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Yoshio Okamoto5,6 André van Renssen2,3 Marcel Roeloffzen2,3

Taichi Shiitada5 Shakhar Smorodinsky1

Abstract: We prove a geometric version of the graph separator theorem for the unit disk intersection graph:
for any set of n unit disks in the plane there exists a line ℓ such that ℓ intersects at most O(

√
(m+ n) logn)

disks and each of the halfplanes determined by ℓ contains at most 2n/3 unit disks from the set, where m is
the number of intersecting pairs of disks. We also show that an axis-parallel line intersecting O(

√
m+ n)

disks exists, but each halfplane may contain up to 4n/5 disks. We give an almost tight lower bound (up to
sublogarithmic factors) for our approach, and also show that no line-separator of sublinear size in n exists
when we look at disks of arbitrary radii, even when m = 0. Proofs are constructive and suggest simple
algorithms that run in linear time. Experimental evaluation has also been conducted, which shows that for
random instances our method outperforms the method by Fox and Pach (whose separator has size O(

√
m)).

Balanced separators in graphs are a fundamental tool and

used in many divide-and-conquer-type algorithms as well as

for proving theorems by induction. Given an undirected

graph G = (V,E) with V as its vertex set and E as its

edge set, and a non-negative real number α ∈ [1/2, 1], we

say that a subset S ⊆ V is an α-separator if the vertex set

of G \ S can be partitioned into two sets A and B, each

of size at most α|V | such that there is no edge between A

and B. The parameter α determines how balanced the two

sets A and B are in terms of size. For a balanced separator

to be useful we want both the size |S| of the separator and

α ≥ 1/2 to be small.

Much work has been done to prove the existence of sep-

arators with certain properties in general sparse graphs.

For example, the well-known Lipton–Tarjan planar separa-

tor theorem [14] states that for any n-vertex planar graph,

there exists a 2/3-separator of size O(
√
n). Similar theorems

have been proven for bounded-genus graphs [11], minor-free

∗A preliminary version was presented at 15th Algorithms and
Data Structures Symposium (WADS 2017), and a full version is
available as arXiv:1709.02579 [cs.CG]. Chiu, van Renssen and
Roeloffzen were supported by JST ERATO Grant Number JPM-
JER1201, Japan. Korman was supported in part by KAKENHI
Nos. 12H00855 and 17K12635. Katz was partially supported by
grant 1884/16 from the Israel Science Foundation. Okamoto was
partially supported by KAKENHI Grant Numbers JP24106005,
JP24220003 and JP15K00009, JST CREST Grant Number JP-
MJCR1402, and Kayamori Foundation for Informational Science
Advancement. Smorodinsky’s research was partially supported by
Grant 635/16 from the Israel Science Foundation.
1 Ben-Gurion University of the Negev, Beer-Sheva, Israel
2 National Institute of Informatics, Tokyo, Japan
3 JST, ERATO, Kawarabayashi Large Graph Project, Japan
4 Tohoku University, Sendai, Japan
5 The University of Electro-Communications, Tokyo, Japan
6 RIKEN Center for Advanced Intelligence Project, Tokyo,

Japan

graphs [3], low-density graphs, and graphs with polynomial

expansion [12], [19].

These separator results apply to graph classes that do not

contain complete graphs of arbitrary size, and each graph in

the classes contains only O(n) edges, where n is the num-

ber of vertices. Since any α-separator of a complete graph

has Ω(n) vertices, the study of separators for graph classes

that contain complete graphs seems useless. However, it is

not clear how small a separator can be with respect to the

number of edges for possibly dense graphs.

Our focus of interest is possibly dense geometric graphs,

which often encode additional geometric information other

than adjacency. Even though one can use the separator tools

in geometric graphs, often the geometric information is lost

in the process. As such, a portion of the literature has fo-

cused on the search of balanced separators that also preserve

the geometric properties of the geometric graph.

