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We present a novel algorithm to predict transmembrane regions from a primary amino acid
sequence. Previous studies have shown that the Hidden Markov Model (HMM) is one of
the powerful tools known to predict transmembrane regions; however, one of the conceptual
drawbacks of the standard HMM is the fact that the state duration, i.e., the duration for
which the hidden dynamics remains in a particular state follows the geometric distribution.
Real data, however, does not always indicate such a geometric distribution. The proposed
algorithm utilizes a Generalized Hidden Markov Model (GHMM), an extension of the HMM,
to cope with this problem. In the GHMM, the state duration probability can be any discrete
distribution, including a geometric distribution. The proposed algorithm employs a state
duration probability based on a Poisson distribution. We consider the two-dimensional vector
trajectory consisting of hydropathy index and charge associated with amino acids, instead of
the 20 letter symbol sequences. Also a Monte Carlo method (Forward/Backward Sampling
method) is adopted for the transmembrane region prediction step. Prediction accuracies using
publicly available data sets show that the proposed algorithm yields reasonably good results
when compared against some existing algorithms.

1. Introduction

The Hidden Markov Model (HMM) is one
of the most successful tools for modeling time-
series data sequences. A variety of applications
of HMM have been presented, such as speech
recognition 1), handwritten character recogni-
tion 2),3), and biological data processing 4),5).
HMM has also contributed to improved predic-
tion accuracies for applications in transmem-
brane region prediction 6)–8). One reason for its
success is the idea of defining the underlying dy-
namical system of states and regarding the ob-
servation as the output of these states with un-
certainties. The performance of the model crit-
ically depends on the trajectories of the under-
lying states. Therefore, the transitions among
states play an important role in designing a
model for an application of interest.

One of the conceptual drawbacks of the stan-
dard HMM as applied to several classes of prob-
lems, including the problem addressed in this
paper, is the fact that the duration d for which
the hidden dynamics remains in a particular
state si follows the geometric distribution

P (d | si) = aii
d, (1)

where aij := P (sj | si) denotes the state tran-
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sition probability from state si to sj .
In several problems, including ours 8), the du-

ration does not follow such a geometric distri-
bution. Figure 1, for instance, shows the his-
togram of the frequency of transmembrane re-
gion length observed in a data set described in
Section 3.1, where the dotted line shows a ge-
ometric series with parameter aii = 0.95. Note
that it is difficult to fit the histogram with a
geometric distribution with any parameter �1.

One solution is to consider the particular
topology or grammar within an HMM frame-
work to form clusters of states. The topology
proposed in Ref. 6), for instance, has 12 sub-
models (clusters of states) connected with each
other in a certain topology. Of the 12 submod-
els, the helix core consists of 25 states connected
together in a feed-forward manner. The inside
and outside loop models and helix cap mod-
els have their own topologies. Thus, the tar-
get duration can be represented by a mixture
of geometric distributions and Bernoulli vari-
ables serving as their weights. The topology
proposed in Ref. 8) has 17 states instead of 25
for the helix core model.

Another solution for the duration probability
is to extend the HMM framework itself. The

�1 The parameters in this section have been fitted using
a maximum likelihood estimation.
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Fig. 1 State duration probability distribution. The
horizontal axis denotes the length of the trans-
membrane region. The bar graph shows a his-
togram of transmembrane region length of a
data set described in Section 3.1. The dot-
ted line is an example of a geometric distribu-
tion describing the state duration probability in
HMM. The solid line is an example of a Poisson
distribution with mean 21.

Generalized Hidden Markov Model (GHMM),
an extension of the HMM, has been employed
to cope with the problem of duration probabil-
ity 9). In the GHMM, the state duration proba-
bility can be any discrete distribution, including
a geometric distribution. This characteristic al-
lows the GHMM to be used to design the state
duration probability for the target application
without using clusters of states. The GHMM is
reported to yield better performance in speech
recognition, handwritten character recognition,
and gene searching in DNA sequences 9)–11).

Here, we follow a method that employs a
Poisson distribution as the state duration prob-
ability, as proposed in Ref. 10). The solid line
in Fig. 1 is the Poisson distribution �1

P (d; l) =
exp(−l)ld

d!
, (2)

with parameter l = 21. As one can observe, it
seems more natural to fit the target histogram
with a Poisson distribution than with a geomet-
ric distribution.

In this paper, we present an algorithm utiliz-
ing GHMM for predicting transmembrane re-
gions, with a state duration probability distri-
bution based on a Poisson distribution.

1.1 Background of This Study
Transmembrane proteins have long been con-

sidered to be critical in understanding biolog-

�1 Since the state duration probability is a discrete
probability defined in the range d ≥ 1, although
the probability in Fig. 1 may look like a Gaussian
distribution, it cannot be one.

ical functions such as cell signaling, ion trans-
port, and intercellular communications 12)–14).
It has been reported that approximately 45% of
the drugs in use today target G protein-coupled
receptors (GPCRs) 15),16), and some 20% to
30% of genes in an average genome are esti-
mated to encode membrane proteins 17). Be-
cause of their biological and pharmaceutical im-
portance, identification of transmembrane he-
lices in membrane proteins is a priority. Al-
though promising methods in X-ray crystallog-
raphy and nuclear magnetic resonance (NMR)
have begun to open avenues to the determi-
nation of these structures 18)–20), the number
of known three-dimensional structures remains
small 6),21),22). Therefore, reliable algorithms
to predict transmembrane protein structures
would be very useful.

