
IPSJ Transactions on Bioinformatics Vol. 1 23–34 (Nov. 2008)

Original Paper

Analyses and Algorithms for Predecessor and Control

Problems for Boolean Networks of Bounded Indegree

Tatsuya Akutsu,
†1

Morihiro Hayashida,
†1

Shu-Qin Zhang,
†2

Wai-Ki Ching
†3

and Michael K. Ng
†4

We study the predecessor and control problems for Boolean networks (BNs).
The predecessor problem is to determine whether there exists a global state
that transits to a given global state in a given BN, and the control problem
is to find a sequence of 0-1 vectors for control nodes in a given BN which
leads the BN to a desired global state. The predecessor problem is useful
both for the control problem for BNs and for analysis of landscape of basins of
attractions in BNs. In this paper, we focus on BNs of bounded indegree and
show some hardness results on the computational complexity of the predecessor
and control problems. We also present simple algorithms for the predecessor
problem that are much faster than the naive exhaustive search-based algorithm.
Furthermore, we show some results on distribution of predecessors, which leads
to an improved algorithm for the control problem for BNs of bounded indegree.

1. Introduction

Analysis of genetic networks is an important research topic in bioinformatics.
Mathematical models of genetic networks are usually required for such analy-
sis and thus many models have been proposed and applied. Among these, the
Boolean network (BN, in short) model has received much attention 14). BN is a
very simple model: each node (e.g., gene) takes either 0 (inactive) or 1 (active)
and the states of nodes change synchronously according to regulation rules given

†1 Bioinformatics Center, Institute for Chemical Research, Kyoto University
†2 School of Mathematical Sciences, Fudan University
†3 Department of Mathematics, The University of Hong Kong
†4 Department of Mathematics, Hong Kong Baptist University
�1 Several results in this paper are included in a preliminary conference version appeared in

Proc. Fifth IEEE International Workshop on Genomic Signal Processing and Statistics,
2007.

as Boolean functions.
Extensive studies have been done on average case analysis of the number and

length of attractors in randomly generated BNs 9),14),21), where attractors corre-
spond to steady-states. Recently, several methods have been developed for effi-
ciently finding or enumerating attractors in BNs 8),11),12),24), whereas it is known
that finding a singleton attractor (i.e., a fixed point) is NP-hard 2),16). Devloo, et
al. developed a method using transformation to a constraint satisfaction prob-
lem 8). Garg, et al. developed a method based on Binary Decision Diagrams
(BDDs) 11). Irons developed a method that makes use of small subnetworks 12).
However, theoretical analysis of the average case complexity was not performed
in these works. We recently developed algorithms for identifying singleton at-
tractors and small attractors and analyzed the average case time complexities of
these algorithms 24).

Finding a sequence of control actions for BNs is another important problem on
BNs, which is abbreviated as BN-CONTROL in this paper. Inspired from works
on control of the probabilistic Boolean network (PBN, in short) model 7),18), we
studied BN-CONTROL 3). We showed that BN-CONTROL is NP-hard even in
considerably restricted cases 3). However, we may be able to develop algorithms
that are much faster than exhaustive search based algorithms. Though we have
not yet fully succeeded to develop such algorithms, we encountered the problem
of finding a global state transiting to a given global state, which is known as the
predecessor problem for BNs 5),6) and is abbreviated as BN-PREDECESSOR in
this paper. In other words, BN-PREDECESSOR is to find an input node to a
specified node in a state transition diagram of a BN. It should be noted that the
problem is trivial once a state transition diagram is constructed. However, the
number of nodes of a state transition diagram is 2n where n is the number of
nodes in a BN. Therefore, faster algorithms should be developed.

BN-PREDECESSOR has some potential applications. If the target state does
not have a predecessor state, there does not exist a control sequence. Thus,
BN-PREDECESSOR may be used for pre-processing for the control problem.
BN-PREDECESSOR may also be useful for identifying the basin of attraction
by enumerating predecessor states recursively 23), which has a potential appli-
cation to design of BNs with a prescribed attractor structure 19). Besides, BN-

23 c© 2008 Information Processing Society of Japan



24 Predecessor and Control Problems for Boolean Networks

PREDECESSOR may also be useful for analyzing self-organized criticality in
BNs 6).

For the predecessor problem, some studies have been done. Barrett, et al.
studied the computational complexity of the predecessor problem for BNs and
other discrete dynamical systems 5). They showed that BN-PREDECESSOR is
NP-hard even for BNs with planar graph structures, whereas they presented a
polynomial time algorithm for BNs of bounded tree-width. Coppersmith also
studied the computational complexity of BN-PREDECESSOR and distribution
of predecessors 6). She showed that BN-PREDECESSOR for BNs with maximum
indegree K can be reduced to K-SAT, where K-SAT denotes the Boolean satis-
fiability problem for a set of clauses each of which consists of at most K-literals.
She also showed that as n grows, the ratio of global states having at least one
predecessors converges to 1/e and 0 for general BNs and for BNs with maximum
indegree K, respectively.

