IPSJ SIG Technical Report

Vol.2018-MBL-86 No.14
Vol.2018-UBI-57 No.14
2018/2/26

An HTIP L2 Agent Solution For Network Equipment
Using OpenFlow

Stoutis Marios!-®

L Yuro!-

b Tan Yasuo!-©

Abstract: In order to provide customers with effective remote support for the rising number of appliances in the home,
network topology information is necessary. The Home-network Topology Identification Protocol (HTIP) is a protocol
which can provide the information needed to deduce the home network topology. In this paper we present an open
source HTIP L2 agent implementation based on Ryu, a popular OpenFlow SDN framework. This solution can aid
the testing and development of HTIP managers and agents, reducing costs and improving interoperability. The correct
HTIP behaviour as well as the performance characteristics of this L2 agent are demonstrated through experiments and

areas for future improvement are discussed.

Keywords: HTIP, Home Network, Network Topology, Software-Defined Network, OpenFlow

1. Introduction

With advances in IoT technology, the number of network-
enabled devices connected to the home network is constantly ris-
ing. As the number of such devices increases, their management
and their trouble-free operation becomes a daunting task for the
average user, who is rarely equipped with the necessary technical
knowledge to troubleshoot any problems that may come up.

To support users in the task of managing devices and the home
network in an effective way, a strong case can be made for re-
mote technical support systems. It is possible to provide tech-
nical support and troubleshooting of home devices remotely, as-
suming that technical information regarding device operation can
be shared with the remote assisting party in a consistent and stan-
dardized fashion. Currently, the Broadband Forum proposes the
TR-069 CPE WAN Management Protocol[1] as a solution for de-
vice management. Furthermore, customer support guidelines are
discussed in TCC TR-1057[2] and customer support use cases are
discussed in TTC TR-1062[3].

One of the most critical pieces of information necessary for
remote troubleshooting is network topology information. To
this extent, the Home—network Topology Identification Protocol
(HTIP) [4] has been proposed as a solution to the problem of
gathering relevant network topology information in the context
of a home network. However, since HTIP is relatively new, the
number of commercially available devices that support it is low.

To help further the growth and adoption of HTIP as the de—
facto method of collecting network topology information in the
home, in this paper we introduce an open—source implementation

Japan Advanced Institute of Science and Technology, Nomi, Ishikawa
923-1201, Japan

¥ smarios @jaist.ac.jp

Y ylim@jaist.ac.jp

9 ytan@jaist.ac.jp

© 2018 Information Processing Society of Japan

of the HTIP L2 agent for NW equipment*!. This L2 agent pro-
vides link information for each port of the NW equipment based
on information from the MAC forwarding table of this device.
It is expected that future switching hubs will integrate HTIP L2
agent functionality, but as of right now no such switches are yet
commercially available.

Our HTIP L2 agent implementation fills this gap by providing
an L2 agent which can be deployed on general purpose computers
that have multiple network interfaces. Authors of HTIP manager
software can use this L2 agent implementation for testing and in-
teroperability checks, thus speeding up development and guaran-
teeing conformance. Furthermore, this L2 agent can be deployed
on virtual machines and be used as part of large scale home sim-
ulations that test manager software scalability and performance.

The L2 agent implementation uses the Software Defined Net-
working technology OpenFlow[5].The use of OpenFlow enables
complete control over the behaviour of the switch by allowing
control over how each individual incoming packet is handled. It is
thus possible to generate and maintain a MAC address forwarding
table which will be used as the basis for generating appropriate
HTIP information.

Furthermore, the L2 agent consists of two parts: an Open-
Flow controller and an OpenFlow switch. The controller is im-
plemented as a Python application running on top of the Ryu
SDN Framework[6]. The controller has so far been tested with
the Open vSwitch[7] OpenFlow switch for the Linux operating
system.

The OpenFlow controller which was developed is distributed
as open source software under the BSD 2-clause license, avail-
able from ¢https://github.com/s-marios/dragontip).

In the following sections we discus topics such as the core con-
cepts of HTIP and OpenFlow, application design and implemen-

#1

A representative example of NW equipment is an Ethernet switching hub
that utilizes a MAC forwarding table.

IPSJ SIG Technical Report

tation details, evaluation of the L2 agent in terms of correctness
and performance as well as concluding remarks and future works,
in that order.

2. Core Technologies

The two core technologies involved in this research are the
HTIP protocol and the OpenFlow SDN protocol. A brief intro-
duction for these two technologies follows.

