
－ 7－

社団法人 情報処理学会　研究報告

IPSJ SIG Technical Report

A Database Replication Middleware

with Fine-Grained Concurrency Control

Takeshi MISHIMA † and Hiroshi NAKAMURA †

† Research Center for Advanced Science and Technology, The University of Tokyo

4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan

e-mail: {mishima,nakamura}@hal.rcast.u-tokyo.ac.jp　
Abstract Database replication is an essential art for high performance and availability. If replication

functionalities can be implemented only in a middleware layer with no changes to existing database

servers, we can distill a lot of benefits from the setting. However, it is a big challenge to realize the

middleware without sacrificing throughput and consistency. In this paper, we propose LEFOMA, a new

synchronous database replication middleware with tuple based concurrency control guaranteeing snapshot

isolation, which needs no changes to database servers. The control avoids the deadlock against which

synchronous replication middlewares commonly come up. Moreover, providing fine-grained locking, the

control brings higher throughput. We show LEFOMA is not only practical but also low cost since we

implemented a prototype on top of PostgreSQL, whose code size is very small. Our experimental results

using TPC-C benchmark reveal that, compared to one of synchronous replication techniques, LEFOMA

provides higher throughput for high concurrent execution environment.

Keywords synchronous replication, middleware, fine-grain, snapshot isolation, deadlock

1. Introduction

Database replication is an essential art for high perfor-

mance and availability. If replication functionalities can be

implemented only in a middleware layer with no changes

to existing database servers, we can distill a lot of benefits

from the setting. First, we can circumvent vendor lock-

in, which we are dependent on a particular vendor, and

construct a cost-effective replication system using existing

any database server without modification at low cost. Sec-

ond, considering difficulty of modifying database servers,

because the source code of database servers is very huge

and complex, the separation of replication functionalities

from database servers promotes their independent evolu-

tion smoothly. Third, we can easily realize a heteroge-

neous database system, which helps us migrate from an

old database system to a new one.

Middleware-based database replication approaches can

be classified into asynchronous and synchronous replica-

tion. In asynchronous replication, a middleware updates

only master replica in real time and later extracts a write-

set1 from the master and then applies it to slave replicas.

Note that a temporal inconsistency between the master and

the slaves can occur, which originates in asynchronous up-

dates. In synchronous replication, a middleware keeps all

replicas exactly synchronized by updating all the replicas

simultaneously.

1 A writeset contains information necessary to recreate a transac-

tion’s modification on the master replica.

Middleware-based asynchronous replication has several

shortcomings, especially, the writeset handling and the

temporal inconsistency being serious, which limit the ad-

vantage of database replication, high performance and

availability. First, the writeset handling with no mod-

ification of database servers causes the deterioration of

throughput. To keep all replicas consistency, the order

of updating master replica must be the same as the order

of updating all slave replicas. Unfortunately, neither the

writeset extraction nor application is a standard feature

of database servers. Therefore, asynchronous middlewares

must decide the order of the writesets by executing com-

mit operations in a serialized fashion on a master and then

apply the writesets to all slaves in the same order serially.

Second, load balancing may not work out well because the

latest data may be only in a master. All operations of up-

date transactions2 must be executed on a master, which

may make the master bottleneck. To reduce the master’s

load, existing asynchronous approaches make middlewares

pick out read-only transactions and then slaves execute

them. However, a middleware can not distinguish read-

only and update transactions unless applications do not

inform the transaction’s type to the middleware, which

means that modification of existing API or application is

needed. Even if read-only transactions can be submitted

to slaves, their response times may increase because they

can not be executed until the latest writesets are applied

to the slaves. Moreover, both application of writesets and

2 An update transaction has at least one write operation.

2008－DBS－146  (2)

2008／9／21



－ 8－

execution of transactions can not be executed concurrently.

Finally, a master being single point of failure, a master’s

fault may lost the latest data and destroy consistency be-

tween replicas.

Synchronous replication does not suffer from the prob-

lems mentioned above, having neither the writeset han-

dling nor the temporal inconsistency. However, syn-

chronous replication has another problem of concurrency

control between replicas. If two write operations conflict3

but the order of the operations in one replica is not the

same as the orders in others, deadlock occurs. Surpris-

ingly, there are very few middlewares which solve the dead-

lock. Although Distributed versioning(DV) [2] is an exist-

ing synchronous middleware which solves the deadlock, it

has some shortcomings, the most serious being table based

locking. This coarse-grained locking limits concurrent exe-

cution of operations and consequently incurs deterioration

of throughput.

