
IPSJ SIG Technical Report

Enumeration of Maximally Frequent Ordered Tree
Patterns with Height-Constrained Variables for Trees

Yusuke Suzuki1,a) TetsuhiroMiyahara1,b) Takayoshi Shoudai2,c) Tomoyuki Uchida1,d)
SatoshiMatsumoto3,e) Tetsuji Kuboyama4,f)

Abstract: We consider representing tree structured features of structured data which are represented by rooted trees
with ordered children. As representations of tree structured features, we propose height-constrained ordered wildcard
tree patterns, which are ordered tree patterns having height-constrained structured variables and wildcards for edge
labels. An (i, j)-height-constrained variable can be replaced with any rooted ordered tree whose trunk length is at least
i and whose height is at most j. First we show that it is hard to compute an optimum frequent height-constrained or-
dered wildcard tree patterns. Then we present an algorithm for enumerating all maximally frequent height-constrained
ordered wildcard tree patterns. Finally we consider extended height-constrained ordered wildcard tree patterns, called
height-constrained ordered tag tree patterns, which have height-constrained variables, wildcards, tags and keywords,
and an algorithm for enumerating all maximally frequent height-constrained ordered tag tree patterns.

Keywords: ordered tree pattern, height-constrained variable, enumeration, wildcard, maximal frequency

1. Introduction
In this paper we present new refined models for represent-

ing tree structured features, by extending our previous models
of tree structured features, maximally frequent ordered wildcard
tree patterns and maximally frequent ordered tag tree patterns [7].
We consider models of tree structured features in two aspects,
i.e., representing power of tree structured patterns and the desired
properties that the tree structured patterns must satisfy. We fo-
cus on the maximal frequency of the tree structured patterns as
the desired property. Tree structured data are semistructured data
whose structures are modeled by rooted trees with ordered chil-
dren, based on Object Exchange Model [1]. Among tree struc-
tured data we consider are XML files, some biological data such
as the secondary structure data of RNA or glycan data, and parse
trees in natural language processing.
As a refined model of tree structured features concerning rep-

resenting power of tree structured patterns, we propose height-
constrained wildcard tree patterns (or simply called an HC-
wildcard tree pattern), which are ordered tree patterns with
height-constrained structured variables and wildcards, and match

1 Graduate School of Information Sciences, Hiroshima City University,
Hiroshima 731-3194, Japan

2 Faculty of Contemporary Business, Kyushu International University, Ki-
takyushu 805-8512, Japan

3 Faculty of Science, Tokai University, Hiratsuka 259-1292, Japan
4 Computer Centre, Gakushuin University, Tokyo 171-8588, Japan
a) y-suzuki@info.hiroshima-cu.ac.jp
b) miyares18@info.hiroshima-cu.ac.jp
c) shoudai@cb.kiu.ac.jp
d) uchida@info.hiroshima-cu.ac.jp
e) matsumoto@tsc.u-tokai.ac.jp
f) ori-mps18@tk.cc.gakushuin.ac.jp

whole trees. A wildcard matches any edge label. A height-
constrained structured variable [8] can be replaced with an arbi-
trary rooted ordered tree having height-constraint and a structured
variable having no height-constraint [7] can be replaced with an
arbitrary rooted ordered tree having no height-constraint. An
(i, j)-height-constrained variable (or simply called an (i, j)-HC-
variable) can be replaced with any tree such that the minimum
length of the path (called the trunk of the tree), corresponding to
the variable (Section 2), of the tree is i and the maximum height
of the tree is j. Thus Ordered tree patterns with HC-variables are
more accurate models of tree structured features than ordered tree
patterns with variables having no height-constraint.
In this work, the maximal frequency of wildcard tree patterns

is the desired property that the tree structured patterns must sat-
isfy, as in our previous work [7]. An HC-wildcard tree pattern t
is said to be maximally frequent w.r.t. a set D of given tree struc-
tured data, if t can explain more data in D than a user-specified
threshold and any HC-wildcard tree pattern more specific than t
cannot. A maximally frequent tree pattern is considered a least
generalized tree pattern w.r.t. a set of tree structured data.
For example in Fig. 1, we consider finding one of the least gen-

eralized HC-wildcard tree patterns explaining at least two trees in
the set {T1, T2, T3} of trees. The HC-wildcard tree pattern t0 can
explain all trees in {T1, T2, T3}. But t0 can explain all trees whose
height is at most 5, so t0 is an overgeneralized and meaningless
pattern. On the other hand, the HC-wildcard tree pattern t1 is one
of the least generalized HC-wildcard tree patterns explaining two
trees T1 and T2 but not T3. The wildcard tree pattern t3, which
is an ordered tree pattern having no height-constraint considered
in our previous [7], is one of the least generalized wildcard tree
patterns explaining two trees T1 and T2 but not T3.