2.1 HTIP

HTIP is designed to solve the problem of gathering home net-
work topology information. To achieve this goal, it is impera-
tive that HTIP functionality can be easily integrated into home
devices, from resource-constrained embedded devices to more
powerful devices running general-purpose operating systems. As
such, HTIP builds upon two well-proven technologies, the Link
Layer Discovery Protocol (LLDP)[8] and Universal Plug-n-Play
(UPnP)[9]. These technologies are used as a base on which the
functionality of the various HTIP entities is defined.

There are 3 major entities in HTIP:

e HTIP manager,

e HTIP L2 agent,

e HTIP L3 agent.

The scope and functionality of HTIP managers can vary. Al-
though the exact behaviour of an HTIP manager is not defined in
the specification, HTIP managers are generally expected to uti-
lize information produced by L2/L.3 agents and provide support
functionality such as automated error reports, network and device
status, network topology information etc. For example, it is the
responsibility of an HTIP manager to extract an accurate overall
network topology from the HTIP information it has gathered so
far.

An L2 agent is software that is expected to be deployed on a
device, providing generic information such as device category,
model number and other optional information such as link qual-
ity, CPU usage rate, periodic transmission interval and others.
Furthermore, L2 agents can be deployed on network equipment
such as switches and routers. In this case, an L2 agent must also
provide link information for each network port present on the net-
work equipment.

L2 agents transmit this information periodically in the form
of LLDP Data Units (LLDPDUs). However, contrary to
LLDP where the destination address is a multicast MAC
address, HTIP chooses to use the broadcast MAC address
FF:FF:FF:FF:FF:FF. An LLDPDU is a collection of Type-
Length-Values (TLVs) that are used to express the type, length
and value of a specific piece of information. The specific binary
format of the TLVs that encode HTIP information (namely the
“value” part of the TLV) can be found in the HTIP specification.

The L2 agents are not expected to receive any HTIP infor-
mation (with the exception of implementing an optional feature
which allows the control of HTIP retransmission information).
This fact combined with the simplicity of the TLVs and the use
of broadcast MAC address as the destination make the develop-
ment of simple L2 agents relatively easy, even on embedded sys-
tems. On the other hand, network equipment with L2 agent func-

© 2018 Information Processing Society of Japan

Vol.2018-MBL-86 No.14
Vol.2018-UBI-57 No.14
2018/2/26

tionality (including link information) has yet to be commercially
released.

L3 agents are the last major entity in the HTIP ecosystem. L3
agents operate using UPnP and are intended to be deployed on
home devices. L3 agents report the same kind of information as
L2 agents, except the link information reported by L2 agents on
network equipment. Adding L3 agent functionality to a device
that already supports UPnP should be relatively straightforward,;
depending on the information that is reported as well as the un-
derlying UPnP library, L3 agent functionality may be achieved
by adding the required XML elements to the device description.
The biggest difference between L3 agents and L2 agents is that
HTIP managers can query an L3 agent for information at any
given time, thus ensuring that its host is operational at that point
in time.

As a closing note on HTIP, it must be said that HTIP can
also support communication media other than those of the Ether-
net family through specific extensions that are optional, making
HTIP a future-proof proposition.

2.2 OpenFlow

OpenFlow is among the most well known SDN technologies.
With the use of OpenFlow a clear distinction between the data
plane and control plane of network equipment such as switches
and routes can be achieved. In other words, the logic of han-
dling incoming traffic is relegated to a controller, which is in turn
able to generate forwarding rules for the controlled switch called
flows. The actual processing of incoming traffic happens at the
switch, and any traffic that cannot be matched to any established
flow is sent to the controller. The controller can then decide the
fate of the incoming traffic by taking actions such as forward-
ing the packet to specific/all ports of the switch, drop the traffic,
modify protocol fields and optionally establish flows for the un-
derlying switch.

OpenFlow provides great flexibility when it comes to han-
dling of incoming traffic. Many implementations of network pro-
tocols such as routing protocols already exist based on Open-
Flow*2. Furthermore, an application developed using an Open-
Flow framework can focus only on a subset of traffic match-
ing specific criteria and perform specialized actions, while at the
same time process the rest of the traffic transparently, just like a
normal switch would. These characteristics make OpenFlow an
ideal platform on which a variety of specialized network applica-
tions can be build, including our HTIP L2 agent implementation
for network equipment.