Unfortunately, the coarse-grained locking also spoils

popular snapshot isolation (SI) [3] widely used in practice.

This is one of the reasons that no existing synchronous

replication middleware provides SI.

In this paper, we tackle the problem of the synchronous

middlewares and contribute as follows:

• we propose LEFOMA, a new synchronous database

replication middleware with tuple based concurrency

control guaranteeing snapshot isolation, which needs

no changes to database servers. The control avoids

the deadlock against which synchronous replication

middlewares commonly come up. Moreover, providing

fine-grained locking, the control brings higher through-

put.

• We implemented LEFOMA using PostgreSQL without

no modification. The code size of LEFOMA is very

small, less than 2000 lines in C language. These mean

that LEFOMA is not only practical but also low cost.

• The experiments using TPC-C show that, compared

to DV, LEFOMA provides higher throughput for high

concurrent execution environment.

The remainder of this paper is organized as follows. Sec-

tion 2 presents the features of database servers that we

use. Section 3 addresses the deadlock against which syn-

chronous middlewares commonly come up and the existing

solution of the deadlock. Section 4 proposes LEFOMA,

a new synchronous database replication middleware with

tuple based concurrency control guaranteeing snapshot iso-

lation. Section 5 presents experimental results. Section 6

talks about related work. Section 7 concludes the paper.

3 Two write operations try to change the same data item simulta-

neously.

2. Features of Database Servers

In this section, we address features of database servers

that we use, which provides SI with the First Updater Wins

rule.

2.1 Snapshot Isolation

SI is a multi-version concurrency control [3]. A trans-

action Ti executing under SI acquires its own snapshot,

the committed state of the database, at the time that

Ti started, designated as start(Ti). In popular database

servers such as Oracle and PostgreSQL, start(Ti) is the

time just before the first read or write operation of Ti has

been executed and its snapshot is given by executing the

first operation implicitly.

Read and write operations of Ti are executed on its own

snapshot. The snapshot is changed by its own write oper-

ations, so if Ti reads data it has previously written, it will

read its own output. The snapshot is not altered by any

write operations of any other transactions. Therefore, Ti

may read stale data that another transaction has changed

and committed after start(Ti). This is the reason why SI is

weaker than one-copy-serializability (1SR)4[4]. Changes of

Ti’s snapshot are reflected to the original database at the

time Ti committed successfully, represented as end(Ti). We

say that two transactions T1 and T2 are concurrent if the

interval in time from start(T1) to end(T1) and that from

start(T2) to end(T2) overlap.

Although SI is weaker than 1SR, SI is implemented as

the strongest transactional guarantee in popular database

servers such as Oracle and PostgreSQL. Under SI, read

operations never are blocked by write operations and vise

versa. Only conflicting write operations may be blocked.

This increases the concurrent execution of operations and

thereby brings higher performance than 1SR.

2.2 The First Updater Wins Rule

we assume that database servers use First Updater Wins

rule[7], which is implemented popular database servers

such as Oracle and PostgreSQL, to prevent the lost up-

dates anomaly.

If transactions Ti and Tj are concurrent, and Ti updates

the data item x, then it will take a write lock on x; if Tj

subsequently attempts to update x while Ti is still active,

Tj will be prevented by the lock on x from making further

progress. If Ti then commits, Tj will abort; Tj will be

able to continue only if Ti drops its lock on x by aborting.

If, on the other hand, Ti and Tj are concurrent, and Ti

updates x but then commits before Tj attempts to update

x, there will be no delay due to locking, but Tj will abort

immediately when it attempts to update x (the abort does

not wait until Tj attempts to commit).

4 The resulting schedules are equivalent to a serial schedule on a

single database.



－ 9－

middleware

database servers (replicas)

clients

Fig.1 Model of a Replicated Database System

In short, only winner write operations can make progress

and a transaction will successfully commit only if no other

concurrent transaction causing conflict has already been

committed.

3. Synchronous Replication Middlewares

In this section, we address the deadlock against which

synchronous middlewares commonly come up and the ex-

isting solution of the deadlock.

3.1 Model

Figure 1 shows the model of a replicated database system

with a synchronous replication middleware. It has a cluster

of off-the-shelf database servers (replicas) each running on

a commodity computer with no shared disk. Replicas may

be heterogeneous but all replicas have the same database.