1ⓒ 2018 Information Processing Society of Japan

Vol.2018-MPS-117 No.5
2018/3/1

IPSJ SIG Technical Report

Part 1 Part 2

Chap 4 Chap 5

Algorithm I

Conclusion

v1

v3

Sec 4.1 Sec 4.2

Algorithm II

SubSec 4.1.1

SubSec 4.1.2

v7 v8

v16v14

v21v20

v23 v24

Result

v22

v15

Chap 1 Chap 2 Chap 3

Introduction

v9

Method

v13

Sec 2.1 Sec 2.3

Sec 2.2

Notation

v17

Definition

v18 v19

v2

v4

Example

v6v5

v10 v12v11

Part 1 Part 2

Chap 4 Chap 5

Algorithm I
Result

Sec 4.1 Sec 4.2 Conclusion

v1

v7 v9

v15v14

v19 v20

v16

v8

Comment

v3

Introduction Sec 2.1

Chap 1 Chap 2 Chap 3

MethodSec 2.2

v4 v5 v6

v10 v12v11 v13

v17 v18

Preliminary
Example

v2

Part 1 Part 2

Chap 1 Chap 2 Chap 3 Chap 4 Chap 5

Comment
Experiment Result

Sec 4.1 Sec 4.2 Conclusion

v1

v3v2

v22 v23

Sec 2.1

Introduction

Sec 2.2

v17 v18

Preliminary Sec 3.1 Sec 3.2

v21

Method

SubSec 3.1.1

Problem

v20v19

v24 v25

SubSec 3.1.2

Algorithm

v6 v7 v8v4 v5

v15v14 v16v10v9 v11 v13v12

w1

w2

(1,2)

w1

w2

?

T1 T2 T3 f1 f2

? ?

?

? ? ?

u1

u7 u8

u14u13

u18 u19

u15

u3

?

? ? ?

? ?

??

u4 u5 u6

u9 u11u10 u12

u16 u17

u2

? ?

(1,3)

(1,2)

?

? ?

u1

u3

u8u7

u13 u14

?

? ? ?

? ?

??

u4 u5 u6

u9 u11u10 u12

u15 u16

u2

?

(2,4)

(1,3) (1,1)

? ?

?

? ? ?

u1

u7 u8

u14u13

u18 u19

u15

u3

?

? ? ?

? ?

??

u4 u5 u6

u9 u11u10 u12

u16 u17

u2

? ?

u1

u2

(1,5)

?

?

w2

w3

w1

(1,3)

w5

?

w4

t1 t2 t3 t0 f3

Fig. 1 A variable is represented by a box with lines to its elements. A box with a notation (i, j) shows
an (i, j)-HC-variable A box without a notation (i, j) shows a variable having no height-constraint.
The HC-wildcard tree pattern t1 is maximally σ-frequent w.r.t. D = {T1, T2, T3}, where σ = 0.5.

In this paper, we consider two computational problems, Max-
imally Frequent HC-Wildcard Tree Pattern of Maximum
Tree-size andAllMaximally Frequent HC-Wildcard Tree Pat-
terns over HC-wildcard tree patterns. Maximally Frequent HC-
Wildcard Tree Pattern of Maximum Tree-size is the problem of
finding the maximum HC-wildcard tree pattern t with respect to
the number of vertices such that t can explain more data of input
data than a user-specified threshold and t is minimally general-
ized. Firstly, we show that Maximally Frequent HC-Wildcard
Tree Pattern of Maximum Tree-size is NP-complete. This indi-
cates that it is hard to find an optimum HC-wildcard tree pattern
representing given data. Next, we consider All Maximally Fre-
quent HC-Wildcard Tree Patterns, which is the problem of gen-
erating all maximally frequent HC-wildcard tree patterns. This
problem is based on the idea that meaningless tree patterns are
excluded and all possible useful tree patterns are not missed. We
present an algorithm for solving All Maximally Frequent HC-
Wildcard Tree Patterns, i.e., an algorithm for enumerating maxi-
mally frequent HC-wildcard tree patterns, and show the correct-
ness of the algorithm. Finally, as an application of the algorithm
for solving All Maximally Frequent HC-Wildcard Tree Patterns,
we present an algorithm for solving All Maximally Frequent HC-
Tag Tree Patterns, which is the problem of enumerating all max-
imally frequent HC-tag tree patterns.
We discuss related work. In [12], Wang and Liu presented the

algorithm for finding maximally frequent tree-expression patterns
from tree structured data. In [2], Asai et al. presented an efficient
algorithm for finding frequent substructures from a large collec-
tion of tree structured data. Recent research on tree structure pat-
terns are reported [3], [4], [6], [11].
In [8], we gave an efficient pattern matching algorithm for HC-

ordered term tree patterns, the extended algorithms of which we
use in this paper for calculating the matching relation of HC-
wildcard tree patterns and trees, and the matching relation of HC-
tag tree patters and trees. In [8], also we considered finding a
minimally generalized HC-ordered term tree pattern. The work
[5] gave an algorithm for enumerating all maximal tree patterns,

?

? ?

u1

u3

u8u7

u13 u14

?

? ? ?

? ?

??

u4 u5 u6

u9 u11u10 u12

u15 u16

u2

?

(2,4)

(1,3) (1,1)

w1

w2

(1,2)
w1

w2

?

?

?

w2

w3

w1

(1,3)

w5

?

w4

f1 t2 f2 f3
Fig. 2 Examples of OWTPH-bindings and OWTPH-substitution. Let t2,

f1, f2 and f3 be HC-wildcard tree patterns described in Fig. 1. This
figure displays the process of applying the OWTPH-bindings.

which are different tree patterns of frequency 1.0. This paper is a
complete version of our previous results on HC-tag tree patterns
[9].