In this paper, we study BN-PREDECESSOR, its variant, and BN-CONTROL
with focusing on cases where the maximum indegee is bounded by some con-
stant K. It is to be noted that many real networks are considered to have small
maximum indegrees and most of existing studies on BNs also focused on cases
of bounded indegree. We show that BN-PREDECESSOR is NP-hard even for
BNs with K = 3. We also show that the 2-predecessor problem, which is a
problem of finding a predecessor of a predecessor, is NP-hard even for BNs with
K = 2. Besides, we show that BN-CONTROL is NP-hard even for K = 2,
which strengthens a previous NP-hardness result on BN-CONTROL 3). Next,
based on our previous algorithms for identifying singleton attractors 24), we de-
velop algorithms for identifying all predecessors, all of which are much faster than
the naive enumeration algorithm. We also show results of computational experi-
ments on these algorithms. Then, based on studies by Coppersmith 6), we show
some results on distributions of predecessors and predecessors of predecessors.
Furthermore, by making use of some of these results, we develop an improved
algorithm for BN-CONTROL for bounded indegree. Finally, we conclude with
future work.

2. Preliminaries

In this section, we briefly review the Boolean network model 14), BN-
PREDECESSOR 5),6), and a control problem on BN (BN-CONTROL, in short) 3).

2.1 Boolean Network and BN-PREDECESSOR
A BN consists of a set of n nodes V and n Boolean functions F , where V =

{v1, . . . , vn} and F = {f1, . . . , fn}. In general, V and F correspond to a set of
genes and a set of gene regulatory rules, respectively. Each node takes either 0
or 1 at each discrete time t, where 1 (resp. 0) means that the corresponding gene
expresses (resp. does not express) at time t. The state of vi at time t is denoted
by vi(t). The global state of a BN (or simply the state of a BN) at time step t

is denoted by the vector v(t) = [v1(t), . . . , vn(t)]. A regulation rule for each
node is given in the form of a Boolean function and the states of nodes change
synchronously. A node vi has ki incoming nodes vi1 , . . . , viki

and the state of vi

at time t + 1 is determined by vi(t + 1) = fi(vi1(t), . . . , viki
(t)), where fi is a

Boolean function with ki input variables. The number ki is called the indegree
of node vi. We also write vi(t + 1) = fi(v(t)) to denote the regulation rule
for vi and v(t + 1) = f(v(t)) to denote the regulation rule for the whole BN. A
specific global state can be written as an n-dimensional binary vector [b1, . . . , bn].
If we consider all 2n possible states and compute their respective next states, a
list of 2n one-step state transitions can be obtained. These 2n transitions fully
characterize the dynamics of a BN and the table representing these 2n transitions
is called the state transition table. We can also associate a directed graph called
state transition diagram in which a set of nodes is the set of all possible 2n global
states, and there exists a directed edge from u to v if and only if v = f(u) holds.
It is not difficult to see from the definition of BN that each node has exactly one
outgoing edge.

Starting from an initial global state, a BN will eventually reach a set of global
states, called an attractor (a directed cycle in the state transition diagram).
An attractor consisting of only one global state is called a singleton attractor.
That is, v is a singleton attractor if v = f(v). Otherwise, it is called a cyclic
attractor with period p if it consists of p global states. The set of all global states
that eventually evolve into the same attractor is called the basin of attraction.

IPSJ Transactions on Bioinformatics Vol. 1 23–34 (Nov. 2008) c© 2008 Information Processing Society of Japan



25 Predecessor and Control Problems for Boolean Networks

Fig. 1 Example of (A) Boolean network and (B) state transition diagram, where
v1(t + 1) = v2(t) ∧ v3(t), v2(t + 1) = v1(t) and v3(t + 1) = v2(t) ⊕ v3(t).

Different basins of attraction correspond to different connected components in
the state transition diagram, and each connected component contains exactly
one directed cycle.

For a global state v, a global state u is called a predecessor of v if v = f(u).
That is, u is a predecessor of v if there is an edge from u to v in the state transi-
tion diagram of a given BN. Then, BN-PREDECESSOR is defined as follows 5),6).

Definition 1 (BN-PREDECESSOR) 5),6)

Suppose that a BN (V, F ) and a global state v1 are given. Then, the problem
is to find a global state v0 such that v1 = f(v0). If there does not exist such a
global state, “None” should be the output.