3. Design and Implementation Details

3.1 Software and Hardware Details

The HTIP L2 agent for network equipment is split into two
parts: the OpenFlow controller and the OpenFlow switch. The
controller is implemented as a Python application running on
top of the Ryu SDN Framework, version 4.15. Currently, it uti-
lizes Python variable annotations so it is restricted to versions of
Python 3.6 and above. Open vSwitch is used as the OpenFlow

*2 For example, the Ryu SDN Framework provides library support for the

BGP routing protocol.

IPSJ SIG Technical Report

Vol.2018-MBL-86 No.14
Vol.2018-UBI-57 No.14

2018/2/26

Switch Controller Switch Controller Switch Controller
T T I I T T
! ! Packet] ! ! B

| acketIn > |
EventDP ! e :
(Connection Event) ! W PacketOut PacketOut ,-°

T rg « S0 ’,' |
[. S ,e* [
| e . R [
I el . !
| | MAC Forwarding T HTIP LLDPDU |
| Data Structure | ! | Tabl'e Lookup, | Generation |
| Initialization | ! I Action Setup I I
| ! | | | |

Fig. 1 Connection Event Fig. 2 Packet Handling Fig. 3 HTIP LLDPDU Generation

and Initialization

Receive Incoming
Packet

Update Forwarding
Table

Is Packet Destination
In the Forwarding
Table?

YES

Y Y
Set Action: Forward Set Action:
Over Specific Port Flood

Forward Packet

Fig.4 Simple Switching Hub Logic

switch of choice, running on Linux kernel version 4.9. Both the
controller and the switch utilize OpenFlow protocol version 1.0.
The hardware used for the switch is an Intel NUC 6th generation
with external USB Ethernet adapters.

3.2 Controller Design

The OpenFlow controller application goes through two distinct
phases during its lifecycle: an initialization phase and then a nor-
mal operation phase.

3.2.1 Initialization Phase

During the initialization phase the controller waits for a con-
nection request from a managed OpenFlow switch. As soon as
a switch connects™3, the controller receives an “EventDP” event.
This event contains information regarding the ports present on the
switch, such as their MAC addresses, port number, state, config-
uration, capabilities etc. This initialization sequence can be seen
as a sequence diagram in Fig. 1.

Using this information, the controller initializes its basic data
structures such as the MAC forwarding table, initializes the list of
network interface ports, and finally selects the main MAC address
of the bridge.

To select this “main” MAC address for the switch, the follow-

*3 or for that matter, disconnects

© 2018 Information Processing Society of Japan

Sequence

and Dissemination

ing simple heuristic is used in the case of Open vSwitch: the num-
ber a MAC address appeared in the initial “EventDP” connection
event is counted and the MAC address with the higher count is
selected as the bridge’s MAC address for future communications.
Ideally, all MAC addresses except one should be reported just
once. A single MAC address will be reported twice, as this MAC
address will appear both in the virtual bridge port of the switch
and one actual network interface attached to the switch. At the
current moment we do not know if this heuristic applies to other
OpenFlow compatible switches.

3.2.2 Normal Operation Phase

During this phase, the controller operates as a simple switch-
ing hub. Furthermore, the controller periodically generates HTIP
LLDPDUs which are then flooded from all the ports of the switch.
Switching Hub Operation

After the arrival of an incoming packet, the source MAC ad-
dress/source port combination is registered in the MAC forward-
ing table. Then, a lookup is performed for the destination MAC
address of the incoming packet in the MAC forwarding table. If
there is an entry (i.e. this destination MAC address is already
associated with a port on the switch) an action for forwarding
the packet through that specific port is generated. If the lookup
fails, an action for flooding the packet through all the ports of
the switch is generated instead. Finally, the switch is instructed
to forward the incoming packet according to the action that was
generated after the table lookup. The switching hub operation
logic can be seen in Fig. 4. The overall packet handling sequence
involving the switch and the controller can be seen as a sequence
diagram in Fig. 2.

In the current implementation, no flows are generated; each
incoming packet will inevitably be sent to the controller for eval-
uation.