2. Preliminaries
2.1 Height-Constrained Ordered Wildcard Tree Patterns
We explain height-constrained ordered wildcard tree patterns

as tree structured patterns. Let Λ be a language which consists
of infinitely or finitely many words. Let “?” be a special symbol,
called a wildcard, such that “?” � Λ. Let Λ{?} be a proper subset
of Λ. The symbol “?” is a wildcard for any word in Λ{?}. For a set
S , the number of elements in S is denoted by |S |. In this paper, a
tree means a rooted ordered tree with ordered children such that
each edge is labeled with an element in Λ. Let X be an infinite
alphabet. We assume that Λ ∩ X = ∅.
Definition 1 Let XH be an infinite subset of X. For two pos-

itive integers i, j (i ≤ j), let XH(i, j) be an infinite subset of XH .
We assume that XH =

⋃
1≤i≤ j XH(i, j) and XH(i, j) ∩ XH(i′ , j′) = ∅

for (i, j) � (i′, j′). An element of XH(i, j) is called an (i, j)-height-
constrained variable label or (i, j)-HC variable label for short.
Definition 2 Let T = (VT , ET) be a tree which has a set VT

of vertices and a set ET of edges with an edge labeling function
μT : ET → {“?”} ∪ XH . Let Eg = {e ∈ ET | μT (e) = “?”}
and Hg = {h ∈ ET | μT (h) ∈ XH} be a partition of ET , i.e.,

2ⓒ 2018 Information Processing Society of Japan

Vol.2018-MPS-117 No.5
2018/3/1

IPSJ SIG Technical Report

Eg ∪ Hg = ET and Eg ∩ Hg = ∅. And let Vg = VT . A height-
constrained ordered wildcard tree pattern (or simply called an
HC-wildcard tree pattern) is a triplet g = (Vg, Eg,Hg). The root
of g is the root of T . Each element in Vg, Eg and Hg is called
a vertex, an edge and a variable, respectively. In particular, if
h is a variable labeled with an element in XH(i, j), h is called
an (i, j)-height-constrained variable (an (i, j)-HC variable, for
short). The notation h(i, j) means that h is an (i, j)-HC-variable.
If the pair (i, j) of an (i, j)-HC-variable need not to be specified,
an (i, j)-HC-variable is simply called an HC-variable.
For an HC-wildcard tree pattern g, V(g), E(g), and H(g) denote

the vertex set, the edge set, and the variable set of g, respectively.
For a tree T , V(T) and E(T) denote the vertex set and the edge set
of T . For an HC-wildcard tree pattern g and its vertices v1 and vn,
a path from v1 to vn is a sequence v1, v2, . . . , vn of distinct vertices
of g such that for any k with 1 ≤ k < n, there exists an edge or a
variable which consists of vk and vk+1. Let H(v1, vn) be the set of
all HC-variables in the path v1, v2, . . . , vn of g and E(v1, vn) the set
of all edges in the path v1, v2, . . . , vn of g. lenmin(v1, vn) is defined
as the integer

∑
h(i, j)∈H(v1 ,vn) i + |E(v1, vn)|. lenmax(v1, vn) is defined

as the integer
∑
h(i, j)∈H(v1 ,vn) j + |E(v1, vn)|. If there is an edge or a

variable which consists of v and v′ such that v lies on the path from
the root to v′, then v is said to be the parent of v′ and v′ is a child
of v. We use a notation (v, v′) (resp. [v, v′]) to represent an edge
(resp. a variable) such that v is the parent of v′. Then we call v
the parent port of [v, v′] and v′ the child port of [v, v′]. The height
of g is, denoted by height(g), defined as max{lenmax(r, �) | r is the
root and � a leaf }. An HC-wildcard tree pattern g has a total or-
dering on all children of every internal vertex u. The ordering on
the children of u is denoted by <gu. That is, for any two children
u′ and u′′ of u, u′ <gu u′′ denotes that u′ is a left sibling of u′′ in g.
Definition 3 Let g be an HC-wildcard tree pattern. Let a se-

quence u0, u1, . . . , uk be a path of g such that its length is more
than one and for every u�−1 and u� (1 ≤ � ≤ k), [u�−1, u�](i� , j�) is
an (i�, j�)-HC variable of g for certain integers i� and j�. Then,
u0, u1, . . . , uk is said to be a variable-chain of g if u� is the only
child of u�−1 for any 0 ≤ � ≤ k. If g has no variable-chain, g is
called variable-chain free.
Definition 4 OT denotes the set of all trees whose edge la-

bels are in Λ. A tree T is a word tree if |VT | = 2 and |ET | = 1.
For a word w ∈ Λ, T (w) denotes the word tree whose edge is la-
beled with the word w. For a subset Λ′ � Λ, we define the set of
word treesWT Λ′ =

⋃
w∈Λ′ {T (w)}. Note that for any set Λ′ � Λ,

WT Λ′ � OT . OWTPH denotes the set of all HC-wildcard tree
patterns whose variable labels are in XH . OWTPh denotes the set
of all variable-chain free HC-wildcard tree patterns whose vari-
able labels are in XH .
Let g be an HC-wildcard tree pattern or a tree with at least two

vertices. Let τ = [w0, w1] be a list of two distinct vertices in g
where w0 is the root of g and w1 is a leaf of g. The trunk length of
τ = [w0, w1] is defined as lenmin(w0, w1). Let f be an HC-wildcard
tree pattern with at least two vertices and e a variable or an edge
of f . The form e := 〈g, τ〉 is called a binding for e. A new HC-
wildcard tree pattern or a new tree f ′ is obtained by applying the
binding e := 〈g, τ〉 for f in the following way. Let e = [v0, v1]
(resp. e = (v0, v1)) be a variable (resp. an edge) in f . Let g′

be one copy of g and w′0, w
′
1 the vertices of g

′ corresponding to
w0, w1 of g, respectively. For the variable or the edge e, we attach
g′ to f by removing e from E(f) ∪ H(f) and by identifying the
vertices v0, v1 with the vertices w′0, w

′
1 of g

′, respectively. Further
we define a new total ordering < f

′

u on every vertex u of f ′ in a
natural way. Suppose that u has more than one child and let u′

and u′′ be two children of u of f ′. We have the following three
cases. Case 1: If u, u′, u′′ ∈ V(f) and u′ < fu u′′, then u′ <

f ′
u u′′.