An example of a BN is given in Fig. 1 along with the corresponding state
transition diagram. In this case, there is one singleton attractor and one cyclic
attractor with period 4. In BN-PREDECESSOR, either 100 or 111 should be
output for 010, and “none” should be output for 100.

2.2 Control of Boolean Network
In BN-CONTROL 3), there are two types of nodes: internal nodes and ex-

Fig. 2 BN-CONTROL is, given initial and desired states of internal nodes (v1, v2, v3), to
compute a sequence of states of external nodes (x1, x2) that leads to the desired state.

ternal nodes, where internal nodes correspond to usual nodes (i.e., genes) in
BN and external nodes correspond to control nodes. Let a set V of n + m

nodes be V = {v1, . . . , vn, vn+1, . . . , vn+m}, where v1, . . . , vn are internal nodes
and vn+1, . . . , vn+m are external nodes. For convenience, we use xi to denote
an external node vn+i. Then, vi(t + 1) for i = 1, . . . , n are determined by
vi(t + 1) = fi(vi1(t), . . . , viki

(t)), where each vik
is either an internal node or an

external node. Here, we let v(t) = [v1(t), . . . , vn(t)] and x(t) = [x1(t), . . . , xm(t)].
We can describe the dynamics of a BN by v(t + 1) = f(v(t),x(t)), where x(t)’s
are determined externally. Then, BN-CONTROL is defined as follows (see also
Fig. 2).

Definition 2 (BN-CONTROL) 3)

Suppose that for a BN, we are given an initial state of the network (for internal
nodes) v0 and the desired state of the network vM at the M -th time step. Then,
the problem is to find a sequence of 0-1 vectors 〈x(0), . . . ,x(M)〉 such that v(0) =
v0 and v(M) = vM . If there does not exist such a sequence, “None” should be
the output.

As mentioned in Introduction, Datta, et al. studied control of PBN 7). They
proposed a dynamic programming algorithm, which can also be applied to BN.
Here, we briefly review their method in the context of BN 4).

We use a table D[b1, . . . , bn, t], where each entry takes either 0 or 1.

IPSJ Transactions on Bioinformatics Vol. 1 23–34 (Nov. 2008) c© 2008 Information Processing Society of Japan



26 Predecessor and Control Problems for Boolean Networks

D[b1, . . . , bn, t] takes 1 if there exists a desired control sequence beginning from a
state [b1, . . . , bn] at time t. This table is computed from t = M to t = 0 by using
a dynamic programming procedure based on the following recurrence:

D[b1, . . . , bn, M ] =

{
1, if [b1, . . . , bn] = vM ,

0, otherwise,

D[b1, . . . , bn, t − 1] =

⎧⎪⎨
⎪⎩

1, if there exists (a,x) such that
D[a1, . . . , an, t] = 1 and a = f(b,x),

0, otherwise,
where b = [b1, . . . , bn] and a = [a1, . . . , an]. Then, there exists a desired control
sequence if and only if D[(v0)1, . . . , (v0)n, 0] = 1 holds, where vi denotes the ith
element of a vector v.

In this method, the size of table D[b1, . . . , bn, t] is clearly O(M ·2n). Moreover,
we should examine pairs of O(2n) internal states and O(2m) external states for
each time t. Thus, it requires O(nM · 2m+n) time even if the maximum indegree
of a BN is bounded by a constant K because additional O(n) factor is required
to compute f(b,x).

3. Hardness Results

In this section, we present some hardness results on the computational com-
plexity of BN-PREDECESSOR, its variant, and BN-CONTROL.

As mentioned in Introduction, Barrett, et al. proved that BN-PREDECESSOR
is NP-hard even for BNs having planar structures 5). However, it is not very clear
from their results whether BN-PREDECESSOR is NP-hard for BNs with K = 3.
Although the following result is almost obvious and may be implied by some result
in 5), we show it here since it gives at least a very simple proof.

Proposition 3.1 BN-PREDECESSOR is NP-hard for K = 3.
Proof. We use a simple polynomial time reduction from 3-SAT 10) to BN-
PREDECESSOR (see also Fig. 3).

Let y1, . . . , yN be Boolean variables (i.e., 0-1 variables). Let c1, . . . , cL be
clauses over y1, . . . , yN , where each clause is a disjunction (OR) of at most three
literals. It should be noted that a literal is a variable or its negation (NOT).
Then, 3-SAT is to ask whether or not there exists an assignment of 0-1 values to

Fig. 3 Example of a reduction from 3-SAT to BN-PREDECESSOR for K = 3. An instance
of 3-SAT {y1 ∨ y2 ∨ y3, y1 ∨ y3 ∨ y4, y2 ∨ y3 ∨ y4} is transformed into this Boolean
network.

y1, . . . , yN which satisfies all the clauses (i.e., the values of all clauses are 1).
From an instance of 3-SAT, we construct an instance of BN-PREDECESSOR.

