
A distributed algorithms simulator in the interleaving model

Tomohiro Yasuda∗, Hiroaki Karasawa†, Tadafumi Yoshida‡, Fumito Nakamura§, and
Yukihiro Hamada¶

Abstract: In a distributed system, processes do their tasks asynchronously by computing locally and

exchanging messages with other processes. Due to the asynchrony of processes and a communication

delay, it is difficult to observe the behaviour of a distributed algorithm and to verify the correctness of

the algorithm. To this end, various distributed algorithms simulators have been developed. The one

we developed consists of two components, a descriptor and a simulator. Using the descriptor, a user

defines processes and messages. A process is defined by states, variables, events, and parameters. A

message is defined by name and variable type. Then, the descriptor outputs skeleton codes written in

Java. Based on the skeleton codes, the user describes distributed algorithm codes in Java using any

editor. The descriptor complies the distributed algorithm codes. The simulator is in the interleaving

model. It simulates message delivery with a communication delay and process failure. It runs both

in a manual mode and in an automatic mode. It also saves a simulation both in a text file and in

a format that can be run repeatedly in the simulator. Furthermore, it partly provides a function

deadlock detection.
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1 Introduction

A distributed algorithm is a collection of algorithms

such that each algorithm is executed by a distinct

process, and that all processes achieve their com-

mon purpose. The algorithm of a process consists

of several events. Each event is classified into one of

three types; send event, receive event, and internal

event. The execution order of events by a process

may vary according to the state of the process. All

processes execute events asynchronously.

Due to the asynchrony of event execution and

the communication delay of a sent message, it is

difficult to observe the behaviour of a distributed

algorithm and to verify the correctness of the algo-

rithm. To this end, various distributed algorithms

simulators have been developed [3, 8].

A distributed algorithms simulator in [3] was

written in Java. It provides GUI and enables a user

to construct any communication network topology.

It simulates a distributed algorithm that the user

wrote in Java. However, it cannot simulate the com-

munication delay of a sent message and the failure

of a process. The number of processes is limited to

11.

A distributed algorithms simulator DAJ in [8]

was also written in Java. DAJ runs in a standalone

mode with (or without) visualization and as an ap-

plet embedded in a Web page. DAJ provides GUI

and enables a user to construct any communication

network topology. DAJ simulates a distributed al-

gorithm that the user wrote in Java. Execution of

events is in a round robin fashion or by the schedule

that the user defined. DAJ simulates the communi-

cation delay of a sent message. A link between two

processes is unidirectional and it delivers messages

only in the FIFO mode. DAJ simulates losing and

duplicating a message.

We developed a distributed algorithms simula-

tor H-DAS. You can download H-DAS in the near
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future. H-DAS consists of two components, a de-

scriptor and a simulator. Using the descriptor, a

user defines processes and messages. A process is

defined by states, variables, events, and parame-

ters. A message is defined by name and variable

type. Then, the descriptor outputs skeleton codes

written in Java. Based on the skeleton codes, the

user describes distributed algorithm codes in Java

using any editor. The descriptor complies the dis-

tributed algorithm codes. The simulator is in the

interleaving model and simulates at most 1000 pro-

cesses. It provides GUI and simulates message de-

livery with a communication delay and process fail-

ure. It runs both in a manual mode and in an au-

tomatic mode. In the automatic mode, the execu-

tion order of events is determined randomly. It also

saves a simulation both in a text file and in a for-

mat that can be run repeatedly in the simulator.

Furthermore, it partly provides a function deadlock

detection.

The rest of this article is organized as follows.

In Section 2, we describe fundamental knowledge of

a distributed algorithm and how to use H-DAS. In

Section 3, we explain the descriptor. In Section 4,

we explain the simulator. In Section 5, we summa-

rize H-DAS and describe future development.

2 Preliminaries

2.1 Process and Event

In general, a distributed system is modelled by the

set of processes and the set of communication chan-

nels. A process is an abstraction of a sequential

program that is executed on a computer. A chan-

nel connects two processes. We denote the number

of processes in a distributed system by N .

In H-DAS, we model a distributed system only

by the set of processes as follows. A process is de-

fined by the set of states and the set of events. The

state of a process is determined by the values of

local variables, a send buffer, and a receive buffer.

We assume that each process can send a message

directly to every other process. The send buffer

is a sequence of messages that was sent but not

delivered yet. The receive buffer is a sequence of

messages that was delivered but not received yet.

An event is a short sequential program that is

executed by a process and it may change the state

of the process. All processes execute events asyn-

chronously. Each event is classified into one of three

types; send event, receive event, and internal event.

We assume that in a send event, a process can put

a message or the same messages whose destinations

are distinct to its send buffer, but it cannot put dif-

ferent messages to the send buffer. Each message is

assigned with a finite message delay randomly. Af-

ter the message delay (the concept of global time is

described in the following subsection), the message

is removed from the send buffer and it is put the

receive buffer of the destination process. We also

assume that in a receive event, a process can re-

move and get exactly one message from its receive

buffer.

