
－ 1－

社団法人 情報処理学会　研究報告

IPSJ SIG Technical Report

An Algorithm for Parallel Holistic Twig Joins on a PC Cluster

Imam MACHDI†, Toshiyuki AMAGASA†,††, and Hiroyuki KITAGAWA†,††

† Graduate School of System and Information Engineering
†† Center for Computational Sciences

University of Tsukuba
Tennodai 1–1–1, Tsukuba, Ibaraki, 305–8573 Japan

E-mail: †machdi@kde.cs.tsukuba.ac.jp, ††{amagasa,kitagawa}@cs.tsukuba.ac.jp
Abstract In this paper, we propose an algorithm for parallel holistic twig joins executed on a PC cluster, espe-

cially for achieving high intra query parallelism. We deal with data redistribution in the case of workload imbalance

existence in the current data allocation. The data redistribution scheme exploits containment properties of a posi-

tional representation of XML nodes to partition streams of XML nodes stored in XML databases and redistribute

them to cluster nodes on the fly. In the preliminary experiment, we demonstrate the significantly improved parallel

performance in terms of speed up measurement.

Key words XML data redistribution, twig joins, intra query parallelism

1. Introduction

XML has become the de facto standard for data represen-

tation and exchange over the Internet. Nevertheless, along

with the increasing size of XML documents and complexities

to evaluate XML queries, existing query processing perfor-

mance in a single-centralized environment will deteriorate.

Parallelism is, thus, a viable solution.

One possible approach of exploiting parallelism is to adopt

a PC cluster system, in which tens of commodity PCs are

interconnected with a high-speed network, due to its recent

popularization and commercialization. As illustrated in Fig-

ure 1, in such a system, a set of XML data being queried are

distributed across cluster nodes in advance. When a query

is incoming, a node acting as the coordinator analyzes it and

generates a query plan consisting of several subqueries. The

coordinator then forward the subqueries to respective clus-

ter nodes. The cluster nodes compute their subqueries, and

send the partial results back to the coordinator.

In the case of inter query parallelism where several differ-

ent queries are executed in parallel, XML data and queries

are distributed in such a way that the overall load of query

processing in each cluster node will have an equal balance.

As an example, Figure 1 illustrates the distribution of XML

data and queries where each node has a nearly balanced load.

Node 1 is responsible for executing query 1 for XML docu-

ment 1, query 2 for XML document 1 and query 3 for XML

document 3. Node 2 maintains processing query 3 for XML

document 3 and query 4 for XML document 2, while node 3

merely processes query 5 for XML document 3. This query

図 1 An XML query processing system.

system performs very well when all queries are executed in

parallel at a time. However, a problem may arise at any

time when only a single or some of the queries is requested

to process. For example, only query 5 is being processed in

the system, the performance of this typical query system suf-

fers from executing a single long-running query on a cluster

node while other nodes are idle.

In this paper, to overcome the above problem we focus

on a single query execution for intra query parallelism with

the existing pre-distributed XML data. As for the XML

query processing technique, we adopt a holistic twig joins

technique [2], which is an important family of XML join pro-

cessing algorithms that enable us to process an XML query

consisting of several branches (query twigs) holistically by

scanning over XML node streams. The main objective of

this research is to improve the query system performance by

redistributing the existing XML data on the fly to idle cluster

nodes for achieving high intra query parallelism.

Basically, our proposed redistribution method comprises

two stages: a partition plan and a distribution plan. The

2008－DBS－146 (1)

2008／9／21



－ 2－

partition plan exploits the positional properties of XML node

streams that reflect the relationships between query nodes.

Initially, a range of a stream, which is associated with a

query node, is selected to be partitioned by a fixed window

size. The computation of positional properties are propa-

gated from the selected stream towards the adjacent con-

nected streams by satisfying the relationships between the

associated query nodes. In addition, the distribution plan

allocates the partitioned streams to idle cluster nodes in the

system for execution.

We make the following contributions in this paper:

• We propose a redistribution method to efficiently uti-

lize idle cluster nodes for intra query parallelism.

• We construct an algorithm for a partition plan and a

distribution plan.

• We show the effectiveness of the proposed method in

terms of the parallel system performance.