Case 2: If u, u′, u′′ ∈ V(g) and u′ <gu u′′, then u′ <
f ′
u u′′. Case 3:

If u = v0, u′ ∈ V(g), u′′ ∈ V(f), and v1 < fu u′′ (resp. u′′ <
f
u v1),

then u′ < f
′

u u′′ (resp. u′′ <
f ′
u u′). A substitution θ for f is a finite

collection of bindings {e1 := 〈g1, τ1〉, . . . , en := 〈gn, τn〉}, where
ei’s are mutually distinct variables or edges in f . The new HC-
wildcard tree pattern or the new tree f θ, called the instance of f
by θ, is obtained by applying the all bindings ei := 〈gi, τi〉 to f
simultaneously. We note that the root of f θ is the root of f .
For an (i, j)-HC-variable e (1 ≤ i ≤ j), a binding e := 〈g, τ〉

is called an OWTPH-binding for e if the following conditions
hold. (1) g ∈ OWTPH , (2) the trunk length of τ is at least i, (3)
the height of g is at most j. For an HC-wildcard tree pattern f
and a substitution θ = {e1 := 〈g1, τ1〉, . . . , en := 〈gn, τn〉} for f ,
θ is called an OWTPH-substitution for f if all bindings in θ are
OWTPH-bindings. For an OWTPH-substitution θ, the new HC-
wildcard tree pattern f θ is called the OWTPH-instance of f by θ.
For an HC-variable e or an edge e, a binding e := 〈g, τ〉 is called
an OT -binding for e if the following two conditions hold. (1) if
e is an edge, then g ∈ WT Λ{?} , (2) if e is an (i, j)-HC-variable
(1 ≤ i ≤ j) then (i) g ∈ OT , (ii) the trunk length of τ is at least
i and (iii) the height of g is at most j. For an HC-wildcard tree
pattern f and a substitution θ = {e1 := 〈g1, τ1〉, . . . , en := 〈gn, τn〉}
for f , θ is called an OT -substitution for f if the following two
conditions hold. (1) {e1, . . . , en} = E(f) ∪ H(f), (2) all bindings
in θ are OT -bindings. For an OT -substitution θ, the new tree f θ
is called the OT -instance of f by θ.
Let f and g (resp. f and g) be two HC-wildcard tree patterns

(resp. two trees). We say that f and g are isomorphic, denoted
by f � g, if there is a bijection ϕ from V(f) to V(g) such that (1)
the root of f is mapped to the root of g by ϕ, (2) (u, v) ∈ E(f) if
and only if (ϕ(u), ϕ(v)) ∈ E(g) and the two edges have the same
edge label, (3)For any i, j (1 ≤ i ≤ j), [u, v](i, j) ∈ H(f) if and only
if [ϕ(u), ϕ(v)](i, j) ∈ H(g), and (4) for any internal vertex u in f
which has more than one child, and for any two children u′ and
u′′ of u, u′ < fu u′′ if and only if ϕ(u′) <

g
ϕ(u) ϕ(u

′′).
An HC-wildcard tree pattern t matches a tree T if there exists

an OT -substitution θ such that tθ � T .
Definition 5 The language LΛ(t) of an HC-wildcard tree pat-

tern t is {s ∈ OT | s � tθ for an OT -substitution θ }.
Example 1 In Fig. 2, we describe the process of applying the

above OWTPH-bindings in the OWTP-substitution θ′ for t2. The
HC-wildcard tree pattern t2θ′ is isomorphic to t1 in Fig. 1.
Let D = {T1, T2, . . . ,Tm} � OT be a nonempty finite set

of trees. The matching count of an HC-wildcard tree pattern
π ∈ OWTPH w.r.t. D, denoted by matchD(π), is the number
of trees Ti ∈ D (1 ≤ i ≤ m) such that π matches Ti. Then the
frequency of π w.r.t. D is defined by suppD(π) = matchD(π)/m.
Let σ be a real number where 0 < σ ≤ 1. An HC-wildcard tree

3ⓒ 2018 Information Processing Society of Japan

Vol.2018-MPS-117 No.5
2018/3/1

IPSJ SIG Technical Report

pattern π ∈ OWTPH is σ-frequent w.r.t. D if suppD(π) ≥ σ. An
HC-wildcard tree pattern π ∈ OWTPh is maximally σ-frequent
w.r.t. D in OWTPh if (1) π is σ-frequent w.r.t. D, and (2) if
LΛ(π′) � LΛ(π) then π′ is not σ-frequent w.r.t. D for any HC-
wildcard tree pattern π′ in OWTPh.

2.2 Hardness Results of Finding an Optimum Frequent
Height-Constrained Wildcard Tree Pattern

In this section, we give a hardness result of computing an op-
timum HC-wildcard tree pattern. We show that it is hard to com-
pute a maximally frequent HC-wildcard tree pattern of maximum
tree-size w.r.t. a nonempty finite set of trees. The formal defini-
tion of the problem is as follows.
Maximally Frequent HC-Wildcard Tree Pattern ofMaximum
Tree-size
Instance: A nonempty finite set of trees D = {T1, T2, . . . , Tm}, a
real number σ (0 < σ ≤ 1) and a positive integer K.
Question: Is there a maximally σ-frequent HC-wildcard tree pat-
tern π w.r.t. D in OWTPh with |V(π)| ≥ K?
Theorem 1 Maximally Frequent HC-Wildcard Tree Pat-

tern of Maximum Tree-size is NP-complete.

