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Abstract: Optimal multiprocessor real-time scheduling can achieve full system utilization with implicit-deadline pe-
riodic task sets. However, worst case execution time (WCET) analysis is difficult on state-of-the-art hardware/software
platforms due to the complex hierarchy of shared caches and multiprogramming. The actual case execution time of
each task is usually shorter than its WCET and imprecise computation is an effective method to make better use of the
remaining processor time. Semi-fixed-priority scheduling is real-time scheduling that supports imprecise computation
and multiprocessors but conventional semi-fixed-priority scheduling algorithms are not optimal. This paper proposes
an optimal multiprocessor semi-fixed-priority scheduling algorithm that supports imprecise computation. The pro-
posed algorithm, which integrates Reduction to Uniprocessor (RUN) for Rate Monotonic with Wind-up Part (RMWP),
called RUN-RMWP, is superior to Partitioned RMWP algorithm in terms of schedulability analysis. Simulation studies
show that RUN-RMWP has a few more preemptions/migrations compared to RUN but confirms its optimality even
though conventional semi-fixed priority scheduling algorithms are not optimal.
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1. Introduction

Multiprocessors have been increasingly used in state-of-the-art
real-time applications such as humanoid robots [25], [27]. These
robots usually perform periodic real-time tasks with harmonic re-
lationships (harmonic periodic task sets) where task periods are
integer multiples of each other. Harmonic periodic task sets im-
prove the utilization bound of real-time scheduling [19] and the
precision of schedulability test [9] compared with general peri-
odic task sets that do not have a relationship among the task peri-
ods.

There are generally two main multiprocessor real-time
scheduling categories: partitioned scheduling and global
scheduling. Partitioned scheduling assigns tasks to processors
offline but guarantees only 50% processor utilization in the
worst case [2]. In contrast, global scheduling can achieve 100%
processor utilization by migrating tasks among processors
online but increases run-time overhead. This paper is interested
in global scheduling and especially optimal multiprocessor
real-time scheduling that can achieve 100% processor utiliza-
tion with implicit-deadline periodic task sets (i.e., all relative
deadlines of tasks are equal to their periods). Several optimal
multiprocessor real-time scheduling algorithms have been
proposed [3], [7], [18], [22] and Reduction to Uniprocessor
(RUN) [26] outperforms other algorithms with respect to the
number of preemptions/migrations, and hence this paper focuses
on RUN.

RUN transforms the multiprocessor real-time scheduling prob-
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lem into an equivalent set of uniprocessor problems using the
DUAL and PACK operations (details of these operations are
given in Section 4). Earliest Deadline First (EDF) [24] is opti-
mal for implicit-deadline task sets on uniprocessors, and hence
RUN uses it to transform uniprocessor scheduling into multipro-
cessor scheduling online. Using these operations, RUN achieves
its optimality with the small number of preemptions/migrations.

Real-time scheduling analyzes the schedulability using the
worst case execution time (WCET) of each task. However,
WCET analysis is difficult on state-of-the-art hardware/software
platforms due to the complex hierarchy of shared caches and mul-
tiprogramming. Since humanoid robots run in dynamic environ-
ments, the actual case execution time (ACET) of each task fluc-
tuates and is usually shorter than its WCET in these real-time
applications. Imprecise computation [23] is an effective method
to make better use of the remaining processor time (e.g., WCET -
ACET). The imprecise computation model has a mandatory real-
time part and an optional non-real-time part. By terminating the
optional part, each task avoids missing its deadline. The impre-
cise computation model does not work well in actual systems be-
cause it does not take into account the processing required to ter-
minate or complete the optional part of each task. Therefore, this
paper uses an extended imprecise computation model [20] that
has a wind-up (second mandatory) part after the optional part.

Only two multiprocessor real-time scheduling algorithms sup-
port the extended imprecise computation model: Global Rate
Monotonic with Wind-up Part (G-RMWP) [13] and Partitioned
Rate Monotonic with Wind-up Part (P-RMWP) [15]. These
RMWP-based algorithms are semi-fixed-priority scheduling [12]
in the extended imprecise computation model and have an origi-
nal parameter, called optional deadline. An optional deadline is
the time when an optional part must be terminated to avoid the
deadline miss of a wind-up part. Thanks to the optional deadline,
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G-RMWP and P-RMWP are superior to Global Rate Monotonic
(G-RM) [6] and Partitioned Rate Monotonic (P-RM) [24] in terms
of schedulability analysis, respectively. Unfortunately, G-RMWP
and P-RMWP are not optimal because they cannot achieve 100%
processor utilization. Compared to optimal multiprocessor real-
time scheduling, G-RMWP and P-RMWP degrade schedulabil-
ity, and hence humanoid robots fall due to missing deadlines of
real-time tasks.

This paper proposes Reduction to Uniprocessor for Rate
Monotonic with Wind-up Part (RUN-RMWP), which is optimal
multiprocessor real-time scheduling based on RUN for imprecise
computation with harmonic periodic task sets. RUN-RMWP sup-
ports the extended imprecise computation model to improve the
Quality of Service (QoS) and achieves optimal full system utiliza-
tion. In addition, RUN-RMWP manages the optional deadline

timer that terminates the optional part of each task. RUN-RMWP
migrates tasks among processors online and is global schedul-
ing. Simulation studies show that RUN-RMWP has a few more
preemptions/migrations compared to RUN but confirms its opti-
mality even though conventional semi-fixed priority scheduling
algorithms are not optimal.

