the OS task version of

the program is provided for DE0-Nano.

As specified in AUTOSAR, RTE is required for running

SW-Cs. RTE can be generated with the use of RTE gener-

ator[11] provided by TOPPERS Project.

4.1.3 Range Detection Sensor

We employed URM37[12] as a range detection sensor. It

measures the distance to obstacles ahead by emitting ultra-

sonic waves. Behavior of URM37 is shown in Fig. 8. When

a trigger pulse is sent to COMP/TRIG pin of URM37, it

measures the distance and returns a pulse via PWM pin.

The width of the returned pulse is in proportion to the mea-

sured distance, 50 µm corresponding to 1 cm.

	RC-car	
Control	System�

Range	Detec3on	Sensor�
CDD	SW-C�

Automa3c	Braking�
Applica3on	SW-C�

Measured	
Distance�

Automa3c	
Braking	

Instruc3on�

Fig. 9 The configuration of the system we developed

4.2 Applying Our Method to CDD Generation

A CDD of URM37 is required to have roughly two func-

tions: pulse sending/receiving function and pulse width

measuring function. Thus, we implemented Device Driver

Form File of URM37 which has an initialization module and

modules for the two functions. Codes for the pin location,

the operating frequency and other processings depending on

ECU-Hardware were abstracted in Device Driver Form File

based on the rule set out in 3.2. The number of lines of

Device Driver Form File was 112. 15 places were abstracted

by 14 Abstract Expressions.

Next, we implemented ECU-Hardware Configuration

Files for HSBRH850F1L100 and DE0-Nano. Concrete codes

for Abstract Expressions in Device Driver Form File were de-

scribed complying with the rule in 3.2. The number of lines

was 46 for HSBRH850F1L100 and 14 for DE0-Nano.

We obtained a CDD SW-C for each ECU-Hardware by

inputting those files into the SW-C Generator of the tool.

The number of lines of the generated CDD SW-C was 144

for HSBRH850F1L100 and 112 for DE0-Nano.

4.3 Implementation of Automatic Braking Sys-

tem

We developed an automatic braking application SW-C,

which automatically stops the vehicle when the distance to

obstacles ahead is shorter than the threshold. The configu-

ration of the system with the automatic braking application

is shown in Fig. 9. The automatic braking application SW-

C calls the range detection sensor CDD SW-C to get the

distance to obstacles ahead. The automatic braking appli-

cation SW-C determines whether automatic braking should

be executed or not, and sends an instruction to the RC-car

control system.

We utilized the ARXML Generator when integrating the

application with the SW-C version of the RC-car control sys-

tem for HSBRH850F1L100. We described the information

of the range detection sensor CDD SW-C and the automatic

braking application SW-C on Additional SW-C Configura-

Table 3 Lines of codes required to write and generated by the
tool

ECU-Hardware required to write generated by the tool

HSBRH850F1L100 46 lines 144 lines
DE0-Nano 14 lines 112 lines

c⃝ 2017 Information Processing Society of Japan 5

IPSJ ESW2017 Research Paper

9

IPSJ SIG Technical Report

tion File. We input the ARXML files of the original RC-car

control system and Additional SW-C Configuration File into

the ARXML Generator, and obtained integrated ARXML

files. Since the SW-C version of the RC-car control sys-

tem is not provided for DE0-Nano, we developed necessary

ARXML files without the tool.

We built the software and downloaded it onto each of

HSBRH850F1L100 and DE0-Nano. We confirmed that the

instruction of automatic braking was normally transmitted

on RC-car kit.

5. RELATED WORK

There are some related approaches that help developing

automotive software.

In [13], the authors propose use of DSL in modeling situa-

tion awareness for Car-to-X applications. In their approach,

application codes are generated from DSL description that

defines the way the application runs. It helps porting ap-

plications into other automotive systems that use different

languages.

[14] proposes a protocol analyzer with application level

communication abstractions and complex scenarios. The

proposed protocol analyzer can specify, monitor and test

complex scenarios. The authors also presented a DSL based

on their approach so that automotive software developers

can use their approach without special knowledge.

In [15], the authors proposes a basic software (BSW) con-

figuration generator. Their generator refers to a spread-

sheet which defines hardware-software interface (HSI) infor-

mation, and generates BSW drivers and software interfaces.

Their approach closes the gap between model-driven sys-

tem engineering tools and software engineering tools, and

enhances model-based software engineering framework for

automotive software.

[16] proposes an approach to relocate AUTOSAR compo-

nents between ECUs without changing the overall function-

alities. It helps developers compare possible architectures

during the design or prototyping phases.