There are two basic methods of looking at
protein structure predictions. One is to use al-
gorithms based solely on the construction prin-
ciples of proteins associated with the physico-
chemical properties of amino acids. No train-
ing is involved. In this method, windowed av-
erages of physicochemical quantities are taken.
There are several successful examples of algo-
rithms of this type 23)–33). The other basic
method is to collect data sets of known struc-
tures, extract their features, and use machine-
learning algorithms to make predictions. Some
improvements have been made in using this
type of algorithm, but further advances are
necessary to improve the reliability of predic-
tions 6),7),34)–37).

We used a novel machine-learning algorithm
to predict protein structures and evaluated
the reliability of the predictions. A machine-
learning algorithm assumes that there are mod-
els and associated parameters behind the avail-
able data sets. Generally, the degree of success
of a machine-learning algorithm depends on two
factors: i) how well the model structure char-
acterizes the target molecule from which the
data was taken, and ii) how well the learning
algorithm incorporates the available data sets.
Among protein structure prediction problems,
there are, in general, three important aspects
in transmembrane structure prediction:

(i) The data is sequential with respect to
a one-dimensional space variable, and a
particular amino acid is correlated with
other amino acids.

(ii) The data sets have uncertainties in that
a particular structure may be observed to
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have different amino acid sequences.
(iii) The number of training data sets for

learning is severely limited because of the
difficulties associated with using X-ray
crystallography or NMR for transmem-
brane proteins.

This paper considers a restricted class of
transmembrane protein structure prediction
problems instead of a general class of prob-
lems. Specifically, we assumed that a particular
amino acid sequence is from a transmembrane
protein, even though predictions as to whether
the sequence is water-soluble or a transmem-
brane protein could have been attempted in-
stead. The primary reason for this is that there
are several very good tools available for such
prediction problems 38). The goal of this pa-
per is, given an amino acid sequence, to predict
transmembrane regions, i.e., to predict whether
each amino acid belongs to a transmembrane
region.

These problems are non-trivial because, as
previously mentioned, so few transmembrane
protein structures have been fully character-
ized. A finer model that captures the nature
of a set of data would improve prediction accu-
racy, provided that a sufficient number of train-
ing data sets were available. Because there are
so few available data sets, serious consideration
is essential to make both the model structure
and the associated learning algorithm as sim-
ple as possible without losing sight of the na-
ture of the problem. Therefore, transmembrane
protein structure prediction is a significant chal-
lenge for machine-learning approaches.

This paper proposes a novel algorithm for
predicting the transmembrane regions in a
given test amino acid sequence. Contributions
of this paper are listed below.

(i) A generalized finite-state, stochastic dy-
namical system (GHMM) is utilized for
predicting transmembrane regions. The
model is applied to our previously pro-
posed scheme reported in Ref. 8) and is
evaluated in comparison with other well-
known tools for predicting transmem-
brane regions.

(ii) The transmembrane regions are predicted
by predicting the path of the inner
stochastic dynamical states. To im-
plement this prediction, a Monte Carlo
method (Forward-Backward sampling) is
employed.

(iii) The results reported in Section 3.3 sug-

gest that our proposed prediction scheme
yields reasonably good results.

1.2 Stochastic Dynamical System Ap-
proaches

The application of finite-state stochastic dy-
namical systems (also known as HMM) is very
broad since its techniques are suitable for char-
acterizing the nature of sequential data. These
techniques have been used to solve a vari-
ety of problems in, for example, speech recog-
nition and handwriting recognition. In the
HMM framework, an unobserved state sequence
{qt}T

t=1 is assumed to exist behind an observed
sequence {ot}T

t=1.
Approaches for predicting transmembrane re-

gions based on HMMs have been successfully
realized in such tools as TMHMM 6),37) and
HMMTOP 7). Krogh et al. defined seven types
of states in TMHMM: loop cytoplasmic, cap
cytoplasmic, helix core, cap non-cytoplasmic,
short loop non-cytoplasmic, long loop non-
cytoplasmic, and globular domains. A proba-
bility distribution of the 20 amino acids, which
was learned from the training data set, was
defined in each state, taking into account the
grammar. Tusnady and Simon also proposed
an HMM-based method in HMMTOP 7). This
model employs five states (inside loop, inside
helix tail, helix, outside helix tail, and outside
loop). This algorithm focuses on the differences
in the amino acid distributions in the structural
parts, rather than on the amino acid distribu-
tion itself.

The performances of these methods are eval-
uated in Section 3.

2. Algorithm

In this section, the details of the proposed al-
gorithm are presented. First, the general frame-
work of GHMM is illustrated. Next, a more
specific model used in the proposed algorithm
is described. Then, the method to learn pa-
rameters from a training data set is described.
Lastly, the method to predict transmembrane
regions is explained.