2.2 Model of a Computation

In order to observe the behaviour of a distributed

algorithm, three models of a computation are

used. They are interleaving model, happened be-

fore model, and potential causality model [2]. Each

model is defined formally as a binary relation on

the set of all events that all processes execute. Let

Pi denote a process and Si the set of all events that

Pi executes. Let S = S0 ∪ S1 ∪ · · · ∪ SN−1.

The interleaving model is a binary relation such

that a total order is defined on S. The happened

before model is a binary relation such that a total

order is defined on each Si and that a partial order is

defined on S. The potential causality model is a bi-

nary relation such that a partial order is defined on

each Si. Figure 1 and Figure 2 illustrate a run in the

happened before model and a run in the potential

causality model, respectively. Observe that a run in

the potential causality model is equivalent to a set

of runs in the happened before model. Similarly,

a run in the happened before model is equivalent

to a set of runs in the interleaving model. H-DAS

simulates a run in the interleaving model.
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Process Event

P0

P1

P2

e0 e1 e2 e3 e4

f0 f1 f2 f3 f4

g0 g1 g2 g3 g4

Figure 1: A run in the happened before model.

Process Event

P0

e0 e2 e4

P1
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e1 e3

f2

Figure 2: A run in the potential causality model.

2.3 Logical Clock

A logical clock was devised by Lamport [4]. It is

a mapping from the set of all events to the set of

natural numbers. It enables us to determine a total

order on the set of all events.

H-DAS uses a kind of vector clock called direct-

dependency clock [2]. A vector clock is a mapping

from the set of all events to the set ofN -dimensional

vectors whose component is a natural number. It

enables us to determine a partial order on the set of

all events. Note that in a real distributed system,

only a partial order on the set of all events can be

observed. H-DAS simulates a run in the interleav-

ing model i.e., a total order on the set of all events

such that the run is consistent with the partial order

on the set of all events.

We now present a direct-dependency clock algo-

rithm. It is described from the point of view of local

states. We denote processes by P0, P1, · · · , PN−1.

Let s denote a local state of a process and s.p the

subscript of a process on which state s occurs. Let

s.v[ ] denote the vector of a local state s.

A direct-dependency clock algorithm
Pi ::

var v : array[0..N − 1] of integer

initially (∀j : j ̸= i : v[j] = 0) and (v[i] = 1)

send event (s, send, t) :

// s.v[t.p] is appended to a message.

t.v[t.p] := s.v[t.p] + 1;

receive event (s, rcv[u], t) :

// the message was sent in state u.

t.v[t.p] := max{s.v[t.p], u.v[u.p]}+ 1;

t.v[u.p] := max{s.v[u.p], u.v[u.p]};

internal event (s, internal, t) :

t.v[t.p] := s.v[t.p] + 1;

A sample execution of the direct-dependency

clock algorithm is shown in Figure 3.

Process Event

[1, 0, 0] [2, 0, 0] [3, 1, 0] [4, 1, 0] [5, 1, 0]

1 3

[0, 1, 0] [0, 2, 0] [0, 3, 0] [0, 4, 0]

[0, 0, 1] [0, 0, 2] [3, 0, 4]

P0

P1

P2

e0 e1 e3e2

f0 f1 f2

g0 g1

Figure 3: A sample execution of the direct-
dependency clock algorithm.

2.4 How to Use H-DAS

2.4.1 Install

Download a tar file. You can download the tar file in

the near future. Extract files from the tar file. The

structure of extracted directories is partly shown in

Figure 4.

H−DAS

bin

channel

descriptor

algorithms

model

simulator

startup

Figure 4: The structure of directories.
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2.4.2 Startup H-DAS

Move to directory “bin”, and execute “java

startup.Controller”. Then, the startup screen ap-

pears as shown in Figure 5.

Figure 5: Startup screen.

When you use H-DAS for the first time, it is re-

quired to configure the path to file “tools.jar” and

the path to the directory in which a system direc-

tory is saved. A file “tools.jar” contains classes used

by Java. A system directory stores distributed al-

gorithm codes and a das file. A das file is created

by the descriptor. Configuring paths can be done

using the dialogue as shown in Figure 8. The di-

alogue appears when button “Configure Paths” in

Figure 5 is clicked.

2.4.3 Online Help

H-DAS has an online help that is referred with a

browser. The items of online help are “Config-

ure paths”, “Descriptor”, “Simulator”, and “About

H-DAS”. You can refer the online help from the

startup screen, descriptor window, and simulator

window.