The rest of the paper is organized as follows. Section 2

discusses the related work. In Section 3, we present the pre-

liminary that underlies our work. Section 4 proposes the re-

distribution method. Section 5 reports experimental results.

Finally, we conclude our work in Section 6.

2. Related Work

Our prior work [3] related to XML data partition for par-

allel holistic twig joins processing aims mainly at inter query

parallelism. It organizes and maintains XML metadata,

which is the basic information related to XML documents,

tags and queries, in the form of data cube. The data cube

represents the conceptual model for partitioning and dis-

tributing XML data. A cost model is utilized to estimate

costs of query processing for XML documents and it serves

as the basis for distributing queries and XML data to cluster

nodes.

In the work we devise our parallel processing system com-

prising one cluster node selected as the coordinator and the

rest as processing nodes. The global data cube describing

the entire XML data and query distribution in the system

is maintained by every cluster node, while every processing

node also maintains its own local XML database as the result

of XML data partition. When the coordinator receives an in-

coming query, it generates a query plan and dispatches the

query or its subqueries to certain processing nodes according

to the information stored in the data cube. Subsequently, the

intended processing nodes receive the query, inquire the re-

lated XML data from the data cube and retrieve the related

XML data from the XML database for query execution. So-

lutions of the query are, then, forwarded to the coordinator

to be delivered to the user.

The work also states about the execution sequence of the

holistic twig joins processing. Principally, the holistic twig

joins algorithm operates in two phases. The first phase

computes solution extensions and generates subquery (root-

to-leaf paths) solutions. Solution extensions are candidate

nodes that are guaranteed to give solutions to individual

subqueries. The root-to-leaf paths are illustrated in Fig-

ure 2 (c). In the second phase these subquery solutions are

merge-joined to compute the answers of the query twig pat-

tern. When the query plan generated by the coordinator

does not yield subqueries, the first phase and the second

phase are computed by the processing nodes. Otherwise, the

processing nodes compute subqueries for the first phase only

and send the subquery solutions to the coordinator. In this

case, the coordinator is responsible for computing the second

phase for generating the query answers.

Other works [6], [7] in parallel databases deal with data

skew when joining relations, even though relations are al-

ready partitioned and distributed in balanced manner. This

issue is handled by basically performing redistribution, redu-

plication and rescheduling techniques when a query is incom-

ing. The research has shown that redistribution plan has lead

to nearly linear speed up on shared-nothing systems under

even balancing condition.

3. Preliminaries

In this section, we present a brief introduction of some

concepts related to holistic twig joins in [2].

3. 1 XML Data Model

An XML document is a rooted, ordered, labeled tree,

where each node corresponds to an element and the

edges representing (direct) element-subelement relation-

ships. Node labels consist of a set of (attribute, value) pairs,

which suffices to model tags, PCDATA contents, etc. Fig-

ure 2 (a) shows the tree representation of a sample XML

document.

3. 2 Query Twig Patterns

A query twig pattern Q is a node-labeled tree pattern with

elements and string values as node labels and its edges rep-

resent parent-child or ancestor-descendant relationships as

shown in Figure 2 (b). It can be decomposed into a set of

root-to-leaf path patterns as illustrated in Figure 2 (c).

3. 3 Representation in XML Database

As used in [1], [2], [8], the position of every string occur-

rence in an XML document is represented as a 3-tuple (Do-

cId, LeftPos, Level). Similarly, the position of every element

occurrence is as a 3-tuple (DocId, LeftPos : RightPos, Level),

where (i) DocId is the identifier of the document; (ii) LeftPos

and RightPos can be generated by counting word numbers

from the beginning of the document DocId until the start

and the end of the element, respectively; and (iii) Level is



－ 3－

図 2 (a) An XML tree representation, (b) a query twig pattern,

(c) root-to-leaf query patterns.

the nesting depth of the element or the string value in the

document. By having this enumeration fashion, structural

relationships of parent-child and ancestor-descendant can be

determined easily and will be explained in the next subsec-

tion.

An XML database stores the entire nodes of the entire

XML documents where each node is represented as a 3-tuple.