2.1 The Model
First, we consider the general framework of

GHMM employed in our proposed algorithm.
2.1.1 Observation Sequence {ot}
In this paper, we consider the two-

dimensional vector trajectory ot of length T
associated with amino acids, instead of the 20
letter symbol sequences:



4 IPSJ Transactions on Bioinformatics Mar. 2008

Fig. 2 An example of the two-dimensional observation
of a transmembrane protein. The KD index
plots are connected with lines in order to show
changes with respect to residues. Zero charges
are not shown for clarity. The shaded region
is a transmembrane region, while the unshaded
regions are loop regions.

{ot := (o1
t , o

2
t )}T

t=1

o1
t ∈ v1

k1
, o2

t ∈ v2
k2

k1 = 1, · · · , K1, k2 = 1, · · · , K2.

The first component of output o1
t is the hy-

dropathy index; the KD index is used in this
paper �1. Even though the hydropathy index
is real valued, there are only a finite num-
ber of values v1

k1
for the KD index between

4.5 and −4.5, with K1 = 17. The second
component o2

t is the formal charge associated
with an amino acid �2. Similarly, there is only
a finite number of formal charge values, i.e.,
v2

k2=1 = +1, v2
k2=2 = 0, and v2

k2=3 = −1 (K2 =
3). Figure 2 shows an example of the two-
dimensional observation of a transmembrane
protein.

A major consequence of considering these
physicochemical indices instead of the 20 let-
ter symbols is the fact that “nearness” among
different amino acids can be taken into account.
That is, two amino acids with a similar hy-
dropathy index can be considered close to each
other based on this particular metric. This al-
lows “smoothing” to avoid overfitting problems.

�1 There may be better hydropathy indices than the
KD index; as many as 80 different hydropathy in-
dices have been proposed.

�2 Histidine can be assumed to have two possible for-
mal charge values, depending on pH. The histidine
formal charge will be assumed to be +1 in the ex-
periment reported in Section 3. Since the number of
histidines appears to be small in the data sets used
in our experiment, our tentative assumption did not
appear to have a significant effect on prediction per-
formance.

2.1.2 Unobserved Sequence {qt}
One way of taking into account the sequential

nature of the problem, i.e., the fact that each
amino acid is correlated with other amino acids,
is to consider an unobserved auxiliary sequence
{qt} of length T and to treat ot as an output
with uncertainty. This sequence {qt}T

t=1 is a
trajectory of a finite-state inner stochastic dy-
namical system indexed by a one-dimensional
parameter t. Here qt ∈ {s1, · · · , sN}, where si

is the i-th state within an inner stochastic dy-
namical system, and N denotes the number of
states.

2.1.3 Segment Length {Li}
In GHMM, the unobservable state sequence

{qt}T
t=1 can be segmented by its value 39). Since

the proposed algorithm utilizes a simple left-to-
right topology, although generalization is possi-
ble, the following argument is described in the
case of the employed topology. This topological
constraint gives the number of segments to be
N , which is the number of states. Note that
there will be a one-to-one relation between the
state si and the segmented state sequence Qi.
Using the length of the i-th segment, Li, called
duration, the state segment Qi can be expressed
as:

qτi+1 = qτi+2 = · · · = qτi+Li
= si

Qi := {qτi+1, qτi+2, · · · , qτi+Li
}

where

τi :=
i−1∑
j=1

Lj .

Here, τi denotes the last position of the (i −
1)-th state segment sequence. In the following
description, Qi = si is equivalent to qτi+1 =
qτi+2 = · · · = qτi+Li

= si.
The same segmentation can be applied to the

observation sequence as well. The segmented
observation sequence Oi is a subset of the whole
observation sequence O := {o1, o2, · · · , oT },
i.e., Oi := {oτi+1, oτi+2, · · · , oτi+Li

}.
2.1.4 Likelihood Function
The likelihood can be obtained by marginal-

izing over all possible qt:

P ({ot}T
t=1 | w,H) =∑

for all
possible {qt}

P ({ot}T
t=1, {qt}T

t=1 | w,H).

where w is a parameter set and H stands for
the underlying model structure. To ensure the
readability of this paper, we will omit the de-
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pendency on w and H.
The joint probability distribution of {ot, qt}T

t=1

is described by:

P ({ot}T
t=1, {qt}T

t=1)
= P ({ot}T

t=1 | {qt}T
t=1)P ({qt}T

t=1). (3)

Equation (3) is in the general form of a stochas-
tic dynamical system.

The first term of Eq. (3) is the emission prob-
ability, which can be described as:

P ({ot}T
t=1 | {qt}T

t=1)
= P ({Ot}N

i=1 | {Qi}N
i=1)

=
N∏

i=1

P (Oi | Qi)

=
N∏

i=1

P ({ot}t=τi+1:τi+Li
| Qi)

=
N∏

i=1

P ({o1
t}t=τi+1:τi+Li

| Qi)

P ({o2
t}t=τi+1:τi+Li

| Qi)

=
N∏

i=1

τi+Li∏
t=τi+1

P (o1
t | Qi)P (o2

t | Qi). (4)

The second term of Eq. (3) is the state transi-
tion probability, which can be described in the
proposed model as:

P ({qt}T
t=1)

= P (Q1)P (L1 | Q1)
N∏

i=2

P (Qi | Qi−1)P (Li | Qi). (5)

Note that the state duration probability P (Li |
Qi) appears only in GHMM. On the other hand,
in HMM, the state transition probability is de-
fined as:

P ({qt}T
t=1) = P (Q1)

N∏
i=2

P (Qi | Qi−1).