A middleware lies between clients and replicas, sending a

request which includes a read, write, commit or abort op-

eration from a client to replicas. A synchronous replication

middleware commonly uses a read-one-write-all approach,

in which a read operation can be executed on any replica

whereas a write operation is executed on all replicas. Re-

ceiving a request which includes a write operation from a

client and sending it to all replicas, the middleware does

not send back a response to the client until it receives re-

sponses from all replicas.

3.2 Deadlock

We address the deadlock against which synchronous

replication middlewares commonly come up. Consider two

replicas R1 and R2 with the First Updater Wins rule, each

of which executes two conflicting write operations wa of a

transaction Ta and wb of a transaction Tb. If, in R1, wa

gets a write lock and therefore wb waits for the lock, the

middleware receives an only response of wa from R1. Oth-

erwise, if, in R2, wb gets a write lock and therefore wa waits

for the lock, the middleware receives an only response of

wb from R2. In Ta, the middleware does not make progress

until it receives a response of wa from R2. However, the

middleware does not receive it until Tb commits/aborts and

then the write lock is given to wa in R2. Inversely, in R1,

wb waits Ta commits/aborts. In summary, Ta waits for

completion of Tb and Tb waits for completion of Ta, the

middleware suffering from deadlock.

3.3 Solution of Existing Middlewares

Surprisingly, there are very few middlewares which solve

the deadlock. Neither [5] nor [8] provides the solution of

the deadlock. Therefore, with these middlewares, the more

frequency of write operations grows, the more probability

of the deadlock increases. Because it is difficult to find out

and then get rid of the deadlock, they are not useful for

applications with write operations.

Distributed versioning(DV)[2] is an existing synchronous

middleware which solves the deadlock. DV needs its own

peculiar programming model: programmers insert a pre-

declaration of the tables which will be accessed at the be-

ginning of each transaction, and a last-use-declaration after

the last use of a particular table. DV consists of three types

of processes: scheduler, sequencer, and some database prox-

ies. A scheduler distributes incoming requests on replicas

and delivers responses to clients. When the scheduler re-

ceives a pre-declaration, the sequencer assigns unique ver-

sion numbers to the tables accessed by each transaction.

Receiving an operation, the scheduler picks out the unique

version number of the table which the operation will access,

and submits the operation with the number to database

proxies. Each database proxy regulates access to a replica

by letting the only operation with an active version num-

ber proceed to a replica. An operation without an active

version number waits until its version is available. New

versions become available when a database proxy receives

a last-use-declaration. In this way, all operations on a par-

ticular table are executed at all replicas in version number,

and consistency between replicas is kept synchronously.

Unfortunately, DV has some shortcomings, the most seri-

ous being table based locking. This coarse-grained locking

incurs unnecessary waiting. Consider two non-conflicting

write operations wa of a transaction Ta and wc of a trans-

action Tc which access the same table. If wa has an active

version number of the table, wc without an active version

number waits although wc never conflict with wa.

4. LEFOMA

In this section, we propose LEFOMA, a new synchronous

database replication middleware with tuple based concur-

rency control guaranteeing SI, which needs no changes to

existing database servers. We assume that every replica

provides SI with the First Updater Wins rule as described

in Sect.2.



－ 10 －

4.1 Basic Concept

Our main idea is to control requests submitted from

clients to replicas with the two rules as follows.

• Snapshot Creation Rule: LEFOMA makes all

replicas create the same snapshot for any pair of trans-

actions on different replicas.

• Write Operations Rule: LEFOMA makes all repli-

cas execute conflicting write operations on the same

snapshots in the same order.

4.2 Snapshot Creation Control

Our first key idea to realize the snapshot creation rule

is that when LEFOMA submits commit operations to all

replicas, it never does the first operations until it receives

all responses of the commit operations from all of them,

and vice versa. That is, LEFOMA makes the relative order

of the first and commit operations of different transactions

be the same in all replicas.

As stated in Sect.2, transaction T1 gets T1’s snapshot at

start(T1) and T1’s changes to the snapshot are reflected to

original database at end(T1). Thus, considering another

transaction T2, it depends the relative order of T1’s com-

mit and T2’s first operation whether T2’s snapshot includes

T1’s changes or not. That is, if T1’s commit operation

proceeds T2’s first operation, T2’s snapshot must include

T1’s changes. Otherwise, if T2’s first operation proceeds

T1’s commit operation, T2’s snapshot never include T1’s

changes. Thus, the relative order of T1’s commit and T2’s

fist operation influences T2’s snapshot.