3 Descriptor

3.1 Overview

The descriptor appears by clicking button “Descrip-

tor” in Figure 5. It is shown in Figure 9. Using the

descriptor, we define processes and messages. A

process is defined by states, variables, events, and

parameters. A message is defined by name and vari-

able type.

After defining processes and messages, we can

output several skeleton codes written in Java in

the pre-specified directory. A das file is also out-

put. The skeleton codes are algorithmnamePro-

cess.java, algorithmnameState.java, and message-

nameMessage.java.

Based on the skeleton codes, we describe dis-

tributed algorithm codes in Java using any editor.

After saving distributed algorithm codes, we ex-

ecute “build” operation. The build operation con-

sists of the following four steps.

1. Create a system file (systemnameSys-

tem.java) from distributed algorithm codes.

2. Check whether all algorithm files were saved

after file “systemname.das” had been saved.

3. Check whether each message model is used in

some algorithm code and whether each event

model deals with valid message models.

4. Call Java compiler.

4 Simulator

4.1 Overview

The simulator appears by clicking button “Simula-

tor” in Figure 5. At first, the simulator is as shown

in Figure 6.

Figure 6: Initial screen of simulator.

By clicking button “New” in Figure 6, file selec-

tor as shown in Figure 7 appears.

Figure 7: Selecting a das file.
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Figure 8: Configuring paths.

Figure 9: Descriptor.

Figure 10: Simulator.
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After selecting a das file, setting dialogue as shown

in Figure 11 appears. In the setting dialogue, we

specify the number of processes, a failure probabil-

ity, an upper bound on communication delay, and

channel mode. We also specify whether we use a

coterie.

Figure 11: Specifying simulation settings.

The failure probability p is a threshold that each

process fails if the value of variable “health” of the

process is less than p/1000. The variable “health”

of each process is assigned a random number ini-

tially and after every event.

Any two processes are assumed to be connected

by a channel. We model a communication delay as

follows. If a process u sends a message to a process

v, then the message is assigned a communication

delay d randomly, and put in the send buffer of u.

After d events, the message is removed from the

send buffer of u, and it is put the receive buffer of

v. We can also select whether the channel mode is

FIFO or not.

Let U denote the set of all processes. Let

C denote a set of subsets Qi’s of U . C =

{Q0, Q1, · · · , Qm−1} is called coterie if ∀i, j : i ̸=
j : ¬(Qi ⫅ Qj) and ∀i, j : Qi ∩Qj ̸= ∅. A coterie is

used to implement mutual exclusion.

After we input all settings, we click button

“OK” in Figure 11. Then, we have simulator win-

dow as shown in Figure 10.

4.2 Functions

4.2.1 Global Time

Since H-DAS simulates a run of a distributed algo-

rithm in the interleaving model, there is a mecha-

nism that indicates the global time. It is the num-

ber of events that is shown in the upper right side

of Figure 10. Initially, the number of events is 0.

If a process executes an event, then the number

of events is incremented. In order to implement a

communication delay, we introduce “NULL event”.

“NULL event” is an event in which no process ex-

ecutes an event and only the number of events is

incremented.

4.2.2 FIFO Mode in a Channel

As described in Subsection 2.1, channels are mod-

elled by send buffers and receive buffers of pro-

cesses. We explain how FIFO mode in a channel

is implemented.

Let m denote a message that is sent from pro-

cess Pi to process Pj . Let t denote the global time

at which m is generated. Let d denote a commu-

nication delay that is assigned randomly to m and

D denote an upper bound on communication delay.

Let tm = t+ d. Note that d satisfies 1 ≦ d ≦ D.

For the channel from Pi to Pj , we use a queue

QMi,j and a priority queue QTi,j in which a smaller

value has a higher priority. When messagem is gen-

erated by Pi, m is inserted to QMi.j and tm is in-

serted to QTi,j . Assume that QMi,j is ⟨m0,m1,m2⟩
and QTi,j is ⟨14, 20, 22⟩. Note that tm0 is 14 or 20

or 22. When the global time is 14, 14 is removed

from QTi,j , m0 is removed from QMi,j , m0 is re-

moved from the send buffer of Pi, and m0 is put in

the receive buffer of Pj .

4.2.3 Send Buffer and Receive Buffer

For each process Pi, there are button “Send Buffer”

and button “Receive Buffer” in the simulator win-

dow. Each button always indicates the number of

messages in the buffer. If button “3 messages” is

clicked, then a small windows as shown in Figure

12 appears. It enables us to check the contents of a

receive (send) buffer.

Figure 12: Checking a receive buffer.

4.2.4 Event

For each process Pi, there is button “Event” in the

simulator window. This button always indicates the
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number of events that Pi can execute. Assume that

Pi can execute two events. If button “2 events”

of Pi is clicked, then a small windows as shown in

Figure 13 appears.

Figure 13: Selecting an event.