The performance of the model in GHMM crit-
ically depends on the design of this state du-
ration probability. Therefore, the state dura-
tion probability should be carefully designed.
The details of emission probabilities and state
transition probabilities will be explained later
in this section.

Figure 3 summarizes the probablistic re-
lations among unobservable state segment se-
quence Qi, segment length Li, and observation
segment sequence Oi.

Schemes described by Eq. (3) are sometimes

Fig. 3 The probabilistic relations among unobservable
state segment sequence Qi, segment length Li,
and observation segment sequence Oi. The cir-
cled variables represent the hidden variables.
The boxed variables represent the observable
variables. The solid arrows show the proba-
bilistic dependencies, while the dotted arrows
show the deterministic dependencies between
variables.

successful for nonlinear time-series prediction
problems in which the inner dynamical system
has an infinite number of states 40), handwriting
recognition problems 2),3), and online signature
verification problems 41) in which the inner dy-
namical system has a finite number of states.
In these three problem classes, index parame-
ter t is time, whereas in a protein primary se-
quence, t stands for spatial position from the
N-terminus.

2.2 The Proposed Model
Successful applications of machine learning

algorithms crucially depend on the particular
model structure chosen. The model structure
must be carefully designed taking into account
the specific purpose(s) of the prediction prob-
lem, as well as the available data sets. A re-
searcher may wish to design a model structure
that is as detailed as possible and takes into ac-
count many aspects of transmembrane proteins.
However, because so few transmembrane pro-
tein structures are known, it would not be feasi-
ble to tune such detailed models with many del-
icate parameters. This is one aspect of the data
fitting versus simplicity dilemma (Occam’s ra-
zor).

Model H used in this paper consists of the
following.

(i) The model H carries a fixed number of
transmembrane regions M as a meta-
parameter.

(ii) The number of states N is set in a deter-
ministic manner by the value of M.

(iii) Each state si carries a meta-parameter
Zi indicating which region the state be-
longs to. The region μv indicates a v-
th transmembrane region, while λu in-
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Fig. 4 The overall topology of the proposed model
with the two-dimensional observation and the
meta-parameter of the states. Each state is con-
nected by a left-to-right topology. The plots
show the segmented two-dimensional observa-
tion of Fig. 2. The bounding box represents the
meta-parameter. The shaded region is a trans-
membrane region, while the unshaded regions
are loop regions.

dicates a u-th loop region, i.e., Zi ∈
{λ1, · · ·λM+1, μ1, · · · , μM}.

(iv) The model H has an entirely “open-
loop” structure where states are con-
nected in a left-to-right topology. The
meta-parameter of the connected states
shows alternating connections of loop
region and transmembrane region, i.e.,
Z1 = λ1, Z2 = μ1, Z3 = λ2, · · ·, ZN−1 =
μM, ZN = λM+1.

Figure 4 summarizes the model specification
described above.

There is a variety of possible topologies for
the HMM. The topology should be carefully
examined in terms of two aspects: First, the
topology needs to capture the structure of a
given problem; and second, parameter learning
associated with the topology should be feasible.

The most general topology would be “er-
godic”, i.e., every node is connected with every
other node. While this can be flexible, it suffers
from a difficulty in the learning phase because
the number of parameters, which are associated
with the Markov chain transition probabilities,
can be extremely large, particularly when the
number of training data sets is small. This
topology has not been implemented in protein

structure prediction problems to the best of our
knowledge.

The second possible topology can contain sev-
eral “closed loops” with specified constraints or
grammar. The topologies proposed in Refs. 6)
and 7) are among this class. The topology pro-
posed in Ref. 6), for instance, has 12 submodels
connected with each other in a certain topology,
as mentioned earlier. Of the 12 submodels, the
helix core consists of 25 states connected to-
gether in a feed-forward manner. The inside
and outside loop models and helix cap models
have their own topologies. Parameter learning
appears to be nontrivial.

The third class of topology, among others,
can be “open loop”, which has no closed loops
except for self loops. While this topology
may not decrease the number of overall tran-
sition probability parameters, it significantly
simplifies transition probability learning be-
cause there are only two possibilities at each
state: stay in the same state or go to the next
(right) state. It is this property that we take
advantage of in this study. Note that with this
third topology, the initial state and the final
state are always distinct. Thus, from a bio-
logical point of view, this topology can be in-
terpreted as a model structure in which each
trajectory begins with an N-terminal and ends
with a C-terminal.

2.2.1 Emission Probabilities
The emission probabilities of the hydropathy

index and formal charge are defined as:
P (o1

t = v1
k1

| qt = si) := b1
i,k1

P (o2
t = v2

k2
| qt = si) := b2

i,k2

i = 1, · · · , N
k1 = 1, · · · , K1 k2 = 1, · · · , K2,

where b1
i,k1

and b2
i,k2

satisfy the constraints
b1
i,k1

∈ [0, 1], b2
i,k2

∈ [0, 1] and
∑K1

k1=1 b1
i,k1

=
1,

∑K2
k2=1 b2

i,k2
= 1.