HTIP Operation

A different thread periodically generates HTIP LLDPDUs
which are then forwarded to the switch to be sent through the
network using a flood action. This thread generates the appro-
priate TLVs, starting first from the required LLDP TLVs such
as chassis id, port id, Time-to-Live. Then, HTIP TLVs of sub-
type 1 are added, such as device type, maker code, model name
and model number. Continuing, the thread generates the HTIP
subtype 2 TLV i.e. the TLV which contains information from the
MAC address forwarding table. The MAC address forwarding ta-

IPSJ SIG Technical Report

Vol.2018-MBL-86 No.14
Vol.2018-UBI-57 No.14
2018/2/26

PC 1 Switch PC 2
192.168.1.3 192.168.1.2 192.168.1.4
——d_ |
I controller i

| 192.168.1.1

Fig. 5 Experiment Network Topology

ble maintains mappings in the form of MAC address — Port, but
this TLV requires the reverse mapping (i.e Port — List of MAC
addresses). Finally, the HTIP Subtype 3 TLV is added. This TLV
contains all the known MAC addresses used by the switch.

After the HTIP LLDPDU has been created, it is sent to the
switch using a PacketOUT request. This sequence can be seen as
a sequence diagram in Fig. 3.

4. Evaluation

In this section we discuss the experiments conducted for the
evaluation of the HTIP L2 agent implementation for network
equipment. After the setup used for the experiments is explained,
we proceed to discuss the two types of experiments conducted:
HTIP behavioural conformance tests and actual packet forward-
ing performance tests. For each of these experiments, a discus-
sion about the results obtained as well as commentary regarding
any identified limitations is provided.

4.1 Experiment Setup

The network topology used for the experiments of this section
can be seen in Fig. 5. For all of the experiments, a switch as well
as two generic PCs (named PC 1 and PC 2) were present. These
hosts are denoted with a solid line. In some experiments an ex-
ternal controller was also present, denoted with a dash-and-dot
line.

The solid lines connecting these hosts represent 1000baseT
(i.e. 1Gbps) full-duplex Ethernet connections. MAC addresses
have been omitted for the sake of brevity. The three interfaces
present on the switch are combined to a single bridge interface
and they are assigned a single IP address.

The hardware and software details regarding the switch were
discussed in Sec. 3.1. PC 1 is a MacBook Air 2012 model,
PC 2 has the same specifications as the switch (Intel NUC 6th
generation, Intel Core i3-6100u 2 core / 4 thread CPU, 8GB of
RAM) and the external controller is a desktop computer with
AMD Ryzen 1950X processor and 32GB of RAM. Other hard-
ware details are omitted as they are not relevant to the experi-
ments. The PC1, PC2 and controller hosts have sufficient hard-
ware specifications as not to become performance bottlenecks.
Thus, any observations regarding performance focus mostly on
the switch and possibly on the communication overhead with the
external controller.

4.2 Correctness of HTIP Operation

To verify the correct HTIP operation of the switch, the for-
warding table as reported by the controller as well as the captured
HTIP LLDPDU on PC 1 are used. In this scenario, PC 1 initiates

© 2018 Information Processing Society of Japan

new mac: 00:23:20:a7:9a:df #NiciraNe
new mac: 00:22:cf:£9:62:£f6 #PC 1

new mac: 00:22:cf:£9:63:3c #Controller
new mac: 00:22:cf:£9:63:3f #Switch
new mac: 00:22:cf:£9:62:c6 #PC 2

{65534: {’00:22:cf:£9:63:3f’, ’'00:23:20:a7:9a:df’},
2: {’00:22:cf:£9:62:f6"},
1: {’00:22:cf:£9:63:3c’},
3: {’00:22:cf:£9:62:c6’}}

Fig. 6 Controller Output and Port-to-MAC Address Mappings

ping requests to the controller, switch and PC 2 in that order.

In the shortened output from the controller seen in Fig. 6, the
MAC addresses of PC 1, controller and PC 2 appear for the first
time. Special mention must be made to the bridge port (interface
br@, port number 65534) which manages to learn one of the MAC
addresses used by the switch itself as well as an unaccounted
MAC address that does not belong to any physical network inter-
face. First, the bridge interface “learns” the MAC address of the
underlying network interface as a result of a ping request from PC
1 to the switch itself. This sheds some light regarding the internal
processing of packets in the bridge. Secondly, regarding the unac-
counted MAC address, upon closer inspection, the vendor of this
MAC address is NiciraNe Nicira Networks, the company associ-
ated with the development of OpenFlow and its specifications. A
single reverse ARP packet originated from this MAC address and
it is considered to be part of the OpenFlow switch initialization.