Among several others, we highlight the work of Miller et

al. [17], and Smith and Wormald [20]. They considered in-

tersection graphs of n balls in Rd and proved that if every

point in d-dimensional space is covered by at most k of the

given balls, then there exists a (d + 1)/(d + 2)-separator of

size O(k1/dn1−1/d) (and such a separator can be found in

deterministic linear time [6]). More interestingly, the sepa-

rator itself and the two sets it creates have very nice proper-

ties; they show that there exists a (d−1)-dimensional sphere

that intersects at most O(k1/dn1−1/d) balls and contains

at most (d + 1)n/(d + 2) balls in its interior and at most

(d+1)n/(d+2) balls in its exterior. In this case, the sphere

acts as the separator (properly speaking, the balls that inter-

sect the sphere), whereas the two sets A and B are the balls

that are inside and outside the separator sphere, respec-
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tively. Note that the graph induced by the set A consists

of the intersection graph of the balls inside the separator

(similarly, B for the balls outside the separator and S for

the balls intersecting the sphere).

We emphasize that, even though the size of the separator

is larger than the one from Lipton–Tarjan for planar graphs

(specially for high values of d), the main advantage is that

the three subgraphs it creates are geometric graphs of the

same family (intersection graphs of balls in Rd). The bound

on the separator size does not hold up well when k is large,

even for d = 2: if
√
n disks overlap at a single point and the

other disks form a path we have k =
√
n and m = Θ(n),

where m is the number of edges in the intersection graph.

Hence, the separator has size O(
√
kn) = O(m3/4).

Fox and Pach [7] gave another separator result that fol-

lows the same spirit: the intersection graph of a set of Jor-

dan curves in the plane has a 2/3-separator of size O(
√
m)

if every pair of curves intersects at a constant number of

points.*1 A set of disks in R2 satisfies this condition, and

thus the theorem applies to disk graphs. Their proof can

be turned into a polynomial-time algorithm. However, we

need to construct the arrangement of disks, which takes

O(n22α(n)) time, where α(n) is the inverse Ackermann func-

tion [5], and in practice an efficient implementation is non-

trivial.

From a geometric perspective these two results show that,

given a set of unit disks in the plane, we can always find a

closed curve in the plane (a circle [17], [20] and a Jordan

curve [7], respectively) to partition the set. The disks in-

tersected by the curve are those in the separator, and the

two disjoint sets are the disks inside and outside the curve,

respectively.

Results

In this paper we continue the idea of geometric separators

and show that a balanced separator always exists, even if we

constrain the separator to be a line (see Fig. 1). Given a set

of n unit disks with m pairs of intersecting disks, we show

that a line 2/3-separator of size O(
√

(m+ n) logn) can be

found in expected O(n) time, and that an axis-parallel line

4/5-separator of size O(
√
m+ n) can be found in determin-

istic O(n) time.

Comparing our results with the previous work, our al-

gorithm matches or improves in four ways, see also Ta-

ble 1. (i) simplicity of the shape: circle [17], [20] vs. Jor-

dan curve [7] vs. our line, (ii) balance of the sets A and

B: 3/4 [17], [20] vs. 2/3 for both [7] and us, (iii) size of

the separator: O(m3/4) [17], [20] vs. O(
√
m) [7] vs. our

Õ(
√
m).*2 Finally, (iv) our algorithms are easy to imple-

ment and asymptotically faster: O(n) [17], [20] vs. Õ(n2) [7]

vs. our O(n).

*1 Without restriction on the number of intersection points for ev-
ery pair of curves, the bound of O(

√
m logm) can be achieved

[16].
*2 The Õ(·) notation suppresses sublogarithmic factors. In par-

ticular, we note that our separator is slightly larger than the

We emphasize that our results focus on unit disk graphs,

while the other results hold for disk graphs of arbitrary radii,

too. Indeed, if we want to separate disks of arbitrary radii

with a line, we show that the separator’s size may be as

large as Ω(n). We also prove that for unit disks our algo-

rithm may fail to find a line 2/3-separator of size better than

O(
√

m log(n/
√
m)) in the worst case. In this sense, the size

of our separators is asymptotically almost tight.