In the formulation Eq. (4), emission probabil-
ities {b1

i,k1
} and {b2

i,k2
} are assumed to be inde-

pendent for the sake of simplicity, whereas in
reality, they are not.

2.2.2 State Transition Probabilities
Since the proposed algorithm employs the

left-to-right topology, state transition probabil-
ity from state segment Qi = si to Qj = sj is
defined as:
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P (Qj = sj | Qi = si) :=
{

1 j = i + 1
0 otherwise

i, j = 1, · · · , N.

2.2.3 Initial State Probability
The probability of initial state segment Q1 is

defined as:

P (Q1 = si) :=
{

1 if i = 1
0 otherwise

i = 1, · · · , N.

2.2.4 State Duration Probability
The probability of state segment length Li is

defined as:
P (d = Li | Qi = si) := pi(d)

i = 1, · · · , N,
where pi(d) satisfies the constraints pi(d) ∈
[0, 1] and

∑∞
d=1 pi(d) = 1.

2.3 Learning
Here, the method to set GHMM parameter

vector w using a training data set and hyper-
parameters is described.

Consider the following available training data
sets:

Dtrain := {Dh}H
h=1

:= {{oh,t, zh,t}Th
t=1, mh}H

h=1,

where zh,t ∈ {λ1, · · ·λmh+1, μ1, · · · , μmh
} is an

annotation sequence which denotes the region
associated with observation oh,t; mh is the
number of transmembrane regions; and H is
the total number of available sequences for the
training data set.

The proposed algorithm attempts to con-
struct one model from one training data set.
Thus, if a model Hh is given, only one training
sequence Dh will correspond. This is one of the
major differences in the learning scheme com-
pared with the existing algorithms 6),7). The
existing algorithms create only one model and
use all of the available data to train the single
model. One of the primary reasons for employ-
ing the proposed learning scheme is the avail-
ability of the data sets. The training data set
used in the experiment described in this pa-
per is well classified. Our preliminary experi-
ments show that the proposed learning method
performed better than a learning scheme that
trains one model with all of the available data
sets. When the training data set is not well clas-
sified, this may not be the best way to train the
model. Further research into the modification
of the learning scheme will be an interesting
topic.

We chose not to use the Baum-Welch learn-
ing algorithm for two reasons. First, it often
suffers from local minima. Second, we wanted
to test our first trial parameter values so that
our proposed structure would make sense. Of
course, the learning scheme must be improved
in various ways, including using Monte Carlo
methods, which is a subject of ongoing research.

The learned parameter vector ŵh consists of
the following:

( 1 ) The state duration probabilities pi(d)
( 2 ) The KD index emission probabilities b1

ik1

( 3 ) The charge emission probabilities b2
ik2

.

Step 1. Setting of meta parameters
Step 1.1. Setting M̂h

For model Hh, the number of transmembrane
regions Mh is set to be the same as the number
of transmembrane regions of the training data
mh:

M̂h := mh.

Step 1.2. Setting Nh

For model Hh, the number of states Nh is
set deterministically depending on the learned
number of transmembrane regions M̂h:

Nh := 2M̂h + 1.

Step 1.3. Setting Ẑh,i

Consider a segmentation of oh,t by its region
zh,t whose value carries the information which
denotes the region. Using the length of each
segment Li and τi =

∑i−1
j=1 Lj ,

Oh,i := {oh,τ+1, oh,τ+2, · · · , oh,τ+Li
}

zh,τ+1 = zh,τ+2 = · · · = zh,τ+Li

i = 1, · · · , N.
The meta data Ẑh,i for state si is set as:

Ẑh,i := zh,τ+1 = zh,τ+2 = · · · = zh,τ+Li

i = 1, · · · , N.

Step 2. State duration probability
As previously described, the performance

critically depends on the design of the state du-
ration probability. There are two reasons why
the duration probability proposed in this study
is a mixture of a Poisson distribution and a his-
togram over all available data sets. In order to
explain the first reason, observe that the Pois-
son distribution as defined by (2) appears to be
a reasonable model for the duration probability,
as is demonstrated in Fig. 1. The mean of the
Poisson distribution, l̂i, proposed in this paper
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is set as the segment length Li of a particular
state si. Note that the segment length Li is
known from the training data set. It should be
noted, however, that the mean of the Poisson
distribution, Li, in this case, is also the vari-
ance. This may give rise to a problem when
Li is large. Since there are several proteins
with more than 200 residues in the loop region,
it may not be appropriate to use the Poisson
distribution alone for the duration probability.
This paper attempts to solve this problem by
mixing the Poisson distribution with another
distribution. The second reason is to “regu-
larize” the zero frequency problem of the his-
togram, i.e., when the histogram contains zero
values. A mixture with a Poisson distribution
could overcome this problem.

The state duration probability is set as:

pi(d) :=

⎧⎪⎪⎨
⎪⎪⎩

(1 − α)Poisson(d | l̂i) + αpλ(d)
if Qi ∈ λ

(1 − α)Poisson(d | l̂i) + αpμ(d)
if Qi ∈ μ

Poisson(d | l̂i) :=
exp(−li)l̂i

d

d!
l̂i := Li.