This paper uses optimal in two meanings: Meaning of Optimal
(1) and Meaning of Optimal (2). The Meaning of Optimal (1) is
that 100% processor utilization of mandatory and wind-up parts
can be achieved without deadline miss. The Meaning of Optimal
(2) is explained in detail in Section 3.

The remainder of this paper is organized as follows. Section 2
introduces the extended imprecise computation model. Section 3
explains semi-fixed-priority scheduling in the extended imprecise
computation model and RMWP algorithm. Section 4 introduces
RUN and gives a scheduling example. Section 5 proposes the
RUN-RMWP algorithm to achieve optimal multiprocessor semi-
fixed-priority scheduling. Section 6 evaluates the effectiveness of
RUN-RMWP through simulation. Section 7 compares this work
with related one, and Section 8 concludes this paper.

2. System Model

This section introduces the system model that supports the ex-
tended imprecise computation model [20] as well as RUN’s spe-
cific model [26].

Figure 1 shows the extended imprecise computation
model [20], which adds a wind-up part to the imprecise
computation model [23]. The imprecise computation model
assumes that the processing to terminate or complete the optional
part is not required. However, image processing tasks in robots
require a mandatory part prior to the task completion in order to
output the results. To guarantee the schedulability of these tasks,
the imprecise computation model is extended with a wind-up
part as a second mandatory part.

This paper assumes that a task set Γ has n periodic indepen-

Fig. 1 Extended imprecise computation model.

dent tasks τ1, . . . , τn on M identical processors P1, . . . , PM . The
task set is synchronous (i.e., all tasks are initially released at time
t = 0). Each task τi has its WCET Ci, period Ti, and relative
deadline Di. Harmonic periodic task sets where task periods are
integer multiples of each other are used. Each task set has an
implicit-deadline; that is to say, the relative deadline Di of task τi

is equal to its period Ti. The priority of each task is represented
as pi. The utilization of each task is represented as Ui = Ci/Ti

and the system utilization is U = 1
M

∑n
i=1 Ui. Each instance of a

task is called a job.
The extended imprecise computation model adds the wind-up

part as a second mandatory part. Therefore, the WCET of each
task is Ci = mi +wi, where mi is the WCET of the mandatory part
and wi is the WCET of the wind-up part. The Required Execution
Time (RET) of the optional part of each task is represented as oi

and its utilization is Uo
i = oi/Ti. oi, j is the time to be actually

executed in the jth job of task τi. The RET of the optional part
of each task fluctuates and its WCET is unknown. The reason
why Ui does not include the RET of optional part oi is because
the optional part of each task is a non-real-time part, and hence
completing it is not relevant to successfully scheduling the task
set.

The relative optional deadline ODi of task τi is defined as the
time when an optional part is terminated and a wind-up part is
released [12]. Each wind-up part is ready for execution after each
optional deadline and can be completed if each mandatory part is
completed by the optional deadline. If the mandatory part of each
task is not completed by its optional deadline, the corresponding
wind-up part may miss its deadline. Note that the corresponding
wind-up part may complete its execution by its deadline in such
case.

Figure 2 shows the optional deadline of each task. Each solid
up-arrow, solid down-arrow, and dotted down-arrow represents
the release time, deadline, and optional deadline, respectively.
Task τ1 completes its mandatory part before optional deadline
OD1 and then executes its optional part until OD1. After OD1,
task τ1 executes its wind-up part. In contrast, task τ2 does not
complete its mandatory part by optional deadline OD2. As a re-
sult, when τ2 completes its mandatory part, it executes its wind-
up part and does not execute its optional part.

3. Semi-fixed-priority Scheduling

Semi-fixed-priority scheduling [12] is defined as part-level
fixed-priority scheduling in the extended imprecise computation
model [20]. That is to say, semi-fixed-priority scheduling fixes
the priority of each part in the extended imprecise task and
changes the priority of each extended imprecise task in just two
cases: (1) when the extended imprecise task completes its manda-

Fig. 2 Optional deadline.
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Fig. 3 General scheduling and semi-fixed-priority scheduling.

Fig. 4 Task queue.

tory part and executes its optional part, and (2) when the extended
imprecise task terminates or completes its optional part and exe-
cutes its wind-up part.

Figure 3 shows the difference between general scheduling in
Liu and Layland’s model [24] and semi-fixed-priority schedul-
ing in the extended imprecise computation model. In this case,
task τi is not interfered with by higher priority tasks. In general
scheduling, when task τi is released at time 0, then the remain-
ing execution time Ri(t) is set to mi + wi and is monotonically
decreased until Ri(t) becomes 0 at time mi + wi. In semi-fixed-
priority scheduling, when task τi is released at time 0, then Ri(t)
is set to mi and is monotonically decreased until Ri(t) becomes 0
at time mi. When Ri(t) is 0 at time mi, then τi sleeps until time
ODi. When τi is released at time ODi, then Ri(t) is set to wi and is
monotonically decreased until Ri(t) becomes 0 at time ODi + wi.
If τi does not complete its mandatory part by time ODi, then Ri(t)
is set to wi at the time when τi completes its mandatory part. In
general scheduling as well as semi-fixed-priority scheduling, τi

completes its wind-up part by time Di.
RMWP [12] is a semi-fixed-priority scheduling algorithm that

uses the extended imprecise computation model on uniproces-
sors. As shown in Fig. 4, RMWP manages three task queues:
Real-Time Queue (RTQ), Non-Real-Time Queue (NRTQ), and
Sleep Queue (SQ). RTQ holds tasks that are ready to execute their
mandatory or wind-up parts in Rate Monotonic (RM) order [24].
A task is not allowed to execute its mandatory and wind-up parts
simultaneously. NRTQ holds tasks that are ready to execute their
optional parts in RM order. Every task in RTQ has higher prior-
ity than that in NRTQ. SQ holds tasks that have completed their
optional parts by their optional deadlines or their wind-up parts
by their deadlines. The calculation of each optional deadline in
RMWP is shown in Ref. [12]. The relative optimal optional dead-
line of each task in RMWP is calculated by using Response Time