3. Enumeration of Maximally Frequent Wild-
card Tree Patterns with HC-Variables

In this section, we consider the following problem.
All Maximally Frequent HC-Wildcard Tree Patterns
(MFOWTPH)
Input: A nonempty finite set D � OT of trees, a real number σ
(0 < σ ≤ 1).
Assumption: (1) Λ{?} � Λ, and (2) there exists an algorithm for
deciding whether or not any word in Λ is in Λ{?}.
Problem: Enumerate all maximally σ-frequent HC-wildcard
tree patterns w.r.t. D in OWTPh.
We give an algorithm Gen-MFOWTPH (Algorithm 1) which

generates all maximally σ-frequent HC-wildcard tree patterns in
OWTPh. Let D � OT be a nonempty finite set of trees. In
the algorithm Gen-MFOWTPH, we decide whether or not a can-
didate HC-wildcard tree pattern is σ-frequent w.r.t. D, by us-
ing a matching algorithm which decides whether or not an HC-
wildcard tree pattern matches a tree. This matching algorithm is
an extended version of the efficient pattern matching algorithm
[8] for an ordered term tree pattern with HC-variables and a tree.
Let Dh be the maximum height of trees in D. A (1,Dh)-HC-
variable-only tree pattern is an HC-wildcard tree pattern consist-
ing of only vertices and (1,Dh)-HC-variables.
In the procedure EnumFreqTP, we use an algorithm using a

rightmost expansion technique in order to enumerate all (1,Dh)-
HC-variable-only tree patterns in a similar way to our previous
work [7]. The rightmost expansion technique and an algorithm
using this technique for enumerating all trees are developed by
Asai et al. [2]. For two (1,Dh)-HC-variable-only tree patterns π
and π′, if π′ is obtained from π by applying the rightmost expan-
sion technique, then π′ is called a child tree pattern of π and π
is called the parent tree pattern of π′. By using the same parent-
child relation as in our previous work [7], we enumerate without

Algorithm 1 Gen-MFOWTPH
Input: A nonempty finite set D � OT of trees and a real number σ

(0 < σ ≤ 1);
Output: The set Π(σ) of all maximally σ-frequent HC-wildcard tree pat-

terns w.r.t. D in OWTPh;
1: Π1(σ) :=EnumFreqTP(D, σ) (Procedure 2)
2: Π2(σ) :=ReplaceEdge(D, σ,Π1(σ)) (Procedure 4)
3: Π3(σ) :=MergeVariable(D, σ,Π2(σ)) (Procedure 6)
4: Π4(σ) :=ConstrainVariable(D, σ,Π3(σ)) (Procedure 7)
5: Π(σ) :=TestMaximality(D, σ,Π4(σ)) (Procedure 9)
6: return Π(σ)

Procedure 2 EnumFreqTP
Input: A nonempty finite set D � OT of trees and a real number σ

(0 < σ ≤ 1);
Output: A set Πout of HC-variable-only tree patterns;
1: Let Dh be the maximum height of trees inD
2: π := ({u, v}, ∅, {[u, v](1,Dh)})
3: Πout :=EnumFreqTPSub(D, σ, π) (Procedure 3)
4: return Πout

Procedure 3 EnumFreqTPSub
Input: A nonempty finite setD � OT of trees, a real number σ (0 < σ ≤ 1),

and an HC-variable-only tree pattern π;
Output: A set Πout of HC-variable-only tree patterns;
1: if π is not σ-frequent w.r.t. D then return ∅
2: Πout := {π}
3: for each child tree pattern π′ of π do
4: Πout := Πout∪EnumFreqTPSub(D, σ, π′)
5: end for
6: return Πout

Procedure 4 ReplaceEdge
Input: A nonempty finite setD � OT of trees, a real number σ (0 < σ ≤ 1),

and a set Πin of HC-variable-only tree patterns;
Output: A set Πout of HC-wildcard tree patterns;
1: Πout := Πin
2: for each HC-wildcard tree pattern π ∈ Πin do
3: Πout := Πout∪ ReplaceEdgeSub(D, σ, π, 1) (Procedure 5)
4: end for
5: return Πout

any duplicate all (1,Dh)-HC-variable-only tree patterns in a way
of depth first search. We can prove the following theorem. Due
to the space limit, we omit the proof.
Theorem 2 Algorithm Gen-MFOWTPH outputs the set of

all maximally σ-frequent HC-wildcard tree patterns w.r.t. D in
OWTPh.