Next, by performing a network capture on PC 1 at the same
time, the resulting HTIP LLDPDU was verified to contain the
correct HTIP and port link information. First, the LLDPDU con-
tained the TLVs for chassis subtype, port subtype and time-to-
live. Then, four HTIP TLVs with subtype 1 were present. After
that, the HTTP subtype 2 TLV was present and its contents can be
seen below (formatted in lines for clarity) :

010602

f££e020022c££9633£002320a79adf

0001010022c£f9633c

0002010022c££962£6

0003010022c££962c6

Each line excluding the first contains the port number as a two
byte integer, the number of MAC addresses associated with that
port and finally the list of addresses itself. Except from a slight re-
ordering, the information matches that reported by the controller
itself. Continuing, HTIP subtype 3 TLV was present, containing
the 3 MAC addresses associated with the switch. The End TLV
finishes out the captured packet.

From this experiment we conclude that the switch is able to
generate HTIP LLDPDUs with well-formed TLVs and that the
contents of the MAC forwarding table are properly reflected in
them.

A discussion is necessary regarding the detection of hosts leav-
ing the network. In its current implementation, the L2 agent will
update the port a host is plugged into if it changes. However, it
cannot detect if a host has become inactive. There are two possi-
ble countermeasures that will be considered as future work:

IPSJ SIG Technical Report

10

9.218
8.88

| Standalone
X Remote Controller
Internal Controller

00000999,
SRS
O0.0.0.9.0.9.0,

,_.
2%
o

%
XX

098
oot

0.1320.2760454
— OO

o

%S
%%

o203

stddev

Fig.7 ping Results: Round-Trip Time (in ms)

e Port Link Down events. An event of this type signifies that
whatever device was connected to that port is no longer
there. This is enough information to remove all the MAC
addresses that have so far been associated with that port as
they have now become unreachable. Some limitations still
exists, such as the scenario of a chained switching hub being
present at that port; a link down event will never occur, thus
we are unable to discern whether any host associated with
that port is reachable or not.

e Timeout mechanisms. Timeout mechanisms based on ICMP
Echo requests, ARP requests and others may be useful when
it comes to deciding if a host is reachable or not. These
techniques may however return false positives (i.e. a host
declared as unreachable when in fact it is still reachable) de-
pending on the security settings and/or capabilities of these
hosts.

4.3 Switch Performance Considerations

In this section, a rudimentary exploration of the performance
that the L2 agent can offer as a whole (switch & controller) is
made. The basic metrics used here are throughput and round-trip
times of packets traveling through the switch. For this purpose
the popular iperf3 and ping tools were used.

Traffic was generated from PC 1 towards PC 2. To establish
a performance baseline, in the first scenario the switch operated
autonomously i.e. without communicating with a controller. In
this mode, Open vSwitch operates as a standalone switching hub,
without any HTIP capabilities, In the second scenario, the Open-
Flow controller application was deployed remotely, on the host
denoted with a dash-and-dot line in Fig. 5. Finally, in the third
scenario, the controller application was deployed directly on the
switch, without the need for an external controller.

The round-trip time as reported by the ping command can be
seen in Fig. 7. When the switch operates in standalone mode, the
round-trip time between PC 1 and PC 2 is on average 1.5ms. For
the remotely deployed controller and the internally deployed con-
troller cases, the average round-trip times are 6.7ms and 7.3ms
respectively.

The introduction of the HTIP controller increases the round-
trip time roughly 4 to 5.5 times, compared to standalone opera-
tion. The situation is even more dramatic when we consider the
throughput results as reported by iper£3, seen in Fig. 8.

Compared to the standalone operation of Open vSwitch in

© 2018 Information Processing Society of Japan

Vol.2018-MBL-86 No.14
Vol.2018-UBI-57 No.14

2018/2/26
1000 941
900
800
B Bandwidth
700
600
500
400
300
200
100 53.8 425
I I
0
Standalone Remote Controller Internal Controller

Fig. 8 iperf3 Results: Throughput (in Mbits/s)

which it is able to saturate the 1Gbit interfaces attached to the
switch, the introduction of the HTIP OpenFlow controller causes
a 20-fold decrease in throughput if deployed remotely, and a
22-fold decrease in throughput when deployed internally on the
switch itself. This drop in performance can be explained by the
fact that the current implementation does not utilize flows. In
other words, every single incoming packet is passed to the con-
troller, the controller decides on a forwarding action that must be
taken and the packet is then passed back to the switch for for-
warding, resulting in higher overall packet processing time.

The use of flows is planned for a future revision of the HTIP L2
agent. With the use of flows, it is expected that throughput will
resemble much more closely the throughput exhibited by Open
vSwitch in standalone mode.