Here, pλ(d) and pμ(d) are histograms of the seg-
ment length over all available data sets. pλ(d)
is for a loop region, while pμ(d) is for a trans-
membrane region.
α is a hyperparameter indicating a mixture ra-
tio. Our preliminary experiments show that
the prediction results moderately depend on
the selection of α. In the experiments pre-
sented in this paper, α is set empirically. Hier-
archal learning of this hyperparameter α from
the training data set is an interesting problem,
and is one topic of our future research.

Step 3. KD index emission
probabilities

Step 3.1. Learning b1
ik1

(Flooring)
For each state si, let

b̃1
ik1

:=
n({KD}, k1; Zh,i) + β

K1∑
k1=1

n({KD}, k1; Zh,i) + β

,

where
n({KD}, k1; Zh,i) := number of residues with
KD index k1 within Zh,i,
and β is a hyperparameter.

Step 3.2. Learning b1
ik1

(Smoothing)
The smoothing operation is performed to

avoid overfitting problems:

b̂1
ik1

:=
1
ζi

∑
j:|k1−kj |≤1

vj b̃
1
ik1

vj :=
∫ x=|k1−kj |+ 1

2

x=|k1−kj |− 1
2

exp
( −x2

2πσ2

)
dx,

where σ is a hyperparameter and ζi is a normal-
ization constant. Our preliminary experiments
show that the prediction results slightly depend
on the selection of σ, which was set empirically.

Note that Step 3.2 would have been impos-
sible if the nearness between two amino acids
were not defined, which is the case when con-
sidering the sequence of the 20 letter symbols.
Also note that there are four amino acids out of
20 that have the same KD index (-3.5): ASP,
ASN, GLU, and GLN.

Step 4. Charge emission probabilities
Learning b2

ik2
For each state si, let

b̂2
ik2

:=
n({Charge}, k2; Zh,i) + γ

K2∑
k2=1

n({Charge}, k2; Zh,i) + γ

,

where
n({Charge}, k2; Zh,i) := number of residues
with formal charge k2 within Zh,i,
and γ is a hyperparameter.

Here, all steps of the learning phase are sum-
marized below.

Learning� �
For h = 1, · · · , H, the parameters ŵh asso-
ciated with model Hh are trained by the
training data Dh as follows:

( 1 ) Set meta parameters
( a ) Set the number of transmembrane

regions Mh

( b ) Set the number of states Nh

( c ) Set the meta data Zh,i of state si

( 2 ) Learn state duration probabilities
pi(d)

( 3 ) Learn KD index emission probabilities
b1
ik1

( 4 ) Learn charge emission probabilities
b2
ik2� �

2.4 Predictions
Let Dtest := {otest

t }Ttest
t=1 be a test sequence.
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Note that in the prediction phase, the number
of transmembrane regions m and the associ-
ated annotation sequence {zt} are unknown. As
previously mentioned, the state sequence {qt}
is also unobservable. The goals of the predic-
tion phase are to 1) predict m, and 2) predict
transmembrane regions. To achieve these goals,
the proposed algorithm is designed to have two
steps in the prediction phase: 1) select the best
model, and 2) predict annotation sequence {zt}.
The details of each step are described here.

Step 1. Selection of the best model
The goal of this step is to predict the num-

ber of transmembrane regions m. This goal is
achieved by first selecting the best model Hĥ
that explains the given test sequence Dtest. Hĥ
is the model that gives the largest likelihood in
Eq. (6):

ĥ := argmax
h

[P (Dtest, qTtest
= sN | ŵ,Hh)]

= argmax
h

[
∑

all possible

paths {Qt}Ttest−1
t=1

P
({Otest

t }, {Qt}, QTtest
= qN | ŵ,Hh

)]
.

After obtaining the best model Hĥ, the num-
ber of transmembrane regions of the test se-
quence m is predicted as:

m̂ := Mĥ.

Step 2. Prediction of transmembrane
regions

The prediction of transmembrane regions is
achieved by predicting the annotation sequence
{zt}. As previously described, each annota-
tion zt indicates which region the associated
residue ot belongs to. The annotation sequence
{zt} can be obtained from the state sequence
{qt}. Several methods are reported for predict-
ing a state sequence {qt}. Here, a Monte Carlo
method based on Forward-Backward (FB) sam-
pling is employed. Fast mixing has been
reported as the main advantage of this ap-
proach 42).

FB sampling is a method for sampling a
state sequence qt from a probability distribu-
tion P ({qt}T

t=1 | {ot}T
t=1). Consider a transfor-

mation using the state transition of GHMM:

P ({qt}T
t=1 | {ot}T

t=1)
= P (QN | {ot}T

t=1)P (LN | QN , {ot}T
t=1)

N−1∏
i=1

P (Qi | Qi+1, {ot}T
t=1)

·P (Li | Qi, {ot}T
t=1).