4. Application to Enumeration of Maximally
Frequent Tree Patterns with Tags and Key-
words

Definition 6 Let ΛTag be a language consisting of infinitely
or finitely many words in Λ. Let ΛKW be a language consisting of
infinitely or finitely many words of the form “/k/” for words k in
Λ, where we assume that “/” � Λ holds. We call a word in ΛTag
a tag and a word in ΛKW a keyword. For a keyword /k/ ∈ ΛKW ,
we define the set Λ{/k/} = {w ∈ Λ | k is a substring of w}. Let
T = (VT , ET) be a tree which has a set VT of vertices and a set ET

4ⓒ 2018 Information Processing Society of Japan

Vol.2018-MPS-117 No.5
2018/3/1

IPSJ SIG Technical Report

Procedure 5 ReplaceEdgeSub
Input: A nonempty finite setD � OT of trees, a real number σ (0 < σ ≤ 1),

an HC-wildcard tree pattern π and a positive integer p;
Output: A set Πout of HC-wildcard tree patterns;
1: if p > |E(π) ∪ H(π)| then return ∅
2: Πout := ∅
3: Let T0(“?”) be the HC-wildcard tree pattern in Fig.3.
4: Let h(1,Dh) be the p-th variable in the DFS order of all edges and variables

of π.
5: π? := π{h(1,Dh) := 〈T0(“?”), [R0, L0]〉}
6: if π? is σ-frequent w.r.t. D then Πout := {π?}
7: Πtmp := Πout ∪ {π}
8: for each HC-wildcard tree pattern π′ ∈ Πtmp do
9: Πout := Πout∪ReplaceEdgeSub(D, σ, π′, p + 1)
10: end for
11: return Πout

Procedure 6MergeVariable
Input: A nonempty finite setD � OT of trees, a real number σ (0 < σ ≤ 1),

and a set Πin of HC-wildcard tree patterns;
Output: A set Πout of HC-wildcard tree patterns;
1: Πout := ∅
2: for each HC-wildcard tree pattern π ∈ Πin do
3: while π is not variable-chain free do
4: Let u1, u2, u3 be a variable-chain in π such that [u1, u2](i1 ,Dh) is an

(i1,Dh)-HC variable and [u2, u3](i2 ,Dh) is an (i2,Dh)-HC variable
5: π′ := (V(π) \ {u2}, E(π),H(π) ∪ {[u1, u3](i1+i2 ,Dh)} \ {[u1, u2](i1 ,Dh),

[u2, u3](i2 ,Dh)})
6: end while
7: Πout := Πout ∪ {π′}
8: end for
9: return Πout

Procedure 7 ConstrainVariable
Input: A nonempty finite setD � OT of trees, a real number σ (0 < σ ≤ 1),

and a set Πin of HC-wildcard tree patterns;
Output: A set Πout of HC-wildcard tree patterns;
1: Πout := Πin
2: for each HC-wildcard tree pattern π ∈ Πin do
3: Πout := Πout∪ ConstrainVariableSub(D, σ, π, 1) (Procedure 8)
4: end for
5: return Πout

L
0

R
0

?

L
1

L
1

R
1

R
1

(i , j-1)(i , j-1)

L
2

L
2

R
2

R
2

(i+1, j)(i+1, j) (1 , j)(1 , j)

L
3

L
3

R
3

R
3

(i , j)(i , j) (1 , j)(1 , j)

L
4

L
4

R
4

R
4

(i , j)(i , j)

T0(“?”) T (i, j)1 T (i, j)2 T (i, j)3 T (i, j)4

(1 , j
2

)(1 , j
2

)

R
5

R
5

L
5

L
5

(i
2

, j
2

)(i
2

, j
2

)

(i
1

, j
1

)(i
1

, j
1

)

(1 , j
2

)(1 , j
2

)

R
6

R
6

L
6

L
6

(i
2

, j
2

)(i
2

, j
2

)

(i
1

, j
1

)(i
1

, j
1

)

R
7

R
7

L
7

L
7

(i-1, j-1)(i-1, j-1)

?

R
8

R
8

L
8

L
8

(i-1, j-1)(i-1, j-1)

?

R
9

R
9

(i
1
’ , j

1
’)(i

1
’ , j

1
’)

L
9

L
9

(i
2
’ , j

2
’)(i

2
’ , j

2
’)

?

T (i, j)5 T (i, j)6 T (i, j)7 T (i, j)8 T (i, j)9

Fig. 3 HC-Wildcard tree patterns T0(“?”) and T (i, j)1 , . . . ,T
(i, j)
9 . For HC-

wildcard tree patterns T (i, j)5 , T
(i, j)
6 , we assume i1 + i2 = i and j1 + j2 =

j. For HC-wildcard tree pattern T (i, j)9 , we assume i′1 + i
′
2 + 1 = i and

j′1 + j
′
2 + 1 = j.

of edges. Let Eg and Hg be a partition of ET , i.e., Eg ∪ Hg = ET
and Eg ∩ Hg = ∅. And let Vg = VT . A height-constrained or-

Procedure 8 ConstrainVariableSub
Input: A nonempty finite setD � OT of trees, a real number σ (0 < σ ≤ 1),

an HC-wildcard tree pattern π and a positive integer p;
Output: A set Πout of HC-wildcard tree patterns;
1: if p > |H(π)| then return ∅
2: Πout := ∅
3: Let h(i, j) = [u, v](i, j) be the p-th variable in the DFS order of HC-variables

of π.
4: for k := j − 1 downto i do
5: Let π′ be an HC-wildcard tree pattern obtained from π by replacing

[u, v](i, j) of π with a variable [u, v](i,k)

6: if π′ is σ-frequent w.r.t. D then Πout := Πout ∪ {π′}
7: end for
8: Πtmp := Πout ∪ {π}
9: for each HC-wildcard tree pattern π′ ∈ Πtmp do
10: Πout := Πout∪ConstrainVariableSub(D, σ, π′, p + 1)
11: end for
12: return Πout

Procedure 9 TestMaximality
Input: A nonempty finite setD � OT of trees, a real number σ (0 < σ ≤ 1),

and a set Πin of HC-wildcard tree patterns;
Output: A set Πout of HC-wildcard tree patterns;
1: Πout := Πin
2: for each HC-wildcard tree pattern π ∈ Πout do
3: for each HC-variable h(1, j) in π do
4: Let T0(“?”) be the HC-wildcard tree pattern in Fig.3.
5: if π{h(1, j) := 〈T0(“?”), [R0, L0]〉} is σ-frequent w.r.t. D then
6: Πout := Πout \ {π}
7: end if
8: end for
9: for each HC-variable h(i, j) in π do
10: Let T (i, j)1 , . . . ,T

(i, j)
9 be the HC-wildcard tree patterns in Fig.3.