Analysis for Optimal Optional Deadline with Harmonic periodic
task sets (RTA-OODH) [12].

This paper uses optimal in two meanings.
• Meaning of Optimal (1): Optimal multiprocessor real-time

scheduling means that 100% processor utilization of manda-
tory and wind-up parts can be achieved without deadline
miss.

• Meaning of Optimal (2): The relative optimal optional dead-
line of task τi means that Di −ODi is equal to the sum of the
WCET of its wind-up part wi and the worst case interference
time from higher priority tasks. In any case, this optimal-
ity seems directly related to the fact that the later optional
deadline is, the longer the optional part can be executed.

This paper explicitly describes Meaning of Optimal (1) and
Meaning of Optimal (2) when using the first and second mean-
ings, respectively.

First, the following theorems are introduced for the proposed
algorithm in this paper.
Theorem 1 (From Theorem 1 in Ref. [12]). The worst case in-

terference time Ii
k (∀i : pi > pk), which is the upper bound of the

time when τi interferes with τk in RMWP on uniprocessors, is

Ii
k =

⌈
Tk

Ti

⌉
(mi + wi).

Note that Theorem 1 can be adapted to harmonic periodic task
sets as well as general ones. In the case of harmonic periodic task
sets,

⌈
Tk

Ti

⌉
= Tk

Ti
.

Theorem 2 (From Theorem 5 in Ref. [12]). The assignable time

of task τk except wk in RMWP on uniprocessors with harmonic

periodic task sets is

Ak = Dk − wk −
∑
∀i:pi>pk

Ii
k.

This paper next introduces the worst case interference time of
each task.
Theorem 3 (From Theorem 6 in Ref. [12]). The worst case in-

terference time Ik of task τk in RMWP on uniprocessors with har-

monic periodic task sets is

Ik =
∑
∀i:pi>pk

( ⌈ODk

Ti

⌉
mi +

⌈
ODk − ODi

Ti

⌉
wi

)
.

Using these theorems, this paper explains RTA-OODH for cal-
culating the relative optimal optional deadline of each task in
RMWP on uniprocessors.
Theorem 4 (From Theorem 7 in Ref. [12]). [Meaning of Opti-

mal (2)] The relative optimal optional deadline ODk of task τk in

RMWP by RTA-OODH on uniprocessors with harmonic periodic

task sets is

ODk = Ak + Ik,

where Ak and Ik are in Theorems 2 and 3, respectively.

RTA-OODH is similar to Response Time Analysis (RTA) [4].
RTA calculates the worst case response time of each task. In con-
trast, RTA-OODH calculates the relative optimal optional dead-
line of each task.
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4. RUN Algorithm

This paper reviews RUN [26], which is optimal multipro-
cessor real-time scheduling with a small number of preemp-
tions/migrations. The model specific to RUN [26] is introduced
because RUN has many original parameters and assumptions to
explain itself. The goal of RUN is full system utilization and idle
tasks are inserted in order to achieve it. The total utilization of
idle tasks is Uidle = M −∑i Ui. Note that each idle task depends
on the utilization parameter alone and does not depend on other
parameters such as period and WCET.

RUN transforms multiprocessor scheduling into uniprocessor
scheduling by aggregating tasks into servers. This paper defines
servers as tasks with sequences of jobs but these are not actual
tasks in the system; each server is a proxy for a collection of
client tasks. When a server is running, the processor time is used
by one of its clients. Server clients are scheduled via an inter-
nal scheduling mechanism. The utilization of each server Sl is
Usrv

l =
∑
τi∈Sl

Ui, where τi ∈ Sl indicates that task τi is assigned to
server Sl. Note that the utilization of each server does not exceed
one (100%). The details of RUN in both offline and online phases
are explained as follows.

4.1 Offline Phase
In the offline phase, RUN reduces multiprocessor scheduling

to uniprocessor scheduling by the DUAL and PACK operations.
RUN is based on EDF because EDF is optimal for implicit-
deadline task sets on uniprocessors.

The DUAL operation transforms task τi into dual task τ∗i ,
whose execution time represents the idle time of τi (i.e., C∗i =
Ti − Ci). The relative deadline of dual task τ∗i is equal to that of
task τi. The DUAL operation reduces the number of processors
whenever n − M < M.

The PACK operation packs dual servers into packed servers
whose utilizations do not exceed one. When n − M ≥ M,
the number of servers can be reduced by aggregating them into
fewer servers using the PACK operation. The scheme for pack-
ing servers to fewer servers is heuristic. That is to say, the PACK
operation is similar to the partitioning schemes (e.g., first-, next-,
best-, and worst-fit). Note that if assigning tasks to processors is
successful, RUN generates the same schedule as P-EDF and does
not perform the DUAL and PACK operations. Otherwise, the
DUAL and PACK operations generate the reduction tree offline,
which is then used to make server scheduling decisions online.
Details on how to make scheduling decisions in the reduction tree
are given in the next subsection.