We let V = {v1, . . . , vN+L+1}, where each vi for i = 1, . . . , N corresponds to yi,
each vN+j for j = 1, . . . , L corresponds to cj , and vN+L+1 is a special node which
does not have any input variables and takes always value 1 (i.e., vN+L+1(t) = 1
for all t). For each vi (i = 1, . . . , N), we assign the following function:

vi(t + 1) = vN+L+1(t).
Let cj = gj(yj1 , yj2 , yj3). That is, cj is a disjunction of literals of yj1 , yj2 and
yj3 (e.g., cj = yj1 ∨ yj2 ∨ yj3). Then, for each vN+j (j = 1, . . . , L), we assign the
following function:

vN+j(t + 1) = gj(vj1(t), vj2(t), vj3(t)).
Finally, we let v1 = [1, 1, . . . , 1] (i.e., vi(1) = 1 for all i = 1, . . . , N + L + 1).

Then, it is straight-forward to see that v0 corresponds to a satisfying assign-
ment for 3-SAT. That is, there exists a predecessor v0 if and only if there exists
a satisfying assignment for 3-SAT. Since the above reduction can be done in
polynomial time, we have the proposition. ��

Coppersmith showed that BN-PREDECESSOR for BNs with maximum inde-
gree K can be reduced to K-SAT in polynomial time. Since it is well known that
2-SAT is solved in linear time 10), BN-PREDECESSOR for K = 2 can be solved
in linear time.

IPSJ Transactions on Bioinformatics Vol. 1 23–34 (Nov. 2008) c© 2008 Information Processing Society of Japan



27 Predecessor and Control Problems for Boolean Networks

Fig. 4 Example of a reduction from 3-SAT to BN-CONTROL for K = 2 and M = 2. The
same instance of 3-SAT as in Fig. 3 is transformed into this Boolean network.

As for BN-CONTROL, we proved that it is NP-hard even for BNs with K =
3 3). Here, we strengthen this hardness result as below.

Theorem 3.2 BN-CONTROL is NP-hard for K = 2 and M ≥ 2.
Proof. We modify the reduction used in the proof of Proposition 3.1 (see also
Fig. 4).

Let y1, . . . , yN be Boolean variables (i.e., 0-1 variables). Let c1, . . . , cL be a set
of clauses over y1, . . . , yN . From this instance of 3-SAT, we construct an instance
of BN-CONTROL. We let V = {v1, . . . , vN+2L, x1, . . . , xN} where x1, . . . , xN are
external nodes. Each vi (i = 1, . . . , N) corresponds to yi, vN+i and vN+L+i

(i = 1, . . . , L) correspond to ci, and each xi corresponds to yi. Next, we assume
without loss of generality that clause ci is represented as gi(fi(yi1 , yi2), yi3). For
example, if ci = x ∨ y ∨ z, we have fi(x, y) = x ∨ y and gi(w, z) = w ∨ z. Then,
for each vi, we assign the following function:

vi(t + 1) = xi(t),
vN+i(t + 1) = fi(xi1(t), xi2(t)),

vN+L+i(t + 1) = gi(vN+i(t), vi3(t)).
Finally we let v0 and vM as follows.

v0
i = 0, for all i,

vM
i = 1, for i = 1, . . . , N,

vM
N+i = fi(1, 1), for i = 1, . . . , L,

vM
N+L+i = 1, for i = 1, . . . , L.

Now, we show the correctness of the reduction. Suppose that there exists an
assignment of Boolean values b1, . . . , bN to y1, . . . , yN which satisfies all clauses
c1, . . . , cL. Then, for all i = 1, . . . , N , we let

xi(0) = bi,

xi(1) = 1,

where xi(2) can be set arbitrary (e.g., xi(2) = 1). Then, we can see that v(2) =
vM holds since vN+i(1) = fi(bi1 , bi2) holds for all i = 1, . . . , N .

Suppose that there exists a control sequence 〈x(0),x(1),x(2)〉 for which v(2) =
vM is satisfied. Then, xi(1) = 1 must hold since vi(2) = vM

i = 1 holds for
i = 1, . . . , N . Moreover, yi = xi(0) (i = 1, . . . , N) must satisfy all clauses cj since
vN+L+i(2) = gi(fi(xi1(0), xi2(0)), xi3(0)) holds.