11: if there exists a K ∈ {1, . . . , 9} such that
π{h(i, j) := 〈T (i, j)K , [RK , LK]〉} is σ-frequent w.r.t. D then

12: Πout := Πout \ {π}
13: end if
14: end for
15: end for
16: return Πout

dered tag tree pattern (or simply called an HC-tag tree pattern) is
a triplet g = (Vg, Eg,Hg) such that each element in Eg is labeled
with any of a tag, a keyword and the symbol “?”. Each element
in Vg, Eg and Hg is called a vertex, an edge and an HC-variable,
respectively.
Two HC-tag tree patterns f and g are isomorphic if f and g are

isomorphic as HC-wildcard tree patterns by regarding the sym-
bol “?”, tags and keywords as edge labels. A substitution for
an HC-tag tree pattern is an extended form of a substitution for
an HC-wildcard tree pattern, where a binding e := 〈g, τ〉 for an
edge e labeled with a keyword /k/ can replace the edge e with
any word tree g ∈ WT Λ{/k/} , a binding e := 〈g, τ〉 for an edge
e labeled with the symbol “?” can replace the edge e with any
word tree g ∈ WT Λ{?} , and a binding e := 〈g, τ〉 for an (i, j)-
HC-variable e can replace the (i, j)-HC-variable e with any tree
g whose trunk length is at least i and whose height is at most j.
An HC-tag tree pattern t is said to match a tree T if there exists
a substitution θ such that T � tθ holds. An edge e of an HC-tag
tree pattern is said to match an edge e′ of a tree if there exists

5ⓒ 2018 Information Processing Society of Japan

Vol.2018-MPS-117 No.5
2018/3/1

IPSJ SIG Technical Report

e
3

?

an edge of an HC-tag tree pattern an edge of a tree

e
3
’

SubSec 4.1.1

e
4
’

Conclusion

match
e
1

Introduction

e
2

/Sec/

e
1
’

e
2
’

Sec 4.1
tag: Introduction

keyword: /Sec/

wildcard: ?

Introduction

Fig. 4 The matching relation of an edge of an HC-tag tree pattern and an
edge of a tree.

/Part/ /Part/

/Chap/

/Sec/ /Sec/ Conclusion

u1

u7 u8

u14u13

u18 u19

u15

u3

(1,3)

Introduction

/Chap/ /Chap/ /Chap/

? Example

Method/Sec/

u4 u5 u6

u9 u11u10 u12

u16 u17

(1,2)

u2

Algorithm I ?

t4
Fig. 5 A maximally σ-frequent HC-tag tree pattern t4 w.r.t. D =

{T1, T2, T3} given in Fig.1, where Tag = {Introduction, Method,
Example, Algorithm I, Conclusion}, KW = {/Part/, /Chap/,
/S ec/, /S ubS ec/} and σ = 0.5.

a substitution θ such that the edge label of e after the replace-
ment by θ equals the edge label of e′. OTTP(ΛTag,ΛKW) denotes the
set of all HC-tag tree patterns with tags in ΛTag and keywords in
ΛKW . For t in OTTP(ΛTag,ΛKW), the language LΛ(t) is defined as
{a tree T in OT | t matches T }.
Example 2 We explain the matching relation of an edge of

an HC-tag tree pattern and an edge of a tree in Fig. 4. Let “In-
troduction” be a tag, and “/Sec/” a keyword. We assume that
{Introduction, S ec4.1, S ubS ec4.1.1, Conclusion} � Λ{?}. In an
HC-tag tree pattern, let us consider an edge e1 with a label “In-
troduction”, an edge e2 with a label “/Sec/” and an edge e3 with
a label “?”. In a tree, let us consider an edge e′1 with a label “In-
troduction”, an edge e′2 with a label “Sec 4.1”, an edge e

′
3 with a

label “SubSec 4.1.1” and an edge e′4 with a label “Conclusion”.
Then we have the following. e1 matches e′1. e2 matches e

′
2 and

e′3. e3 matches e
′
1, e
′
2, e
′
3 and e

′
4.

LetD = {T1, T2, . . . ,Tm} be a nonempty finite set of trees. The
matching count of an HC-tag tree pattern π w.r.t. D, denoted by
matchD(π), is the number of trees Ti ∈ D (1 ≤ i ≤ m) such
that π matches Ti. Then the frequency of π w.r.t. D is defined
by suppD(π) = matchD(π)/m. Let σ be a real number where
0 < σ ≤ 1. An HC-tag tree pattern π is σ-frequent w.r.t. D if
suppD(π) ≥ σ. Let Tag be a finite subset ofΛTag and KW a finite
subset of ΛKW . Let Λ(Tag,KW) = Tag∪