Experimental results are also presented. We evaluate the

performance of our algorithm, compare it with the method

by Fox and Pach [7] in terms of the size of the produced

separators for random instances, and conclude that our al-

gorithm outperforms theirs for the intersection graphs of

unit disks.

Working with a line separator for intersecting disks has

some difficulty. If we chose to separate pairwise disjoint ge-

ometric objects by a Jordan curve, then we could employ a

volume argument for the interior of the curve. However, we

cannot use a volume argument for line separators since the

line does not determine a bounded region.

Other Related Work

In a different context, line separators of pairwise disjoint

unit disks have also been studied. Since the disks are pair-

wise disjoint, the intersection graph is trivially empty and

can be easily separated. Instead, the focus is now to find

a closed curve that intersects few disks, such that the two

connected components it defines contain roughly the same

number of disks.

Alon et al. [2] proved that for a given set D of n pairwise

disjoint unit disks,*3 there exists a slope a such that every

line with slope a intersects O(
√
n logn) unit disks of D. In

particular, the halving line of that slope will be a nice sep-

arator (each halfplane will have at most n/2−O(
√
n logn)

disks fully contained in). Their proof is probabilistic, which

can be turned into an expected O(n)-time randomized algo-

rithm [15]. A deterministic O(n)-time algorithm was after-

wards given by Hoffmann et al. [13], who also showed how

to find a line ℓ that intersects at most O(
√

n/(1− 2α)) unit

disks and each halfplane contains at most (1−α)n disks (for

any 0 < α < 1/2). Löffler and Mulzer [15] proved that there

exists an axis-parallel line ℓ such that ℓ intersects O(
√
n)

disks, and each halfplane contains at most 9n/10 unit disks.

For comparison purposes, these three results are also shown

in Table 1.

A significant amount of research has focused on the search

for balanced line separators of unit disk graphs in the plane,

but unlike the ones mentioned before no guarantee is given

on the shape of the separator. Yan et al. [21] studied a sep-

arator of unit disk graphs for designing a low-delay compact

routing labeling scheme for ad-hoc networks modeled by unit

disk graphs. Their separator is a 2/3-separator, but has no

Fox-Pach separator.
*3 The result extends to pairwise disjoint fat objects that are con-

vex and of similar area (see Theorem 4.1 of [2]). For the sake
of conciseness we only talk about unit disks.
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(a) (b)

Fig. 1 An example of a line separator of a unit disk graph. (a) A family of unit disks
(blue) and a line (red). (b) Removing the disks intersected by the red line leaves a
disconnected graph.

Table 1 Comparison of our results with other geometric separator results.

result separator shape balance separator size run-time object type

[17], [20] circle 3/4 O(m3/4) O(n) arbitrary disks

[7] Jordan curve 2/3 O(
√
m) Õ(n2) pseudodisks

This paper line 2/3 Õ(
√
m) O(n) unit disks

This paper axis-parallel line 4/5 O(
√
m) O(n) unit disks

[2], [13], [15] line 1/2 O(
√
n logn) O(n) disjoint unit disks

[13] line 1− α O(
√

n(1− 2α)) O(n) disjoint unit disks
[15] axis-parallel line 9/10 O(

√
n) O(n) disjoint unit disks

size guarantee. Fu and Wang [9] studied the case where a

unit disk graph is a
√
n×

√
n grid generated from a regular

grid, and proved that there exists a line 2/3-separator of size

at most 1.129
√
n. They used the obtained separator to give

the first subexponential-time algorithm for the protein fold-

ing problem in the HP model. The bound of 1.129
√
n was

afterwards improved by Fu et al. [8] to 1.02074
√
n. We note

that it is not known whether a minimum-size 2/3-separator

of a unit disk graph can be computed in polynomial time,

although the problem is known to be NP-hard for graphs of

maximum degree three [4], 3-regular graphs [18], and planar

graphs [10]. Finally, Alber and Fiala [1] studied the exis-

tence of separators for disk intersection graphs, but ask for

additional constraints to the set of disks (such as requiring

the disks to be at least λ units apart, or bounding the ratio

between the radii of the smallest and the largest disks).
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