Since the reduction can be done in polynomial time, we have the theorem. ��
We can generalize the concept of predecessor to k-predecessors 12). u is called

a k-predecessor of v if k times applications of f to u yield v. That is, u is a
k-predecessor of v if

v =

k︷ ︸︸ ︷
f(f(· · ·(u) · · ·))

holds. Clearly, a usual predecessor is equivalent to a 1-predecessor. We define
BN-k-PREDECESSOR to be a problem of finding a k-predecessor of a given
global state in a given BN. By modifying the reduction in Theorem 3.2, we have:

Theorem 3.3 BN-2-PREDECESSOR is NP-hard even for K = 2.
Proof. We modify the reduction in Theorem 3.2. We add one additional node v0

to V , where v0 is a constant node such that v0(t) = 1 for all t. For each xi (which
is an internal node in this case), we assign Boolean function xi(t + 1) = v0(t).
Then, we let vN+i = fi(1, 1) for i = 1, . . . , L and vi = 1 for all other vi ∈ V .
Then, it is straight-forward to see that there exists u such that v = f(f(u)) if
and only if 3-SAT has a satisfiable assignment. ��

By integrating the above results and the results in3),5),6),22),24), we have a clear
picture on how computational complexity changes depending on the maximum
indegree K for several related problems. Table 1 summarizes these results where
BN-ATTRACTOR denotes the problem of deciding whether or not there exists
a singleton attractor in a given BN 24).

IPSJ Transactions on Bioinformatics Vol. 1 23–34 (Nov. 2008) c© 2008 Information Processing Society of Japan



28 Predecessor and Control Problems for Boolean Networks

Table 1 Computational complexities of BN-PREDECESSOR and related problems.

BN- BN- BN-2- BN-
ATTRACTOR PREDECESSOR PREDECESSOR CONTROL

K = 2 NP-hard P NP-hard NP-hard
[Ref. 22)] [Ref. 6)] [this paper] [this paper]

K ≥ 3 NP-hard NP-hard NP-hard NP-hard
[Ref. 2)] [Ref. 5) and [Ref. 3)]

this paper]

4. Recursive Algorithms for BN-PREDECESSOR

The predecessor problem can be solved by constructing a state transition dia-
gram or examining all possible global states. However, the number of global states
is 2n and thus it is impossible to construct the diagram unless n is small. There-
fore, algorithms which do not examine all possible global states are required and
some studies have been done as mentioned in Introduction. Barrett, et al. devel-
oped polynomial time algorithms for BN-PREDECESSOR and related problems
for networks with bounded tree-width 5). However, it seems that real networks do
not have very small tree-width and thus their algorithms are not practical. Cop-
persmith showed a polynomial time reduction from BN-PREDECESSOR with
maximum indegree K to K-SAT 6). Since many SAT solvers have been devel-
oped, this reduction-based method might be useful. However, it is difficult to
perform theoretical analysis on practical SAT solvers. Of course, we can give
some guarantees on the worst case time complexity using theoretical algorithms
for K-SAT 13),20), However, such algorithms are complicated and may not be
practical. Therefore, it is worthy to develop simple practical algorithms for BN-
PREDECESSOR that have some theoretical guarantees on the computational
complexity.

In our previous work 24), we developed a very simple algorithm (called the basic
recursive algorithm) for identifying all singleton attractors along with its variants.
In that algorithm, a partial solution (i.e., a partial global state) is extended one
by one according to a given node ordering that leads to a complete solution (i.e.,
a singleton attractor). If it is found that a partial solution cannot be extended
to a complete solution, the next partial solution is examined. The pseudocode of
this algorithm is given below 24), where this procedure is invoked with m = 1.

Table 2 Theoretically estimated average case time complexities of basic, outdegree-based,
and BFS-based algorithms for the singleton attractor detection problem 24). The
same results should hold for the modified algorithms for BN-PREDECESSOR.

K 2 3 4 5 6
basic 1.35n 1.43n 1.49n 1.53n 1.57n

outdegree-based 1.19n 1.27n 1.34n 1.41n 1.45n

BFS-based 1.16n 1.27n 1.35n 1.41n 1.45n

Procedure IdentSingletonAttractor(v, m)
if m = n + 1
then Output v1(t), v2(t), · · · , vn(t), return;
for b = 0 to 1 do

vm(t) := b;
if it is found that fj(v(t)) 	= vj(t) for some j ≤ m

then continue
else IdentSingletonAttractor(v, m + 1);

return;

We obtained variants of this algorithm by sorting nodes before invoking the
recursive procedure 24). In particular, we used the orderings of nodes according to
the outdegree and BFS (breadth-first search). For these algorithms, we obtained
theoretical estimates of the average case time complexity (Table 2) 24), where
some approximations were introduced to obtain these results and thus they are
not very exact.