Since Pi can execute two events, we can select

one of them using the drop-down list in the small

window. If the selected event is a receive event

and there are more than one message in the re-

ceive buffer, then we must select exactly one mes-

sage among them.

After selecting a target event and a target pro-

cess, we click button “Execute”. Then, the specified

event is executed.

When a send event is executed, we may have to

execute “NULL event” repeatedly. This is because

each message is assigned a communication delay

randomly. “NULL event” is executed by clicking

the button that is labeled with Φ in the upper side

of Figure 10. In a send event, if process Pi sends

the same message to several processes, then all mes-

sages are put in the send buffer of Pi. In this case,

too, each message is assigned a communication de-

lay randomly.

On the other hand, in a receive event, each pro-

cess can receive exactly one message.

We can undo executed events repeatedly. This

is implemented by that the simulator saves a se-

quence of all global states automatically from the

initial global state until the current global state.

There are three types of undo function. They differ

in the number of events to be undone; one, a user

specified number, and all.

The simulator can save a sequence of executed

events both in a text file and in a format that can

be executed again. We call this function “event his-

tory”. In the lower side of the simulator, there is a

text output area. It outputs about initial settings

of a simulation and all executed events. Function

“event history” saves these information.

In the upper side of Figure 10, there are 12 but-

tons. Among them, 6 buttons are labeled with one

or more green triangles; 3 buttons are labeled with

triangles that point right side and the remaining

3 buttons with triangles that point left side. The

former 3 buttons are used when we simulate along

“event history”. Using them, we execute one event,

the user specified number of events, or all events.

The latter 3 buttons are used when we undo exe-

cuted events and we go back along “event history”.

Using the simulator, we can simulate a dis-

tributed algorithm both in a manual mode and in

an automatic mode. In the manual mode, a user

selects an event and execute it. In the automatic

mode, the simulator selects an event randomly and

execute it.

In order to simulate in the automatic mode, we

click the button labeled with “Auto” in the upper

side of the simulator. Then, a dialogue for the set-

ting of automatic mode appears as shown in Figure

14.

Figure 14: Setting automatic mode.

If we select “Infinite” for the number of events

in the dialogue, the simulator executes events as

many times as possible. An upper bound on the

number of times depends upon the capacity of an

auxiliary memory. This is because the simulator

saves every 256 events from the main memory to

the auxiliary memory. If we select “Low speed” for

execution speed in the dialogue, we can catch up

with event-executions.

4.2.5 Deadlock Detection

The simulator partly provides a function deadlock

detection. If we describe a distributed algorithm

code so that it inherits classes “WantResponse” and

“PleaseResponseMessage”, then deadlock detection

is executed in the background. When a deadlock is
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detected, the simulator notices it by a small mes-

sage window.

4.3 Sample Algorithms

The following 5 sample algorithms are appended.

You can run them using the simulator without de-

scribing a distributed algorithm.

• Centralized

This algorithm solves a mutual exclusion

problem. In this algorithm, P0 is the coor-

dinator process, and the other processes are

client processes [2].

• Deadlock

This algorithm shows a function deadlock de-

tection. In this algorithm, for 0 ≦ i ≦ N − 2,

Pi sends a message to Pi+1, and PN−1 sends a

message to P0. For 0 ≦ i ≦ N −2, Pi requires

a response message from Pi+1, and PN−1 re-

quires a response from P0.

• Lamport

This algorithm solves a mutual exclusion

problem. It uses timestamped messages; they

are request messages, release messages, and

acknowledge messages [4].

• Leader Election

This algorithm solves a leader election prob-

lem. Processes are logically arranged so that

they form a cycle. For 0 ≦ i ≦ N − 2, Pi

sends messages to Pi+1, and PN−1 sends mes-

sages to P0. There are two types of messages;

(election, i) and (leader, i) [1].

• Maekawa

This algorithm solves a mutual exclusion

problem. Processes are logically arranged so

that they form a two dimensional grid. This

algorithm uses a coterie. The simulator pro-

vides coteries “Majority”, “Singleton”, and

“Crumbling Walls” [6, 7].

5 Concluding Remarks

We developed a distributed algorithms simulator H-

DAS. It consists of a descriptor and a simulator.

The descriptor helps us to describe a distributed

algorithm. We simulate the distributed algorithm

using the simulator to verify the correctness of the

algorithm. Since 5 sample algorithms are appended,

H-DAS may be useful in studying distributed al-

gorithms. We would like to append more sample

algorithms.

Unfortunately, there remain several bugs in H-

DAS. For example, the simulation of sample algo-

rithm “Maekawa” stops if we use a coterie “Single-

ton” or “Crumbling Wall”. Therefore, we must fix

known bugs.

We would like to add a new function to H-DAS

such that if a user defines a predicate on the prop-

erties of processes, then the simulator always indi-

cates the Boolean value of the predicate.
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