Consequently, if the relative order of commit and the

first operations in different replicas is the same, all replicas

must create the same snapshot for any pair of transactions

on different replicas.

4.3 Write Operations Control

Our second key idea to realize the write operations rule

is to use tuple based locking on only conflicting write op-

erations. However, it has been considered very difficult

because a middleware can not know whether write opera-

tions will conflict or not in advance, even if it parses SQL

statements. Otherwise, we can imagine to extend DV from

table based locking to tuple based locking but it is im-

practical to manage version numbers per tuple. These are

the reasons why existing synchronous middlewares can not

achieve tuple based locking but table based locking.

To solve this difficulty, LEFOMA delegates one replica

called leader to decide the execution order of write oper-

ations and to use tuple based locking on conflicting write

operations, and then provides virtual tuple based locking to

the others called followers.

Our proposed write operations control is that LEFOMA

regulates write operations as follows:

leaderfollowerfollower

Wa

Wb

Wc

Ra

Rc
Wa

Wc

Wa

Wc

(1)(2)

Ra

RcRa

Rc

(3)(3) (4)
(4)

LEFOMA

Fig.2 Write Operations Control

(1) sends all write operations only to the leader,

(2) receives responses from the leader,

(3) sends write operations of which LEFOMA has received

responses to all the followers,

(4) receives responses from all the followers, and

(5) sends back one response to each client.

Consider, for instance, LEFOMA sends three write op-

erations Wa, Wb and Wc corresponded to transaction Ta,

Tb and Tc, respectively shown in Fig.2. We assume that

Wa and Wb will conflict but of course LEFOMA can not

know it in advance. After receiving write operations Wa,

Wb and Wc from clients, LEFOMA sends all the write

operations only to the leader (step(1)). Then LEFOMA

receives responses Ra and Rc corresponded to Wa and

Wc, respectively (step(2)). However, LEFOMA cannot re-

ceive the response Rb corresponded to Wb since Wa and

Wb conflict and Ra is returned to the coordinator. Re-

call the First Updater Wins rule as described in Sect.2:

the only write operation that can get a write lock can

progress but the others have to wait for the lock. At this

time, LEFOMA knows that write operations corresponded

to responses which LEFOMA has received will not cause

conflict in the followers, i.e., Wa and Wc will not conflict.

Then LEFOMA performs virtual tuple based locking to all

the followers: LEFOMA sends only Wa and Wc to all the

followers and keeps Wb in LEFOMA (step(3)). This is as

if Wa got a write lock but Wb waited for the lock in the

LEFOMA layer. Then LEFOMA receives responses from

all the followers (step(4)) and sends back one response to

each client (step(5)). Wb in the leader can not progress

until Ta commits or aborts, and Wb in the LEFOMA layer

can not progress until LEFOMA receives Rb.

In summary, LEFOMA knows which write operations are

winner or loser of conflict by using the feature of the First

Updater Wins rule, responses of only winner write opera-

tions are returned, and then emulates it in the LEFOMA

layer.

If any replica executes non-conflicting write operations

on the same snapshot in any order, the final result is the



－ 11 －

same. Therefore, LEFOMA makes all replicas execute non-

conflicting write operations in any order, possibly concur-

rently (step(3)). This brings higher throughput than any

other existing synchronous middlewares.

4.4 Load Balancing

Rather than asynchronous replication, LEFOMA can

make only one replica execute any read operation, even if it

belongs update transactions, because LEFOMA makes all

replicas have the latest data synchronously. This means

LEFOMA can distribute requests over replicas with per-

operation load balancing unlike any asynchronous replica-

tion with per-transaction. Of course, LEFOMA need not

be informed the transaction type, a read-only or an update

transaction.

4.5 Availability

If the leader falls into malfunction, LEFOMA re-selects

a new leader from followers. Clients must re-submit the

transactions that have not been finished. If a follower stops

due to some trouble, only LEFOMA detaches the follower

from the system, i.e., the LEFOMA does not send any

requests after that. LEFOMA masks follower’s failure but

does not the leader’s. However, remained replicas keep

consistency unlike asynchronous replication. This means

LEFOMA provides fail-safe.