Generally the state sequence qt can be sampled
inductively as:

qt =
{

P (qt | {ot}) if t = T
P (qt | qt+1, {ot}) otherwise

The model specification restricts the last state
qT to be sN .
The next step is to sample the length of the last
segment LN . The sample can be obtained as:

LN ∼ P (LN | QN , {ot}).
This probability distribution can be defined by
a polynomial distribution using l = 1, 2, · · · , t:

pt(l) := P (Li = l | Qi = si, {ot})
pt(l) =

ft(i, l)
ft(i)

ft(i) = P (o1:t, Qt = si, Qt+1 �= si)
ft(i, l) = P (ot−l+1:t | si, l)P (l | si)

N∑
j=1

ft−l(j)aji.

With the obtained sample of segment length
LN , the state sequence QN is set as:

QN := {qT−LN+1, · · · , qT−1, qT }
qT = qT−1 = · · · = qT−LN+1 = sN .

The topological constraints deterministically
give the state qT−LN

:= sN−1. Draw a sam-
ple of LN−1 by:

LN−1 ∼ P (LN−1 | QN−1, {ot}).
These steps are inductively repeated until the
state sequence reaches Q1. The FB sampling
step can be summarized as follows:

FB Sampling� �
( 1 ) Set qN := sN

( 2 ) Sample LN

( 3 ) Set qT = qT−1 = · · · = qT−LN+1 = sN

( 4 ) Set t = T − LN ; i = N − 1
( 5 ) Set qt = qt+1 − 1
( 6 ) Sample Li

( 7 ) Set qt = qt−1 = · · · = qt−Li+1

( 8 ) Set t = t − Li; i = i − 1
( 9 ) Repeat (5) ∼ (8) if t > 0

� �
After obtaining a sample of state sequence

{qt}, the annotation sequence is set as:
For each t

zt := Zqt
.

All steps of the prediction phase can be sum-
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marized as follows:
Prediction� �
For test data Dtest := {Otest

t }:
( 1 ) Select the best model by:

ĥ := argmax
h

[P (Dtest, QTtest
= qN

| ŵ,Hh)]
( 2 ) Predict transmembrane region by pre-

dicting {z∗t }Ttest
t=1

� �
3. Evaluation

In this section, we report the evaluation re-
sults of the novel algorithm we used. The re-
sults are summarized in Table 1.

In order to perform experiments, appropriate
data sets must be obtained. Currently, one of
the most difficult problems in protein structure
prediction in general, and in transmembrane
protein structure prediction in particular, is the
difficulty in obtaining appropriate data sets for
experiments. We used two publicly available
data sets: one was collected by Möller, et al. 43),
and the other by Kernytsky, et al. 44).

The accuracy of the predictions of our al-
gorithm, as to whether particular amino acids
were from a transmembrane region, is discussed
below.

For comparison, using the same test
data sets, we also tested the performance
of TMHMM 6) �1, HMMTOP 7) �2, and SO-
SUI 38) �3, which are three well-known trans-
membrane structure prediction tools.

3.1 Data Sets
Here, we describe the details of the data

sets used in our experiments. One is the
data set collected by Möller, et al., which is a
well-characterized transmembrane protein data
set 43). This data set will be called Dataset1 in
this paper. The other is the data set collected
by Kernytsky, et al., which is a benchmark-
ing data set 44). This data set will be called

Table 1 Accuracies of transmembrane region
predictions.

Methods/tools n(TP ) n(FN) n(FP ) accuracy
Proposed 591 23 33 90.9%
Ref. 8) 581 33 24 90.7%

TMHMM 563 51 28 87.1%
HMMTOP 580 34 47 86.8%

SOSUI 544 70 29 83.9%

�1 http://www.cbs.dtu.dk/services/TMHMM-2.0/
�2 http://www.enzim.hu/hmmtop/
�3 http://bp.nuap.nagoya-u.ac.jp/sosui/

Dataset2 in this paper. The sequences were
downloaded from their websites �4. For train-
ing parameters, sequences from Dataset1 were
used. For evaluation, sequences from Dataset2
were used.

Annotations for the sequences in Dataset1
have been updated since they were collected
from the SwissProt database, which was re-
leased in the year 2000. To cope with this
change, we updated the annotations and se-
quences by searching the UniProt database by
ID or accession number.

In order to validate the performance of the
proposed algorithm, sequences from Dataset2
were used 44). Dataset2 contains 2247 se-
quences, but without descriptions of origins or
annotations. Since the proposed algorithm tar-
gets only transmembrane proteins, we were re-
quired to select only transmembrane proteins.

In order to select transmembrane proteins
out of the 2247 sequences in Dataset2, we ran
a FASTA search against the entire UniProt
database. We found 128 complete matches that
were annotated as transmembrane proteins in
UniProt. All 128 sequences were used for test-
ing.

Of the amino acid sequences in Dataset1 and
Dataset2, those with the following clear anno-
tations are used for our experiment:
DOMAIN CYTOPLASMIC, DOMAIN MA-
TRIX, DOMAIN EXTRACELLULAR, DO-
MAIN INTERMEMBRANE, DOMAIN
PERIPLASMIC, and TRANSMEM, for which
we have interpreted CYTOPLASMIC, MA-
TRIX, EXTRACELLULAR, INTERMEM-
BRANE, and PERIPLASMIC as loop segments
with TRANSMEM as a transmembrane seg-
ment.