We can modify these algorithms for BN-PREDECESSOR. For that purpose,
we only need to modify the part of

it is found that fj(v(t)) 	= vj(t)
to

it is found that fj(v(t)) 	= v1
j .

It should be noted that the modified algorithms can identify all predecessors and
thus it is still useful even for the case of K = 2. Since both algorithms are almost
identical, the same results as in Table 2 should hold for the modified algorithms.

Here we briefly give an analysis only for the basic recursive algorithm, which

IPSJ Transactions on Bioinformatics Vol. 1 23–34 (Nov. 2008) c© 2008 Information Processing Society of Japan



29 Predecessor and Control Problems for Boolean Networks

is almost identical to that in 24). Assume that we have tested the first m out of
n nodes, where m ≥ K. For all j ≤ m, fj(v(t)) 	= v1

j holds with probability

P (fj(v(t)) 	= v1
j ) = 0.5 ·

(
m

kj

)
(

n

kj

) ≈ 0.5 ·
(m

n

)kj ≥ 0.5 ·
(m

n

)K

,

where we assume that Boolean functions of kj (< K) inputs are selected at
uniformly random. If fj(v(t)) 	= v1

j is found for some j ≤ m, the algorithm
cannot proceed to the next recursive level. Therefore, the probability that the
algorithm examines the (m + 1)th node is no more than

[1 − P (fj(v(t)) 	= v1
j )]

m ≈
[
1 − 0.5 ·

(m

n

)K
]m

.

Thus, the number of recursive calls executed for the first m genes is at most
around

f(m) = 2m ·
[
1 − 0.5 ·

(m

n

)K
]m

.

Here we let s = m
n and

F (s) = [2s · (1 − 0.5 · sK)s]n = [(2 − sK)s]n.

Then, the average case time complexity is estimated by computing the maximum
value of (2 − sK)s since the other factors can be ignored. By simple numerical
calculations, we obtain the results shown in the first row of Table 2.

In order to verify these theoretical estimates, we performed computational ex-
periments. We examined the basic algorithm and the outdegree-based algorithm
for BN-PREDECESSOR with K = 3 and K = 4. For each K and n, we took
the average CPU time over 100 random v1’s over 100 random BNs, where these
computational experiments were performed on a LINUX PC with Xeon 3GHz
Dual-Core CPUs and 8GB RAM. We verified through these computational ex-
periments that the results similar to Table 2 hold. The results are shown in
Fig. 5 and Fig. 6. There are some gaps between theoretical estimates and ex-
perimental results. However, it is to be noted that the complexities of Table 2
were obtained for large n (by introducing some approximations) whereas only
small size networks were examined in our experiment. Thus, it seems that gaps

Fig. 5 Elapsed time (in seconds) by the proposed algorithms for random Boolean networks
with K = 3.

Fig. 6 Elapsed time (in seconds) by the proposed algorithms for random Boolean networks
with K = 4.

will become smaller as n grows. It is also seen from Fig. 5 and Fig. 6 that our
proposed algorithms are much faster than the naive algorithm that examines all
possible states (2n states).

IPSJ Transactions on Bioinformatics Vol. 1 23–34 (Nov. 2008) c© 2008 Information Processing Society of Japan



30 Predecessor and Control Problems for Boolean Networks

5. Results on Distribution of Predecessors

We have studied so far the complexity issue on BN-PREDECESSOR. In this
section, we study distribution of predecessors. First, we present an almost trivial
result.

Proposition 5.1 For any Boolean network, the average number of predeces-
sors per global state is 1.
Proof. The number of outgoing edges from each node in a state transition
diagram is 1. Thus, the total number of edges in a state transition diagram is
2n where n is the number of nodes in BN. Since there exist 2n global states, the
average number of incoming edges (i.e., predecessors) is 1. ��

Based on this result, we expected that recursive application of BN-
PREDECESSOR leads to a fast algorithm for BN-CONTROL. However, we
empirically found that there exist many predecessors if it exists and thus the
above attempt was not successful. This motivated us to study distribution of
predecessors.