Associated with each node in a query twig pattern, there is

a stream, which is a sequence of nodes retrieved from the

XML database with an order by (DocId, LeftPos). The op-

erations over streams are eof to indicate the end of a stream,

advance to move to the next node in a stream, next to

return the next node, front to return the front node of a

stream, last to return the last node of a stream, nextL to

return the LeftPos of the next node, nextR to return the

RightPos of the next node, nextMostL to return the pair

mostLeft of (DocId, LeftPos) obtained from the next node

in a stream and nextMostR to return the pair mostRight of

(DocId, RightPos) obtained from the next node in a stream.

3. 4 Partitions

A partition of a stream is defined as a substream whose

node sequence follows the same order by (DocId, LeftPos).

Partitions of a stream are also sorted by their (mostLeft,

mostRight) positions.

3. 5 Positional Properties

By having positional representation, we extend properties

as defined in [8] as follows:

Containment An occurrence of an ancestor node a and a

descendant node d satisfies: a.DocId = d.DocId, a.LeftPos

< d.LeftPos, and d.RightPos < a.RightPos.

Direct Containment An occurrence of a parent node p

and a child node c satisfies: p.DocId = c.DocId, p.LeftPos

< c.LeftPos, c.RightPos < p.RightPos and p.Level + 1 =

c.Level.

Left Containment An occurrence of an ancestor node a

and a descendant node d satisfies: a.DocId = d.DocId and

a.LeftPos < d.LeftPos.

Right Containment An occurrence of an ancestor node

a and a descendant node d satisfies: a.DocId = d.DocId and

d.RightPos < a.RightPos.

Note that the containment property describes the ancestor-

descendant structural relationship, while the direct contain-

ment property describes the parent-child relationship. Also,

the direct containment property is a special case of the con-

tainment property. We can see in Figure 2 that the position

(1, 7:9, 4) of a descendant node lname is contained in the

position (1, 5:38, 2) of an ancestor node member. The po-

sition (1, 7:9, 4) of a child node lname is directly contained

in the position (1, 6:13, 3) of its parent node name.

3. 6 System Environment

As described in Section 2, we utilize the same parallel pro-

cessing system in our prior work [3] with additional function-

alities. The coordinator sends running query states along

with an incoming query to the intended processing nodes

which, then, check the states against the data cube to iden-

tify idle cluster nodes. Additional communications among

cluster nodes are required to dispatch partitioned streams

from a processing node to other idle processing nodes. At

last, the coordinator collects solutions from processing nodes

and performs merge-join operations to produce the final so-

lutions.

4. The Proposed Redistribution Method

In this section, we present our proposed redistribution

method starting with the observation of a twig tree to con-

struct partitioned streams. The aim is to partition streams

on the fly where each partition represents XML twig trees

to be matched with the query twig patterns. We strive for

minimizing the time required to compute the partitions and

having no communication dependency of partitioned streams

among cluster nodes while processing the holistic twig joins.

Considering XML node streams that are associated with

nodes of a query twig pattern, they implicitly represent XML

twig trees that are associated with the query twig pattern.

We observe that generally the root node of the query has

the smaller stream size and its descendant nodes have larger

stream sizes. It is easier and more desirable to start par-

titioning streams from the query root node as the initial

node, then propagate the partitions to its children nodes un-

til leaves nodes, but only if the stream size of the root node is

large enough to be partitioned. To avoid this case, however,

we may select an initial node having the largest stream size

to be partitioned first, then propagate the partition to the

root node and leaves nodes.

Regarding nodes distribution, we also notice that positions



－ 4－

図 3 Partition propagation and algorithm of PartitionPlan.

of nodes in a stream are not always uniformly distributed

within the stream range (mostLeft to mostRight). Instead

of partitioning streams based on an equal range, the selected

initial stream is partitioned according to an equal number

of nodes constituted as the initial window size. If the ini-

tial window size is too large, the distribution of partitioned

streams may possibly lead to data skew. On the other hand,

if the window size is too small, it requires more time to com-

pute partitions. In this study, our initial attempt is to select

several candidates of initial window sizes and adopt a distri-

bution method to avoid the problem of data skew.