The number of sequences used for training
and testing is shown in Table 2. Thus, using
the two data sets described above, training data
sets and test data sets were selected as follows.
Training data set
244 sequences of Dataset1 were used for train-

ing.
Test data set

128 sequences of Dataset2 were used for test-
ing.

�4 Data set collected by Möller, et al.:
ftp://ftp.ebi.ac.uk/pub/databases/testsets/
transmembrane
Data set collected by Kernytsky, et al.:
http://cubic.bioc.columbia.edu/services/
tmh benchmark/
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Table 2 Number of sequences of data sets used for
evaluation.

m Training Testing
1 69 34
2 17 9
3 19 8
4 38 18
5 13 8
6 18 16
7 28 11
8 6 6
9 3 1
10 8 5
11 1 0
12 21 11
13 1 0
14 1 1
15 1 0

Total 244 128

3.2 Evaluation Criteria
Reference 43) points out the existence of am-

biguous borders of transmembrane regions in
the reference annotation. Therefore, Ref. 45)
suggests that some deviation of the prediction
from the reference annotation must be toler-
ated.

The tolerances mentioned in the literature
differ. For instance, reference Ref. 37) describes
that sharing five residues with the reference an-
notation could be considered correct. Refer-
ence 45) states that the predicted region must
share at least nine residues with the reference
annotation, which is a little less than half of
the 20 residues expected for a transmembrane
region to be considered correct. We will follow
Ref. 45) at least in this study since Ref. 45) is
one of the earlier attempts at evaluating var-
ious transmembrane protein structure predic-
tion tools in equivalent settings.

The evaluation criteria of transmembrane re-
gion prediction follows the method described in
Ref. 45). In order to define the performance
criterion, consider:
True Positive (TP) Segments.
A TP segment must share at least nine residues
with a transmembrane region of the reference
annotation. The following shows this concept
schematically, where “T” stands for an amino
acid within a transmembrane region, while “-”
stands for an amino acid in a loop region.
Annotated -------TTTTTTTTTTTTTTT--------
Predicted -----TTTTTTTTTTTTTTTT---------
False Negative (FN) Segments.
An FN segment is a transmembrane region that
is not predicted. This is shown schematically
by:

Fig. 5 Typical transmembrane region prediction re-
sults. Numbers denote number of residues from
the N-terminus.

Annotated -------TTTTTTTTTTTTTTT--------
Predicted ------------------------------
False Positive (FP) Segments.
An FP segment is a predicted transmembrane
region that is not a transmembrane region in
the reference protein test set. This is shown
schematically by:
Annotated ------------------------------
Predicted -------TTTTTTTTTTTTTTT--------
Note:
Each predicted transmembrane region should
correspond to only one reference transmem-
brane region. This excludes the possibility of
double counting TP segments. For instance, the
following prediction has one TP segment and
one FN segment instead of two TP segments:
Annotated -----TTTTTTTTT-TTTTTTTTTT-----
Predicted -----TTTTTTTTTTTTTTTTTTTT-----
Accuracy of transmembrane region prediction
is defined by:

Transmembrane region prediction
accuracy

:=
(

1 − n(FN) + n(FP )
n(TP ) + n(FN)

)
,

where n(TP ), n(FN), and n(FP ) denote the
numbers of True Positive segments, False Neg-
ative segments, and False Positive segments,
which we presume are the criteria used in
Möller, et al. 45). However, the equation is not
explicitly written.

3.3 Results
The results are stated in Table 1. The pro-

posed GHMM method gave:
n(TP ) = 591, n(FN) = 23, n(FP ) = 33, and
Transmembrane region prediction accuracy =
90.9%.
Figure 5 illustrates some of the prediction re-
sults using the proposed algorithm. As one can
see from Table 1, the proposed algorithm per-
forms reasonably well.
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Precise comparisons with other prediction al-
gorithms are difficult because the sequences
used for their training could have been different.
For comparison purposes, however, we tested
the same test sequences against three well-
known web-based tools for predicting trans-
membrane helices.

4. Conclusions

We proposed a scheme to predict transmem-
brane regions utilizing a Generalized Hidden
Markov Model (GHMM). The experimental re-
sults reported in Section 3.3 suggest that the
GHMM scheme performed reasonably well.

Although it produced favorable results, the
algorithm has several drawbacks and a num-
ber of aspects that need to be improved, as de-
scribed below.

(i) The design of the state duration probabil-
ity critically governs the performance of
the algorithm. The experiment reported
in this paper utilizes a mixture of a his-
togram and a Poisson distribution. Selec-
tion of another distribution is expected to
lead to further improvement.

(ii) When the probability distribution land-
scape is not simple, a one-time parameter
estimation, including the Baum-Welch
method, as well as the algorithm re-
ported in this paper, has limited success.
The proposed learning algorithm is too
simplistic, and a more advanced proce-
dure is called for. Parameters, hyperpa-
rameters, and states can be inferred via
a Bayesian framework where the Monte
Carlo method can be utilized 40). This is
the subject of our ongoing research.

(iii) Sidedness (interior/exterior) can be pre-
dicted in situations where formal charge
trajectories could be more important
than the present problems.
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