In order to explain the reduction tree, this paper defines the
following terms with respect to servers as follows.
• unit server: the utilization of the server is one
• null server: the utilization of the server is zero
• root server: the last packed server whose utilization is one

(unit server)
Packing the dual servers of packed servers can reduce the num-

ber of servers by nearly half. RUN performs the DUAL and
PACK operations repeatedly until all packed servers become unit
servers. The REDUCE operation including these operations is

defined as follows.
Definition 1 (From Definition IV.6 in Ref. [26]). Given a set of

servers Γ and a packing π of Γ, a REDUCE operation on a server

S in Γ, denoted by ψ(S), is the composition of the DUAL opera-

tion ϕ with the PACK operation σ for π (i.e., ψ(S) = ϕ(σ(S))).
In addition, this paper defines the reduction level/sequence to

explain the reduction tree as follows.
Definition 2 (From Definition IV.7 in Ref. [26]). Let i ≥ 1 be an

integer, Γ be a set of servers, and S be a server in Γ. The operator

ψi is recursively defined by ψ0(S) = S and ψi(S) = ψ ◦ ψi−1(S).
Then {ψi}i is a reduction sequence, and the server system ψi(Γ)
is reduction level i that represents the number of performing RE-

DUCE operations (denoted as i).
Note that the number of servers at reduction level 0 is the same

as that at reduction level 1, if these servers exist.
Figure 5 shows the reduction tree on three processors at time 5.

This paper gives further details of the following tuple (Ci, Ti) to
explain WCET and task period of τi as τ(Ci ,Ti)

i , and hence all peri-
ods and WCETs of tasks are τ(2,5)

1 , τ(4,10)
2 , τ(8,20)

3 , τ(4,10)
4 , and τ(2,5)

5 .
Tasks τ1, τ2, τ3, τ4, and τ5 are assigned to servers S1, S2, S3, S4,
and S5 at reduction level 0, respectively. The total utilization of
idle tasks is Uidle = M −∑n

i Ui = 3− 5 ∗ 0.4 = 1. In this example,
idle tasks are uniformly assigned at reduction level 0, and hence
the utilization of each server is added to Uidle/n = 1/5 = 0.2,
respectively.

This paper represents a server as S
(Usrv

l ),{Dl}
l , where Usrv

l is the
utilization of server Sl and Dl is the deadline set of server Sl.
The deadline set includes all absolute task deadlines in the server.
Each server sets the earliest deadline in the deadline set when the
server is released. This paper assigns deadline sets 5N, 10N, 20N,
10N, and 5N to servers at reduction level 0, respectively, where N

indicates a natural number. For example, 5N represents all dead-
lines of the tasks whose relative deadlines are all 5. Servers S6,
S7, S8, S9, and S10 are generated by the DUAL operation at re-
duction level 1 and their utilizations are all 0.4. This is because
these servers are dual servers of servers S1, S2, S3, S4, and S5 at
reduction level 0, respectively. In this example, servers S6 and
S7 are packed into server S11, servers S8 and S9 are packed into
server S12, and server S10 is packed into server S13 by the PACK

Fig. 5 Reduction tree on three processors at time 5.
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operation. Servers S11, S12, and S13 are generated by the DUAL
operation at reduction level 2. Finally, server S14 is generated
by the PACK operation at reduction level 2 and its utilization is
one. The REDUCE operation is finished and the reduction tree is
completely generated.

Note that the number of root servers may become larger than
one because when all servers are unit servers at the highest reduc-
tion level, the REDUCE operation is finished. If one server is a
unit server, then its dual server is a null server that is packed into
another server when the next PACK operation is performed.

4.2 Online Phase
In an online phase, RUN schedules servers according to the

following rules from Ref. [26] using Fig. 5 for reference.
Rule 1 (From Rule IV.2 in Ref. [26]). If a packed server is run-

ning (circled), execute the child node with the earliest deadline

among those children with work remaining; if a packed server is

not running (not circled), execute none of its children.

Rule 2 (From Rule IV.3 in Ref. [26]). Execute (circle) the child

(packed server) of a dual server if and only if the dual server is

not running (not circled).
In the reduction tree, a thick arrow represents a scheduled

server and a thin arrow represents a non-scheduled server accord-
ing to each parent server. If a thick arrow from a server points to
a task, the server schedules the task.

In Fig. 5, root server S14 is always running regardless of these
rules, because a root server is always a unit server. Next, S14

makes scheduling decisions in EDF order. Server S12 is running
at time 5 because of work remaining. Since server S12 is running,
S8 and S9 are not running by Rule 1. Since servers S11 and S13 are
not running, servers S7 and S10 are running by Rule 2. Servers S6,
S8, and S9 are not running, and hence servers S1, S3, and S4 are
running by Rule 2.

Figure 6 shows an example of RUN scheduling on three pro-
cessors. Each server is executed on virtual processor VPL,v, where
L represents the reduction level and v represents the virtual pro-
cessor ID at each reduction level. The task set is shown in Fig. 5;
this example shows the scheduling decisions at time 5. This sys-
tem has three processors P1, P2, and P3. Reduction level 0 has
three virtual processors VP0,1, VP0,2, and VP0,3, reduction level 1
has two virtual processors VP1,1 and VP1,2, and reduction level 2
has one virtual processor VP2,1. The hyperperiod of all tasks
(least common multiple of T1,T2, . . . ,Tn) is 20 and an example
of RUN scheduling is shown in the interval [0, 10). Note that the
example of RUN scheduling in the interval [10, 20) is the same as
that in the interval [0, 10).