4. 1 Partition Plan

By given a query twig pattern along with their streams,

a selected initial node and an initial window size, the main

task is to compute partitions of streams started from the ini-

tial node propagated to the rest of nodes in the query twig

pattern such that the distribution of partitions to cluster

nodes does not introduce data dependency when computing

parallel holistic twig joins.

Based on partitions of the initial stream, other streams

associated with other query nodes can be eventually par-

titioned by means of propagation. As shown in Figure 3,

firstly we propagate partitions from the initial node to the

root node of the query by applying a bottom-up partition

approach. Subsequently, stream partitions of the root node

propagate partitions to all other unvisited nodes by applying

a top-down partition approach.

In the Bottom-Up partition approach a parent’s (ances-

tor’s) stream is partitioned according to the containment

property of the base stream partitions. As an example of

bottom up partition illustrated in Figure 4, although it is

desirable to find all nodes in the intended stream to contain

nodes in each base partition as indicated by dashed lines,

we deliberately limit the searching effort since it is the most

influential cost in this stage. In this case, the mostLeft of

the intended partition is obtained from either the current or

the next node pointed in the stream. We just try to find

the mostRight which is the first found node that satisfies

the right containment property or the last found node that

satisfies the containment property. If the range of the in-

tended stream to be partitioned is much longer than of the

base partition, it is possible that some nodes at the end of

the stream may not be included in the partitions. This con-

tributes to more efficient processing of the holistic twig joins.

Finally, stream nodes whose positions are within the range

of mostLeft and mostRight are copied to a partition.

図 4 An example and an algorithm of Bottom Up.

The Top-Down partition approach has similar mechanism

with the Bottom-Up approach to partition the intended

stream by finding the containment property. For each parti-

tion, the mostLeft is obtained from the current node or the

next node pointed in the intended stream. The mostRight

position is obtained from searching the last node in the in-

tended stream that satisfies the right containment property.

This approach also has an advantage to trim some left-over

stream nodes that are not included in the partitions. Figure

5 describes an example of top down partition approach and

the algorithm.

4. 2 Distribution Plan

The main task of this stage is to distribute partitions to idle

cluster nodes and balance the workloads by utilizing Round



－ 5－

図 5 An example and an algorithm of Top Down.

Robin approach. As the time is very crucial for ”on the fly”

distribution, in the case of imbalance workloads after dis-

tribution we do not make further attempts to rebalance the

workloads.

Initially this stage estimates the amount of workloads to

be allocated to other cluster nodes. The running query states

dispatched by the coordinator are analyzed against the data

cube to identify every cluster node that is currently running

queries and to estimate the fraction of its busy time bs, which

means the idle time can be computed as (1 - bs). The work-

load of a cluster node is measured in terms of the number

of partitions to be allocated with the proportion of its idle

time over the entire idle time of all cluster nodes N . Hence,

the workload of a cluster node Pi is simply estimated with

the following equation:

WL(Pi) =
1 − bsi�N

i=1
1 − bsi

#partitions (1)

Round Robin distribution is conducted to allocate parti-

tions to every cluster node according to its estimated work-

load. Finally, allocated partitions are sent to their respective

cluster node destinations.

5. Experimental Evaluation

The main objective of this preliminary experiment is to

show the contribution of data redistribution towards the par-

allel speed up performance.

5. 1 Experiment Platform and XML data

The experiment platform used is a shared-nothing homo-

geneous cluster system. One node plays a role as the coor-

dinator and 9 nodes as the processing nodes. Each node has

a 4-ways Intel Xeon(TM) 3.0 GHz CPU with 1 GB mem-

ory running RedHat Enterprise Linux 4.0. PostgreSQL 8.1

is installed as the XML database in each node. All nodes

are connected through a Gigabit high-speed LAN and we

図 6 Speed up performance of query 1.

図 7 Speed up performance of query 2.

図 8 Speed up performance of query 3.

use MPICH2 for implementing the communication among

cluster nodes.

We adopt XML Benchmark Project [5] proposed by Ger-

man CWI as our experiment data set. The XMark data set

provides a large single scalable document. The test data size

is 110M of a single XML document and we provide three

query twig patterns with different structure complexities:

simple, medium, and complex as shwon in Appendix. The

total stream sizes required to execute query 1, query 2, and

query 3 are 99,250 nodes, 50,917 nodes and 181,268 nodes

respectively.