⋃
/k/∈KW Λ{/k/}. We de-

note byOTTP(Tag,KW) the set of all HC-tag tree patterns πwith
the tags of π in Tag and the keywords of π in KW. An HC-tag
tree pattern π in OTTP(Tag,KW) is maximally σ-frequent w.r.t.
D if (1) π is σ-frequent, and (2) if LΛ(π′) � LΛ(π) then π′ is not
σ-frequent for any HC-tag tree pattern π′ in OTTP(Tag,KW).
Example 3 Let t4 be an HC-tag tree pattern in
OTTP(Tag,KW), which is described in Fig. 5. The HC-
tag tree pattern t4 is a maximally σ-frequent w.r.t. D, where
σ = 0.5,D = {T1, T2, T3} given in Fig. 1.
All Maximally Frequent HC-Tag Tree Patterns (MFOTTPH)
Input: A nonempty finite set D � OT of trees, a real number
σ (0 < σ ≤ 1), a finite set Tag of tags, and a finite set KW of
keywords.
Assumption: (1) Λ(Tag,KW) � Λ{?} � Λ, (2) Tag ∩

⋃
/k/∈KW Λ{/k/} = ∅, and (3) there exists an algorithm for decid-

ing whether or not any word in Λ is in Λ{?}.
Problem: Generate all maximally σ-frequent HC-tag tree pat-
terns w.r.t. D in OTTP(Tag,KW).
We give an algorithm which generates all maximally σ-

frequent HC-tag tree patterns by extending the algorithm Gen-
MFOWTPH in Section 3.

5. Conclusions
We have proposed height-constrained wildcard tree patterns,

which are ordered tree patterns having height-constrained struc-
tured variables and wildcards for edge labels, and match whole
data trees. A height-constrained structured variable can be
replaced with an arbitrary rooted ordered tree having height-
constraint. First we have shown that it is hard to compute a max-
imally frequent HC-wildcard tree pattern of maximum-tree size.
Then we have presented an algorithm for enumerating all max-
imally frequent HC-wildcard tree patterns. Finally, as an appli-
cation we have presented an algorithm for enumerating all maxi-
mally frequent HC-tag tree patterns. This work was partially sup-
ported by Grant-in-Aid for Scientific Research (C) (Grant Num-
bers 15K00312, 15K00313, 17K00321) from Japan Society for
the Promotion of Science (JSPS).

References
[1] Abiteboul, S., Buneman, P. and Suciu, D.: Data on the Web: From Re-

lations to Semistructured Data and XML, Morgan Kaufmann (2000).
[2] Asai, T., Abe, K., Kawasoe, S., Sakamoto, H., Arimura, H. and

Arikawa, S.: Efficient substructure discovery from large semi-
structured data, IEICE Trans. Inf. Syst., Vol. E87-D(12), pp. 2754–
2763 (2004).

[3] Chehreghani, M. H. and Bruynooghe, M.: Mining rooted ordered trees
under subtree homeomorphism, Data Mining and Knowledge Discov-
ery, Vol. 30, No. 5, pp. 1249–1272 (2016).

[4] Doshi, M. and Roy, B.: Enhanced data processing using positive neg-
ative association mining on AJAX data, Proc. of 2014 International
Conference on Circuits, Systems, Communication and Information
Technology Applications (CSCITA-2014),, pp. 386–390 (2014).

[5] Itokawa, Y. and Uchida, T. Sano, M.: An Algorithm for Enumerating
All Maximal Tree Patterns Without Duplication Using Succinct Data
Structure, Proc. IMECS 2014, pp. 156–161 (2014).

[6] Jiang, C., Coenen, F. and Zito, M.: A survey of frequent subgraph min-
ing algorithms, The Knowledge Engineering Review, Vol. 28, No. 01,
pp. 75–105 (2013).

[7] Miyahara, T., Suzuki, Y., Shoudai, T., Uchida, T. and Kuboyama,
T.: Enumeration of Maximally Frequent Ordered Tree Patterns with
Wildcards for Edge Labels, IPSJ Trans. Math. Model. Appl.(TOM),
Vol. 10(2), pp. 59–69 (2017).

[8] Shoudai, T., Aikoh, K., Suzuki, Y., Matsumoto, S., Miyahara, T. and
Uchida, T.: Polynomial Time Inductive Inference of Languages of
Ordered Term Tree Patterns with Height-Constrained Variables from
Positive Data, IEICE Trans. Fund., Vol. E100-A(3), pp. 785–802
(2017).

[9] Suzuki, Y., Miyahara, T., Shoudai, T., Uchida, T. and Nakamura,
Y.: Discovery of Maximally Frequent Tag Tree Patterns with Height-
Constrained Variables from Semistructured Web Documents, Proc. of
International Workshop on Challenges in Web Information Retrieval
and Integration (WIRI-2005), pp. 107–115 (2005).

[10] Suzuki, Y., Shoudai, T., Uchida, T. and Miyahara, T.: An Efficient
Pattern Matching Algorithm for Ordered Term Tree Patterns, IEICE
Trans. Inf. Syst., Vol. E98-A(6), pp. 1197–1211 (2015).

[11] Wang, J., Liu, Z., Li, W. and Li, X.: Research on a frequent maximal
induced subtrees mining method based on the compression tree se-
quence, Expert Systems with Applications, Vol. 42, No. 1, pp. 94–100
(2015).

[12] Wang, K. and Liu, H.: Discovering structural association of semistruc-
tured data, IEEE Trans. Knowledge and Data Engineering, Vol. 12(3),
pp. 353–371 (2000).

6ⓒ 2018 Information Processing Society of Japan

Vol.2018-MPS-117 No.5
2018/3/1