RUN uses the following task-to-processor assignment scheme:
(1) leave executing tasks on their current processors, (2) assign
idle tasks to their last-used processor when available, in order to
avoid unnecessary migrations, and (3) assign remaining tasks to
free processors arbitrarily. According to this scheme, each server
assigns tasks to processors P1, P2, or P3 in Fig. 6. When each task
completes its execution on one processor, the processor becomes
idle until the remaining execution time of server of each task be-
comes zero. For example, server S5, running on VP0,1, completes
task τ5 on processor P1 at time 3 and P1 becomes idle (executes

Fig. 6 Example of RUN scheduling on three processors.

Fig. 7 RUN-RMWP algorithm.

idle task) during the time interval [3, 4).

5. The RUN-RMWP Algorithm

This paper proposes the RUN-RMWP algorithm to achieve
optimal multiprocessor semi-fixed-priority scheduling with har-
monic periodic task sets. As well as RUN, RUN-RMWP makes
server schedules in EDF order, and hence RUN-RMWP can use
Rules 1 and 2. In addition, RUN-RMWP makes task scheduling
decisions in RMWP order [12]. Using the idea of combination of
server and task scheduling, RUN-RMWP achieves optimal mul-
tiprocessor real-time scheduling in the extended imprecise com-
putation model.

Figure 7 shows the RUN-RMWP algorithm. RUN-RMWP
makes server scheduling decisions under the following condi-
tions: (1) server Sl becomes ready, (2) server Sl starts running
on virtual processor VPL,v, and (3) server Sl goes to sleep. Con-
ditions (1) and (3) in RUN-RMWP are the same as those in
RUN, and hence RUN-RMWP and RUN generate the same server
scheduling. In order to make task scheduling decisions under
condition (2) in RUN-RMWP, this paper extends the technique
to calculate the relative optimal optional deadline of each task in
RMWP for RUN-RMWP. RMWP schedules tasks running on

c© 2018 Information Processing Society of Japan
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a processor while RUN-RMWP schedules servers running on a
virtual processor, where the utilization of each server may be
less than one (an important difference between processors and
servers).

5.1 Optional Deadline
This paper now calculates the relative optional deadline of each

task in RUN-RMWP using RTA-OODH [12]. The relative op-
tional deadline of each task in RUN-RMWP depends on the ex-
ecution time of the server, whose utilization may be less than
one. That is to say, the optional deadline of each task is not fixed
against the processor time because a server (except for the root
server) might not always be running.

First of all, this paper analyzes the assignable time Ak of task
τk except wk in server Sl.
Theorem 5 (Assignable Time in RUN-RMWP). The assignable

time Ak of task τk except wk in server Sl in RUN-RMWP on multi-

processors is

Ak = Dk · Usrv
l − wk −

∑
∀i:τi ,τk∈Sl∧pi>pk

Ii
k, (1)

where Ii
k is from Theorem 1.

Proof. The differences between this theorem and Theorem 2 are
that (1) the first parameter Dk is transformed into Dk · Usrv

l and
(2) higher priority tasks than τk in server Sl interfere with task
τk. The least common multiple of periods of task τk and higher
priority tasks than τk is equal to Tk (Dk) with harmonic periodic
task sets. Next, Dk is changed into Dk ·Usrv

l because this theorem
considers that the utilization of server Sk is less than or equal to
one. The worst case interference time of task τk considers only
higher priority tasks than τk in server Sl. Note that the worst case
interference time of each job is constant with harmonic periodic
task sets. Since the assignable time Ak of task τk except wk is
equal to Eq. (1), this theorem holds. �
Theorem 6 (Worst Case Interference Time in [0,ODk) in
RUN-RMWP). The worst case interference time Ik of each task

τk in server Sl in RUN-RMWP on multiprocessors is

Ik =
∑

∀i:τi ,τk∈Sl∧pi>pk

( ⌈ODk

Ti

⌉
mi +

⌈
ODk − ODi

Ti

⌉
wi

)
.

Proof. The difference between this theorem and Theorem 3 is
that this theorem considers only tasks assigned to each server.
As well as the proof of Theorem 3 (found in Ref. [12]), one task
τi is split into two general tasks τm

i and τwi . Task τm
i releases

the first job at time 0 and its period is Ti. Task τwi releases the
first job at time ODi and its period is Ti. Hence, in [0,ODk),
task τk is interfered with by τm

i in 	ODk/Ti
 times and by τwi in
	(ODk − ODi)/Ti
 times. �
Theorem 7 (Optional Deadline in RUN-RMWP). [Meaning of

Optimal (2)] The relative optimal optional deadline ODk of task

τk in server Sl in RUN-RMWP on multiprocessors according to

RTA-OODH is

ODk = Ak + Ik, (2)

where Ak and Ik are from Theorems 5 and 6, respectively.