5. 2 Experimental Results and Evaluation

In the experiment, we simply set one cluster node to store

the XML data in an XML database and to redistribute to

other cluster nodes. We set four relative window sizes (2.5%,

1%, 0.67%, 0.5%) over a stream size to determine the win-



－ 6－

dow sizes. The larger relative window size indicates the

larger window size. The measurement of the speed up perfor-

mance, or equivalently the running time, gives an immediate

measure of the effectiveness of our proposed redistribution

method.

We can see in Figure 6, 7, and 8 that the best speed up

performances of the three queries have different relative win-

dow sizes. The relative window size with 2.5% value gives the

best speed up performance for the execution of query 1, while

the best speed up performance of query 2 is contributed by

the 0.67% relative window size. For the execution of query

3, the relative window sizes of 1% and 0.67% contribute rela-

tively the same speed up performance. In this case, window

size plays an important role of contributing workload balance

that gives impact on the performance.

In addition, the execution of query 1 gains the smallest

speed up performance, while the execution of query 2 gains

the highest. On average, the computation time of data redis-

tribution for query 1 contributes 27% of the total execution

time. Meanwhile, the computation time of data redistribu-

tion for query 2 and 3 is about 18% of the total execution

time.

Although we suspect there may be inefficiency in imple-

menting our proposed redistribution method, in overall the

data redistribution method contributes to significant impact

on good parallel speed up performance.

6. Conclusions and Future Work

In this paper, we proposed an ”on the fly” redistribution

method comprising two stages: partition plan and distribu-

tion plan. In the partition plan stage, positional proper-

ties are exploited to compute partitions by utilizing bottom-

up and top-down partition approaches. In the distribution

stage, partitions are distributed to cluster nodes by estimat-

ing workloads for better balance. Our experimental results

showed good speed up performance.

As for future work, we plan to further investigate the most

appropriate window size by considering the query structure,

data distribution, and system capacity. Also we will exploit

different strategies to resolve inefficiency in the implementa-

tion.

Acknowledgments

This study has been partially supported by MEXT

(#19024006), Grant-in-Aid for Young Scientists (B)

(#19700083) and CREST of JST (Japan Science and Tech-

nology Agency).

[1] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu,

N. Koudas, and D. Srivastava. Structural joins: A primi-

tive for efficient xml query pattern matching. In Proceedings

of the 18th International Conference on Data Engineering

(ICDE’02), pages 141–, 2002.

[2] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins:

optimal xml pattern matching. In Proceedings of the 2002

ACM SIGMOD International Conference on Management

of Data, pages 310–321, 2002.

[3] I. Machdi, T. Amagasa, and H. Kitagawa. Cube-based

analysis for maintaining xml data partition for holistic twig

joins. Journal of the Database Society of Japan, 7(1):121–

126, June 2008.

[4] R. Sakellariou and J. R. Gurd. Compile-time minimisation

of load imbalance in loop nests. In Proceedings of the 11th

International Conference on Supercomputing, pages 277–

284, 1997.

[5] A. Schmidt, F. Waas, M. Kersten, M. J. Carey,

I. Manolescu, and R. Busse. Xmark: a benchmark for

xml data management. In Proceedings of the 28th Inter-

national Conference on Very Large Data Bases, pages 974–

985. VLDB Endowment, 2002.

[6] J. L. Wolf, D. M. Dias, and P. S. Yu. A parallel sort merge

join algorithm for managing data skew. IEEE Trans. Par-

allel Distrib. Syst., 4(1):70–86, 1993.

[7] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen. Handling data

skew in parallel joins in shared-nothing systems. In SIG-

MOD ’08: Proceedings of the 2008 ACM SIGMOD inter-

national conference on Management of data, pages 1043–

1052, New York, NY, USA, 2008. ACM.

[8] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M.

Lohman. On supporting containment queries in relational

database management systems. In Proceedings of the 2001

ACM SIGMOD International Conference on Management

of data, pages 425–436, 2001.

Appendix