We begin with BNs with no constraint since it is easier to analyze. Coppersmith
showed that the expected number of global states with no predecessors converges
to 2n/e as n grows 6), where all possible BNs with n nodes are randomly given
and e is the base of natural log. This can be shown as follows. Since each global
state has exactly one outgoing edge, the probability that u is a predecessor of v
is 1/N for each u, where N = 2n. Thus, the probability that each global state v
has no predecessor is (1 − 1

N )N , which approaches to 1/e as N grows.
We extend this result for distribution of 2-predecessors. That is, we estimate

the number of global states v for which there is no w such that v = f(f(w)).
First, we consider the probability that there exists only one u such that v = f(u)
and u has no predecessor. This probability is calculated by

(N − 1) ·
(

1
N

)
·
(

1 − 2
N

)N−1

since u must be different from v (otherwise v = f(v) = f(f(v)) = · · · would
hold) and global states except u should not go to u or v. Next, we consider the
probability that there exist exactly two predecessors of v and none of them has

a predecessor. This probability is calculated by(
N − 1

2

)
·
(

1
N

)2

·
(

1 − 3
N

)N−2

.

In this way, the number of global states v for which there is no w such that
v = f(f(w)) is calculated by

N−2∑
i=1

(
N − 1

i

)
·
(

1
N

)i

·
(

1 − i + 1
N

)N−i

.

This probability is approximated to e−1(ee−1 − 1) since(
N − 1

i

)
·
(

1
N

)i

·
(

1 − i + 1
N

)N−i

≈ e−(i+1)

i!

holds for small i. Therefore, the number of global states having no 2-predecessor
is approximated by Ne−1(ee−1 − 1).

It is reasonable to try to extend this result for v = fk(w). However, it seems
quite difficult to do so even for k = 3.

Now, we consider BNs with maximum indegree K. Coppersmith showed that
the probability that a randomly chosen global state has a predecessor is bounded
by (1−2−2K

)n, which approaches to 0 as n grows 6). This bound can be shown as
follows. Suppose that v = [1, 1, · · · , 1]. If the Boolean function always outputting
0 is assigned to some node, v has no predecessor. Since there are 22K

Boolean
functions with K inputs, the probability that such a function is assigned to none
of the nodes is (1 − 2−2K

)n, where we assume that a Boolean function with K

inputs is assigned to each node uniformly at random.
Based on her idea, we estimate a lower bound of the expected number of pre-

decessors for a global state having at least one predecessor. Hereafter, we let
H = 22K

, and we call a node for which a constant Boolean function (i.e., a
function always outputting 1 or always outputting 0) is assigned a constant node.

Proposition 5.2 Suppose that for each node, K input nodes are randomly
selected and then a Boolean function is randomly selected from 22K

possible
Boolean functions (including constant Boolean functions). Then, the expected
number of global states having no predecessor is greater than

IPSJ Transactions on Bioinformatics Vol. 1 23–34 (Nov. 2008) c© 2008 Information Processing Society of Japan



31 Predecessor and Control Problems for Boolean Networks

2n ·
(

2L − 1
2L

)
where L = n

2H = n

22K+1 .
Proof. Since a constant function is assigned to each node with probability 2

H ,
the expected number of constant nodes is μ = 2n/H. Here, we use the Chernoff
bound 17), which states that the probability that the sum of independent Poisson
trails with mean value μ is less than (1 − δ)μ is less than exp(−μδ2/2). By
setting δ = 3/4, the probability that the number of constant nodes is less than
μ/4 = n/2H is

exp

(
−μ

(
3
4

)2

/2

)
= exp

(
− 9n

16H

)
.

Consider the case where the number of constant nodes is at least n/2H. We
can assume without loss of generality that the constant function 0 is assigned to
each of the first L = n/2H nodes. Then, v has no predecessors if vi = 1 holds
for at least one i in {1, 2, . . . , L}. Thus, in this case, the number of global states
having no predecessor is at least 2n ·

(
2L−1
2L

)
.

Such a case occurs with probability at least 1 − exp
(− 9n

16H

)
. Therefore, the

expected number of global states having no predecessor is at least(
1 − e−

9n
16H

)
· 2n ·

(
2L − 1

2L

)
> 2n · 2L − 2

2L

for sufficiently large n because(
1 − e−

9n
16H

)
·
(
2n/2H − 1

)
= 2n/2H − 1 + e−

9n
16H − e−

9n
16H · 2n/2H

> 2n/2H − 1 − e−
9n

16H · 2n/2H

> 2n/2H − 1 −
(

21/2

e9/16

)n/H

> 2n/2H − 2
holds for n > H. ��

Therefore, the expected number of global states having predecessors is at
most 2·2n

2L . Thus, once a global state has a predecessor, it is expected to have
2L

2
= 2(n/(2(2K+1))−1 or more predecessors.

Proposition 5.3 Suppose that for each node, K input nodes are randomly
selected and then a Boolean function is randomly selected from 22K

possible
Boolean functions. Then, once a global state has a predecessor, it is expected to
have 2n/(2(2K+1)−1) or more predecessors.