6. CONCLUSION

We have proposed a method to generate CDD SW-Cs for

the purpose of reducing the labor and the cost for CDD de-

velopment and improving the efficiency of development of

automotive software. When developing CDD SW-Cs with

the proposed method, developers describe the necessary in-

formation which is dependent on the target ECU-Hardware

on ECU-Hardware Configuration File with DSL. A CDD

SW-C can be obtained by inputting Device Driver Form

File and ECU-Hardware Configuration File to the proposed

CDD generator. Moreover, by describing the configuration

of SW-Cs on Additional SW-C Configuration File and in-

putting it with the ARXML files of the existing system into

the tool, developers can obtain merged ARXML files.

The proposed method saves time and effort for develop-

ing CDDs. CDD SW-Cs can easily be generated just by

writing DSL descriptions. When the ECU-Hardware is re-

placed by a different kind of ECU-Hardware, a CDD SW-C

for the new ECU-Hardware can be easily obtained. In ad-

dition, when integrating developed SW-Cs into an existing

automotive system, appropriately integrated ARXML files

can be obtained without other ARXML editing tools.

In future work, we would evaluate our CDD generator by

comparing a SW-C developed with the tool and one with-

out it in the amount of code and execution time. We would

also simplify the rule of descriptions in Additional SW-C

Configuration File. In the current rule, information about

one SW-C is divided into information for the Configuration

section and information for the Description section. For

convenience, we would like to put it into one place.

References

[1] Sakurai, T.: Current Status of Automotive Embedded Soft-
ware : AUTOSAR and ISO 26262 (Reliability and Safety of
Embedded Systems) (in Japanese), Reliability Engineering
Association of Japan, Vol. 36, No. 4, pp. 197–205 (2014).

[2] AUTOSAR: AUTomotive Open System ARchitecture (on-
line), http://www.autosar.org/ (2016.07.04).

[3] Fürst, S., Mössinger, J., Bunzel, S., Weber, T., Kirschke-
Biller, F., Heitkämper, P., Kinkelin, G., Nishikawa, K. and
Lange, K.: AUTOSAR–A Worldwide Standard is on the
Road, 14th International VDI Congress Electronic Systems
for Vehicles, Baden-Baden, Vol. 62 (2009).

[4] Suzumura, N. and Katsuki, S.: Overview and Trends of
European Automotive Embedded Technology Approach (in
Japanese), EMB, Vol. 9, pp. 1–12 (2009).

[5] Fennel, H., Bunzel, S., Heinecke, H., Bielefeld, J., Fürst, S.,
Schnelle, K.-P., Grote, W., Maldener, N., Weber, T., Wohlge-
muth, F. et al.: Achievements and exploitation of the AU-
TOSAR development partnership, Convergence, Vol. 2006,
p. 10 (2006).

[6] HOKUTO DENSHI: HSBRH850F1L100 (online),
http://www.hokutodenshi.co.jp/7/HSBRH850F1L100.htm
(2016.07.04).

[7] Terasic: DE0-Nano (online), http://www.terasic.com.tw/
cgi-bin/page/archive.pl?Language=English&CategoryNo=
165&No=593&PartNo=2 (2016.07.04).

[8] DENSHI, H.: RC-car kit (online, in Japanese), http:
//www.hokutodenshi.co.jp/7/HSBRH850F1L100.htm#rccar
(2016.07.04).

[9] TOPPERS Project: TOPPERS/ATK2 (online), https://
www.toppers.jp/en/atk2.html (2016.07.04).

[10] TOPPERS Project: https://www.toppers.jp/en/index.
html (2016.07.04).

[11] TOPPERS Project: TOPPERS/A-RTEGEN (online,
in Japanese), https://www.toppers.jp/a-rtegen.html
(2016.07.04).

[12] DFRobot: URM37 V3.2 Ultrasonic Sensor (online),
http://www.dfrobot.com/wiki/index.php/URM37_V3.
2_Ultrasonic_Sensor_(SKU:SEN0001)#Specification
(2016.07.04).

[13] Schafer, J. and Klein, D.: Implementing Situation Awareness
for Car-to-X Applications Using Domain Specific Languages,
Vehicular Technology Conference (VTC Spring), 2013 IEEE
77th, IEEE, pp. 1–5 (2013).

[14] Reichert, T., Klaus, E., Schoch, W., Meroth, A. and
Herzberg, D.: A language for advanced protocol analysis in
automotive networks, 2008 ACM/IEEE 30th International
Conference on Software Engineering, IEEE, pp. 593–602
(2008).

[15] Macher, G., Obendrauf, R., Armengaud, E. and Kreiner,
C.: Automated generation of basic software configuration of
embedded systems, Proceedings of the 2015 Conference on
research in adaptive and convergent systems, ACM, pp. 461–
464 (2015).

[16] Saudrais, S. and Chaaban, K.: Automatic relocation of au-
tosar components among several ecus, Proceedings of the
14th international ACM Sigsoft symposium on Component
based software engineering, ACM, pp. 199–204 (2011).

c⃝ 2017 Information Processing Society of Japan

IPSJ ESW2017 Research Paper

10