4.6 Dummy Read Operation

If the first operation is a write operation, LEFOMA may

encounter dead-lock. Consider a write operation w1 is the

first operation of a transaction T1 and waits for a lock

which has been gotten by w2 of a transaction T2. With the

First Updater Wins rule, w1 can not get the lock until T2

commits or aborts. However, T2 can not commit until the

first operation w1 has ended.

To avoid this problem, if the first operation is a write op-

eration, LEFOMA submits dummy read operations as the

first operations to create snapshots to all replicas, receives

responses and then submits the write operations.

4.7 Advantages

LEFOMA can guarantee SI by making all replicas create

the same snapshot and execute conflicting write operations

on the snapshot in the same order. Moreover, LEFOMA

can avoid the deadlock by making all follower replicas ex-

ecute conflicting write operations in the order that the

leader does. Furthermore, LEFOMA can bring higher

throughput by making all replicas execute non-conflicting

write operations concurrently and any replica execute a

read operation. To the best of our knowledge, LEFOMA

is the first middleware which brings these advantages.

5. Evaluation

In order to clarify the effectiveness of LEFOMA, we con-

ducted the performance evaluation with TPC-C by com-

paring throughput of LEFOMA with that of DV.

0

100

200

300

400

500

600

low concurrent execution high concurrent execution

LEFOMA

LEFOMA

DV
DV

[TPM]

Fig.3 Throughput Comparison

5.1 Prototypes

We implemented a prototype of LEFOMA on top of

PostgreSQL without modification, whose code size is less

than 2000 line in C language. Because our proposal need

not modify existing database servers, not only is the porta-

bility of LEFOMA high but the cost of LEFOMA also is

low.

In addition, we implemented another prototype of DV

on top of PostgreSQL so as to compare throughput of

LEFOMA with that of DV and discuss the effectiveness

of LEFOMA. Originally, DV has been proposed to guaran-

tee 1SR. To compare LEFOMA and DV fairly, we modified

the original DV to guarantee SI and implemented it with

the modification.

5.2 Experimental Setup

Each prototype comprises two replicas, one middleware

node and one client simulator node. All nodes are the

same specification (two 2.4GHz Xeon, 2GBytes RAM and

one 70GB SCSI HDD) and connected by 1Gb/s Ethernet.

We used PostgreSQL, version 8.3.3, as replicas providing

SI. We set the default transaction isolation to SE-

RIALIZABLE5, and did not change the other parameters.

To measure the performance of the prototypes, we have

implemented the main parts of TPC-C benchmark.

5.3 Results and Discussion

To observe how the difference between concurrency con-

trol of LEFOMA and that of DV has an influence on

throughput, we measured two cases, high concurrent exe-

cution environment and low concurrent execution environ-

ment. To change the degree of concurrency, we adjusted

the number of warehouse and Think Time. We selected

10 and 12000 as warehouse and Think Time respectively

for the low concurrent execution environment, and 30 and

1000 as those for the high concurrent execution environ-

ment. In a preliminary experiment, we had observed that

in the case of the low concurrent execution environment,

there was very little concurrent execution, and in the case

of the high concurrent execution environment, there was

much concurrent execution.

5 SI is called SERIALIZABLE in PostgreSQL.



－ 12 －

Figure 3 shows the measured throughputs of LEFOMA

and DV prototypes for the high and low concurrent execu-

tion environments. In the low concurrent execution envi-

ronment, there is slight difference between LEFOMA and

DV throughputs. This is because, in the absence of con-

current execution, it is not important whether fine-grained

or coarse-grained concurrency control. In the high concur-

rent execution environment, LEFOMA and DV through-

puts are approximately 511 TPM and 263 TPM, respec-

tively. LEFOMA outperformed DV by approximately 94 %

in throughput. This confirms that LEFOMA achieves

higher throughput than DV. This is because LEFOMA has

fain-grained concurrency control, executing non-conflicting

write operations concurrently.

6. Related Work

We have already described middleware based approaches

can be categorized into two categories and asynchronous

middlewares [14, 11, 1, 9, 10, 12, 13, 6] suffer from seri-

ous problems. LEFOMA differs from them in that it does

not incur the problems because LEFOMA is a synchronous

replication, which has neither the writeset handling nor the

temporal inconsistency.