Proof. In Eq. (2), the relative optional deadline ODk and

Fig. 8 Pseudo code of RTA-OODH in RUN-RMWP.

assignable time Ak of task τk are the response time and WCET
in RTA [4], respectively. The relative optional deadline of task τk

by Eq. (2) means that Dk −ODk is equal to the sum of the WCET
of its wind-up part wk and the worst case interference time from
higher priority tasks. The assignable time of each job is constant
with harmonic periodic task sets. The assignable time Ak of task
τk except wk in [ODk,Dk) is equal to wk, and hence the relative
optional deadline by Eq. (2) is optimal. �

Figure 8 shows the pseudo code of RTA-OODH in RUN-
RMWP. This pseudo code calculates the relative optimal optional
deadline by iteration, similarly to RTA-OODH in RMWP [12].
Using this calculation offline, RUN-RMWP avoids missing the
deadline due to the overrun of the optional part online.

5.2 Optional Deadline Timer
The optional deadline in RUN-RMWP by Theorem 7 depends

on the utilization of the server, which may be less than one. In
order to terminate the optional part and release the wind-up part
at the optional deadline, RUN-RMWP must manage the optional
deadline timer, which generates the timer interrupt at the optional
deadline. This paper defines the current execution time and com-
pleting time of server Sl at reduction level 0 as ET (Sl) and CT (Sl),
respectively. The completing time CT (Sl) is the time to require
completing server Sl. This paper explains how to manage the op-
tional deadline timer in RUN-RMWP as follows:
• When server Sl is released, set ET (Sl) = 0.
• When server Sl starts running at time t, start all optional

deadline timers of tasks in server Sl (if their optional dead-
lines do not expire), set the optional deadline timer of task τi

to t + ODi − ET (Sl).
• When server Sl is preempted after running in time interval

ti, stop all optional deadline timers of tasks in server Sl (if
started) and set ET (Sl) = ET (Sl) + ti. When ET (Sl) =
CT (Sl), server Sl is completed and goes to sleep.

RMWP-based algorithms except RUN-RMWP set the optional
deadline timer of each task if it becomes ready because each pro-
cessor is always running and the optional deadline is fixed against
the processor time. However, RUN-RMWP sets the optional
deadline timer of each task if its server starts running because
each server is not always running and the optional deadline is not
fixed against the processor time.

5.3 Example
Figure 9 shows an example of RUN-RMWP scheduling on

three processors using the task set listed in Table 1. In addi-
tion, the utilization of each task is equal to that shown in Fig. 5
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Fig. 9 Example of RUN-RMWP scheduling on three processors.

Table 1 Task set.

Task mi oi wi ODi Di Ti

τ1 1 2 1 2 5 5
τ2 2 4 2 4 10 10
τ3 4 8 4 8 20 20
τ4 2 4 2 4 10 10
τ5 1 2 1 2 5 5

because Ci = mi + wi and all relative deadlines and periods are
the same. Tasks τ1, τ2, τ3, τ4, and τ5 are uniformly assigned at
reduction level 0, respectively. The utilization of each task is 0.4
(Ui = Ci/Ti = (mi + wi)/Ti) and the total utilization of idle task
is Uidle = M − ∑n

i Ui = 3 − 5 ∗ 0.4 = 1. In this example, idle
tasks are uniformly assigned at reduction level 0 and the utiliza-
tion of each idle task is Uidle/n = 1/5 = 0.2, respectively. There-
fore, the utilization of each server is 0.6 (= 0.4 + 0.2). Making
server scheduling decisions in RUN-RMWP is the same as that
in RUN. The optional deadline of each task is calculated by The-
orem 7. Note that the optional deadline timer of each task may
be restarted because the utilization of each server is 0.6 (less than
1.0). Now how to manage the optional deadline timer of task τ2

in server S2 is explained by using Fig. 6 for reference.
• At time 0, server S2 is released and ET (S2) is set to zero.

At the same time, server S2 starts running and the optional
deadline timer for τ2 is set to t+OD2 −ET (S2) = 0+4−0 =
4. Note that CT (S2) = D2 ∗ Usrv

2 = 10 ∗ 0.6 = 6.
• At time 3, server S2 is preempted after running in time in-

terval 3, the optional deadline timer for τ2 is stopped and
ET (S2) = 3.

• At time 6, server S2 starts running and the optional deadline
timer for τ2 is set to t + OD2 − ET (S2) = 6 + 4 − 3 = 7.

• At time 7, the optional deadline timer for task τ2 expires,
and hence task τ2 terminates its optional part and starts its
wind-up part.

• At time 9, task τ2 completes its wind-up part. At the same
time, server S2 is also completed and goes to sleep after run-
ning in time interval 3 because ET (S2) = 6 (i.e., ET (S2) =
CT (S2)).

Each task executes its optional part without deadline miss, thanks
to its optional deadline timer, and hence RUN-RMWP can
achieve its optimality and improve the QoS.

5.4 Schedulability Analysis
The optimality of RUN-RMWP is analyzed by using the fol-

lowing theorems.
Theorem 8 (From Theorem IV.3 in Ref. [26]). [Meaning of Op-

timal (1)] RUN is an optimal multiprocessor real-time scheduling

algorithm.

Theorem 9 (From Theorem 8 in Ref. [12]). [Meaning of Opti-

mal (1)] RMWP is an optimal uniprocessor real-time scheduling

algorithm with harmonic periodic task sets.

Using these theorems, this paper next analyzes the optimality
of RUN-RMWP with harmonic periodic task sets.
Theorem 10 (Optimality of RUN-RMWP). [Meaning of Optimal

(1)] RUN-RMWP is an optimal multiprocessor real-time schedul-

ing algorithm with harmonic periodic task sets.