The final but still very interesting performance observation is
the fact that the controller performs better when deployed re-
motely rather than locally. Although the performance in both
cases is comparable, and for all intents and purposes enough for
most of the daily needs in a home environment, it is still interest-
ing to see that the deployment which utilizes the network outper-
forms a solution which does not utilize it, and contains the packet
processing inside the same networking stack. This could possi-
bly be attributed to the use of the Ryu SDN framework which
is written in Python; other SDN frameworks may perform better.
Still, it is worth keeping in mind that the current implementation
is unusual since it requires all incoming packets to pass through
the controller before being forwarded, instead of utilizing flows.

5. Conclusions and Future Work

In this paper the implementation of an HTIP L2 agent for net-
work equipment was introduced. This agent is developed using
the Ryu SDN framework which implements the OpenFlow pro-
tocol and it can be deployed in any general purpose computer.

This agent fills an important gap in the HTIP ecosystem, since
there are no such commercially available solutions yet. The L2
agent was demonstrated to generate proper link information based
on its internal MAC address forward table, and it can thus be used
for testing and interoperability purposes when designing and de-
veloping HTIP manager applications. Furthermore, its perfor-
mance was explored in terms of round-trip time and achievable
throughput. The current implementation can achieve adequate
throughput for deployment in home environments. Since this is
a software-only solution, it can be easily deployed on virtual ma-

IPSJ SIG Technical Report

chines and used in large-scale home and community simulations.

This implementation is open source software, provided under
the BSD 2-clause license available from ¢https://github.com/s-
marios/dragontip).

As future work, two areas have been identified for immedi-
ate improvements. First, the performance of the HTIP L2 agent
can potentially improve greatly through the utilization of flows.
If flow utilization is implemented, performance levels may reach
the levels of standalone operation, i.e. close to saturating the net-
work interface speed.

The second area that should be addressed is the detection of
hosts that were either disconnected from the network or are oth-
erwise non-operational. For hosts that are directly connected on
to the switch, the detection of port link down events provides im-
mediate information about the status of the connected host at that
port. OpenFlow does report such events, and their integration in
the current implementation should be trivial. A polling approach
based on ICMP echo requests, ARP requests and others can be
also pursued.

Finally, future functionality that can be pursued is the intro-
duction of HTTP manager functionality, such as the ability to pro-
duce overall network topology information by aggregating HTIP
L2 and L3 agent information from other hosts in the network.

References

[1] The Broadband Forum: TR-069 CPE WAN Management
Protocol, (online), available from (https://www.broadband-
forum.org/technical/download/TR-069_Amendment-5.pdf), (accessed
2018-01-20).

[2] Telecommunications Technology Committee: Customer sup-
port guideline for home network service, (online), avail-
able from (https://www.ttc.or.jp/jp/document_list/pdf/e/TR/TR-
1057(E)v1.1.pdf), (accessed 2018-01-20).

[3] Telecommunications Technology Committee: Customer sup-
port use cases for home network services, (online) avail-
able from (https://www.ttc.or.jp/jp/document_list/pdf/e/TR/TR-
1062(E)v1.1.pdf), (accessed 2018-01-20).

[4] Telecommunications Technology Committee: Home-
network Topology Identification Protocol, (online), avail-
able from (https://www.ttc.or.jp/jp/document_list/pdf/e/STD/JJ-
300.00(E)v3.pdf), (accessed 2018-01-20).

[5]1 Open Networking Foundation: OpenFlow Switch Specification,
(online), available from (https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf), (accessed
2018-01-22)

[6] Ryu SDN Framework Community: Ryu SDN Framework, available
from (https://osrg.github.io/ryu/) (accessed 2018-01-22)

[7] The Linux Foundation: Open vSwitch Documentation, (online) avail-
able from ¢http://docs.openvswitch.org/en/latest/) (accessed 2018-01-
22)

[8] IEEE Computer Society: 802.1AB-2009 - IEEE Standard for Lo-
cal and Metropolitan Area Networks— Station and Media Ac-
cess Control Connectivity Discovery, (online) available from
(http://ieeexplore.ieee.org/document/5251812/) (accessed 2018-01-
22)

[9] UPnP Forum: UPnP Device Architecture 1.0, (online) available from
(http://www.upnp.org/specs/arch/UPnP-arch-Device Architecture-
v1.0-20080424.pdf) (accessed 2018-01-22)

© 2018 Information Processing Society of Japan

Vol.2018-MBL-86 No.14

Vol.2018-UBI-57 No.14
2018/2/26