The main difference between LEFOMA and the other

synchronous middlewares is that LEFOMA can execute

finer grained locking and guarantee SI. Details of other

features are as follows.

Cecchet et al. [5] introduce C-JDBC which does not have

concurrent control for avoiding the deadlock and keeping

consistency. These are responsible to users. Fujiyama et

al. [8] introduce a middleware being similar to C-JDBC.

So, it can not avoid the deadlock nor keep consistency.

Amza et al. [2] propose distributed versioning, which can

avoid the deadlock and guarantee 1SR. However, its con-

currency control is coarse grain.

7. Conclusion

In this paper, we proposed LEFOMA, a new synchronous

database replication middleware with tuple based concur-

rency control guaranteeing snapshot isolation, which needs

no changes to database servers. Not only does the control

avoid the deadlock against which synchronous replication

middlewares commonly come up, but the control also pro-

vides fine-grained locking.

In order to clarify the effectiveness of LEFOMA, we made

prototypes of LEFOMA and DV and performed a exper-

iment using TPC-C in terms of throughput. The exper-

imental results on the prototypes showed that LEFOMA

outperformed DV by approximately 94% for the high con-

current execution environment. This means that fine-

grained concurrency control is effective for applications

with high concurrent execution of write operations. More-

over, the code size of LEFOMA is very small. It is con-

cluded that LEFOMA is very practical and effective.

References

[1] Fuat Akal, Can Türker, Hans-Jörg Schek, Yuri Breit-

bart, Torsten Grabs, and Lourens Veen. Fine-grained

replication and scheduling with freshness and correct-

ness guarantees. In VLDB, pages 565–576, 2005.

[2] Cristiana Amza, Alan L.Cox, and Willy Zwaenepoel.

Distributed versioning: Consistent replication for scal-

ing back-end databases of dynamic content web sites.

In Middleware, pages 282–304, 2003.

[3] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton,

Elizabeth O’Neil, and Patrick O’Neil. A critique of

ansi sql isolation levels. In ACM SIGMOD, 1995.

[4] Philip A. Bernstein, Vassos Hadzilacos, and Nathan

Goodman. Concurrency Control and Recovery in

Database Systems. Addison-Wesley Publishing Com-

pany, Massachusetts, 1987.

[5] Emmanuel Cecchet, Julie Marguerite, and Willy

Zwaenepoel. C-jdbc: Flexible database clustering

middleware. In USENIX, 2004.

[6] Sameh Elnikety, Steven Dropsho, and Fernando Pe-

done. Tashkent: Uniting durability with transaction

ordering for high-performance slalable database repli-

cation. In EuroSys, 2006.

[7] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil,

Patrick O’Neil, and Dennis Shasha. Making snapshot

isolation serializable. ACM Transactions on Database

Systems, 30(2):492–528, June 2005.

[8] Kenichiro Fujiyama, Nobutatsu Nakamura, and

Ryuichi Hiraike. Database transaction managemen for

high-availability cluster system. In PRDC, 2006.

[9] Yu Lin, Bettina Kemme, Marta Patiño-Mart́ınez, and

Ricardo Jiménez-Peris. Middleware based data repli-

cation providing snapshot isolation. In ACM SIG-

MOD, 2005.

[10] Marta Patiño-Mart́ınez, Ricardo Jiménez-Peris, Bet-

tina Kemme, and Gustavo Alonso. Middle-r: Con-

sistent database replication at the middleware level.

ACM Transactions on Computer Systems, 23(4):375–

423, November 2005.

[11] Chirstian Plattner and Gustavo Alonso. Ganymed:

Scalable replication for transactional web applications.

In Middleware, 2004.

[12] Christian Plattner, Gustavo Alonso, and Özsu. Db-

farm: A scalable cluster for multiple databases. In

Middleware, 2006.

[13] Christian Plattner, Gustavo Alonso, and Özsu. Ex-

tending dbmss with satellite databases. VLDB Jour-

nal, 2006.

[14] Uwe Röhm, Klemens Böhm, Hans-Jörg Schek, and

Heiko Schuldt. Fas – a freshness-sensitive coordina-

tion middleware for a cluster of olap components. In

VLDB, 2002.

















 

               
     

             



           







     

   
      
       


       
     
     



      
     



     
       
      
      
     


     
      
     
    
     



      


      
         




     
     

       
      


      
    
     
     
     
     
    
     
     
     



       
     


    
     
     

        