Proof. RUN-RMWP and RUN generate the same reduction tree
and server scheduling, and hence making server scheduling deci-
sions in RUN-RMWP is optimal. Here, RUN transforms unipro-
cessor EDF scheduling into multiprocessor scheduling. Since
EDF is an optimal uniprocessor real-time scheduling algorithm,
RUN is optimal by Theorem 8. RMWP is an optimal unipro-
cessor scheduling algorithm with harmonic periodic task sets by
Theorem 9, and hence making task scheduling decisions in RUN-
RMWP is also optimal. Hence, this theorem holds. �

By Theorem 10, RUN-RMWP achieves optimal multiproces-
sor real-time scheduling and reveals how to apply RUN for im-
precise computation with harmonic periodic task sets.

6. Simulation Studies

6.1 Simulation Setups
This simulation uses 1,000 task sets in each system utilization.

The system utilization U is selected within [0.3, 0.35, 0.4, . . . ,
1.0]. RUN-RMWP, RUN, G-RMWP, and P-RMWP algorithms
are evaluated. In simulation environments, the number of proces-
sors M is 4. Each Ui is selected within [0.02, 0.03, 0.04, . . . , 1.0]
and is split into two utilizations that are assigned to mi and wi,
respectively, for imprecise-based algorithms (i.e., RUN-RMWP,
G-RMWP, and P-RMWP). The splitting algorithm is such that
mi is first selected within [0.01, 0.02, . . . ,Ui−0.01] and wi is next
set to Ui −mi. In contrast, RUN does not perform the above oper-
ation. This paper assumes that the ACET of each task fluctuates
and is usually shorter than its WCET. The ratio of ACET/WCET
is set to the ranges of 1.0, [0.75, 1.0], and [0.5, 1.0]. The period Ti

of each task τi is selected within [100, 200, 400, 800, 1600]. Each
Uo

i is selected within [0.01, 1.0], represented as RUN-RMWP-
OP *1 if the evaluated algorithm is RUN-RMWP. If Uo

i is always
equal to zero, the result is represented as RUN-RMWP. The sim-
ulation length of each task set is the hyperperiod of all tasks.

All tasks are assigned to (1) servers in RUN-RMWP and RUN
or (2) processors in P-RMWP, by the worst-fit decreasing utiliza-
tion heuristic. In order to achieve full system utilization, RUN-
RMWP and RUN uniformly assign idle tasks at reduction level
0, as in the task set shown in Fig. 5. If the utilization of server
Sl at reduction level 0 exceeds one, the overutilization of server
(i.e., Usrv

l − 1) is uniformly reassigned to other servers at reduc-
tion level 0 until the remaining utilization of idle tasks becomes
zero.

The performance metrics are defined by the following equa-
tions.

Success Ratio =
# of successfully scheduled task sets

# of scheduled task sets

*1 OP represents optional part.
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Fig. 10 Success ratio.

Fig. 11 Reward ratio.

Fig. 12 Number of preemptions per job.

Reward Ratio =
1
n

∑
i

1
# of jobs of task τi

∑
j

oi, j

oi

# of Preemptions per Job =
1
n

∑
i

# of preemptions of task τi

# of jobs of task τi

# of Migrations per Job =
1
n

∑
i

# of migrations of task τi

# of jobs of task τi

Optimal target full system utilization is a success ratio and satis-
fies Meaning of Optimal (1). If the success ratio of each system
utilization is less than one, the results of the system utilization
evaluated by other performance metrics are omitted. The reward
ratio is a metric to measure the QoS of each task for imprecise
computation. The more the QoS of each task is increased, the
higher the reward ratio becomes. Depending on the evaluated al-
gorithms, oi, j, the time to be actually executed in the jth job of
task τi, is different.

6.2 Simulation Results
Figure 10 shows the simulation results of the success ratio.

The success ratios of RUN-RMWP and RUN for all results are
always one because they are optimal. G-RMWP lowers the suc-
cess ratio when the system utilization is high. If the ACET of

each task is shorter than its WCET, G-RMWP can improve the
success ratio thanks to global scheduling. In contrast, P-RMWP
generates the same results and always lowers the success ratio
when the system utilization exceeds 0.7.

Figure 11 shows the simulation result of reward ratio.
G-RMWP-OP slightly outperforms RUN-RMWP-OP and P-
RMWP-OP when the system utilization is low, thanks to global
scheduling. However, G-RMWP-OP does not show the results
when the system utilization is high because G-RMWP-OP lowers
the success ratio, as shown in Fig. 10. RUN-RMWP-OP has the
same results as P-RMWP-OP when the system utilization is low.
When the system utilization is high, P-RMWP-OP does not show
the results and only RUN-RMWP-OP shows results.

Figure 12 shows the simulation results of the number of pre-
emptions per job. RUN-RMWP has similar results to RUN if
the optional part of each task is not executed. RUN-RMWP-OP
has slightly more preemptions than RUN because the optional
part of each task is executed, and hence there is a trade-off be-
tween preemption and QoS. The number of preemptions per job
in RUN-RMWP, RUN-RMWP-OP, and RUN is small and at most
3.4. Therefore, RUN-RMWP and RUN-RMWP-OP inherit the
advantages of RUN with respect to the small number of preemp-
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Fig. 13 Number of migrations per job.

tions per job. P-RMWP performs as well as RUN-RMWP when
the system utilization does not exceed 0.7. However, when the
system utilization exceeds 0.7, P-RMWP lowers the success ra-
tio.

The number of preemptions per job in RUN-RMWP-OP is the
largest because there are many opportunities for terminating the
optional part of each task, which incurs many preemptions. Inter-
estingly, the number of preemptions per job in RUN-RMWP-OP
when the ratio of ACET/WCET is [0.5, 1.0] is smaller than that
when the ratio of ACET/WCET is [0.75, 1.0]. This is because
there are many opportunities to complete the optional part of each
task before it is preempted by higher priority tasks.

Figure 13 shows the simulation results of the number of migra-
tions per job. When the system utilization does not exceed 0.65,
RUN-RMWP, RUN-RMWP-OP, and RUN are zero because as-
signing tasks to processors is successful. When the system uti-
lization exceeds 0.65, the number of migrations per job is in-
creased but is at most 2.3. Therefore, RUN-RMWP and RUN-
RMWP-OP also inherit the advantages of RUN with respect to
the small number of migrations per job.

When the system utilization is low, G-RMWP and G-RMWP-
OP show results and have a larger number of migrations per
job than other algorithms. In particular, G-RMWP-OP is the
largest in evaluated algorithms because the optional part of each
task is migrated and executed on different processors frequently
due to global scheduling. The number of migrations per job in
RUN-RMWP-OP when the ratio of ACET/WCET is [0.5, 1.0] is
smaller than that when the ratio of ACET/WCET is [0.75, 1.0].
This is because there are many opportunities to complete the
mandatory and wind-up parts of each task well before it is mi-
grated thanks to the shorter ACET.

From these results, RUN-RMWP outperforms G-RMWP and
P-RMWP. In addition, it has a slightly larger number of pre-
emptions/migrations per job than RUN because it supports the
extended imprecise computation model. In actual systems, the
additional overheads of imprecise computation using G-RMWP
and P-RMWP were investigated and found to be low and com-
parable to the overheads of G-RM and P-RM, respectively [15].
Therefore, this paper believes that the overhead of RUN-RMWP
will be sufficient in actual systems.

7. Related Work

Optimal multiprocessor real-time scheduling has been
achieved by Pfair algorithm [7] that keeps execution times close

to fluid scheduling. Pfair incurs significant run-time overhead
due to the quantum-based scheduling approach. The practicality
of Pfair is investigated by Brandenburg to evaluate PD2 [1],
which is an extension of Pfair to reduce the number of preemp-
tions/migrations. These algorithms are compared with other
non-optimal multiprocessor real-time scheduling algorithms on
Intel’s 24-core processors [10]. Experimental results show that
PD2 has the worst schedulability of all evaluated algorithms, and
hence Pfair does not work well in actual systems.

There are some other optimal multiprocessor real-time
scheduling algorithms: Largest Local Remaining Execution time
First (LLREF) [18], EDF with task splitting and K processors in
a group (EKG) [3], Deadline Partitioning Wrap (DP-Wrap) [22],
and RUN [26]. Simulation results by Regnier et al. show that
RUN outperforms LLREF, EKG, and DP-Wrap in the number of
preemptions/migrations per job and scales well as the number of
tasks/processors is increased [26].

There are imprecise-based real-time scheduling algorithms
on uniprocessors including Mandatory-First with Earliest Dead-
line [8] and Optimization with Least-Utilization [5]. However,
they support the imprecise computation model [23] and do not
support the extended imprecise computation model [20].

Mandatory-First with Wind-up Part [20] and Slack Stealer for
Optional Parts [21] are proposed to support the extended impre-
cise computation model on uniprocessors but they do not sup-
port multiprocessors. G-RMWP [13] and P-RMWP [15] support
multiprocessors in the extended imprecise computation model but
they are not optimal. In contrast, RUN-RMWP is optimal and
supports the extended imprecise computation model, and hence
RUN-RMWP has the advantage over G-RMWP and P-RMWP.

8. Conclusion

This paper proposes the new algorithm RUN-RMWP to
achieve optimal multiprocessor semi-fixed-priority scheduling
with harmonic periodic task sets (Meaning of Optimal (1)). RUN-
RMWP integrates RUN and RMWP to inherit the advantages
of these algorithms that achieve a small number of preemp-
tions/migrations per job and support the extended imprecise com-
putation model. RUN-RMWP calculates the optional deadline of
each task by extending RTA-OODH. In addition, RUN-RMWP
manages an optional deadline timer to terminate the optional part
and release the wind-up part of each task in each server. Sim-
ulation results show that RUN-RMWP outperforms other non-
optimal multiprocessor real-time scheduling algorithms includ-
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ing G-RMWP and P-RMWP relative to the success ratio and the
number of preemptions/migrations per job. RUN-RMWP has a
few more preemptions/migrations than RUN. However, RUN-
RMWP supports the extended imprecise computation model, and
hence RUN-RMWP is well suited to imprecise real-time applica-
tions such as humanoid robots.

In future work, RUN-RMWP will be implemented in RT-
Est [14], which is a real-time operating system for semi-fixed-
priority scheduling algorithms in the extended imprecise com-
putation model. The overhead-aware schedulability of RUN-
RMWP will be analyzed using the preemption-aware interrupt
accounting method [10]. The integration of RMWP++ [17] and
RUN-RMWP is interesting. In addition, RUN-RMWP will be
adapted to the multiple mandatory parts [16] and the parallel-
extended imprecise computation model [11].
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