It should be noted that the above number becomes very large as n grows.
Thus, this estimation explains the reason why recursive application of BN-
PREDECESSOR does not lead to a fast algorithm for BN-CONTROL.

6. An Improved Algorithm for BN-CONTROL

As mentioned in Sections 1 and 2, BN-CONTROL is NP-hard but can be
solved in O(nM2m+n) time for BNs of bounded indegree. Though some prac-
tically faster algorithm was proposed 15), no improvement has been done on the
theoretical computational complexity. Here, we show an improved algorithm for
BN-CONTROL whose average case time complexity is O(nM2m+βn) for BNs of
bounded indegree K, where β (< 1) depends on K.

The idea of the improved algorithm is quite simple but non-trivial. As shown
in Section 5, we can assume without loss of generality that the constant function
0 is assigned to each of the first n/2H nodes with high probability. Then, we
can ignore these nodes and thus we can only consider 2n− n

2H states for internal
nodes, instead of 2n states.

As in Section 5, we let L = n/2H. For a global state v, v0 denotes the global
state defined by

[

L︷ ︸︸ ︷
0, 0, . . . , 0,vL+1,vL+2, . . . ,vn].

Then, the following proposition follows from the definition of v0.
Proposition 6.1 Suppose that the constant function 0 is assigned to each of

the first L nodes in a BN with external nodes. Then, f(v,x) = f(v0,x) holds for
all v.

Based on this proposition, we can replace D[b1, . . . , bn, t] in the original dy-
namic programming algorithm with D′[c1, . . . , cn−L, t]. For a 0-1 vecter c =
[c1, . . . , cn−L] of length n − L, we let 0 · c denote the 0-1 vector of length n

defined by

IPSJ Transactions on Bioinformatics Vol. 1 23–34 (Nov. 2008) c© 2008 Information Processing Society of Japan



32 Predecessor and Control Problems for Boolean Networks

[

L︷ ︸︸ ︷
0, 0, . . . , 0, c1, c2, . . . , cn−L].

Then, the recurrence for the improved dynamic programming algorithm is given
by:

D′[c1, . . . , cn−L, M ] =

{
1, if 0 · c = vM ,

0, otherwise,

D′[c1, . . . , cn−L, t − 1] =

⎧⎪⎨
⎪⎩

1, if there exists (a,x) such that
D′[a1, . . . , an−L, t] = 1 and 0 · a = f(0 · c,x),

0, otherwise,

It is straight-forward to see the correctness of the improved algorithm. In this
algorithm, we assumed that there exist at least L = n

2H constant nodes. However,
in some cases, we may have much smaller number of constant nodes. Thus,
when the number of constant nodes is less than n

2H , we use the original dynamic
programming algorithm. By using this combination, we have the following.

Theorem 6.2 Suppose that for each node, K input nodes are randomly
selected and then a Boolean function is randomly selected from 22K

possible
Boolean functions. Then, BN-CONTROL for bounded indegree K can be solved
in O(nM2m+(1−(1/2(2K+1)))n) time on the average.
Proof. We bound the probability P1 that the number of constant nodes is less
than n/2H (recall H = 22K

). Since a constant function is assigned to each of
n nodes with probability 2/H independently, the expected number of constant
nodes is μ = 2n/H. By setting δ = 3/4 in the Chernoff bound, we have

P1 < exp

(
−2n

H
·
(

3
4

)2

· 1
2

)
= exp

(
− 9n

16H

)
.

Therefore, the average case time complexity is bounded by

O
(
nM2m ·

(
e−

9n
16H · 2n + (1 − e−

9n
16H ) · 2n− n

2H

))
= O

(
nM2m ·

(
e−

9n
16H · 2n + 2n− n

2H

))

= O
(
nM2m2n ·

(
(e−9/16)n/H + (2−1/2)n/H

))
= O

(
nM2m2n ·

(
(2−1/2)n/H

))
= O(nM2m+(1−(1/2H))n).

��
Even for the case of K = 2, the bound given by Theorem 6.2 is O(nM2m+0.969n)

and thus the improvement is quite small. However, it is the first result (even in
the average case) that breaks O(2n) factor.

The result of Theorem 6.2 might be slightly improved by adjusting L and δ

carefully. However, the anlysis would be much harder.

7. Concluding Remarks

In this paper, we studied BN-PREDECESSOR, its variant, and BN-
CONTROL with focusing on bounded indegree cases. We showed some hardness
results, and presented simple practical algorithms for BN-PREDECESSOR. We
also analyzed distribution of predecessors, which leaded to an improved algo-
rithm for BN-CONTROL and also explained why recursive application of BN-
PREDECESSOR does not lead to a fast algorithm for BN-CONTROL. However,
BN-PREDECESSOR is still useful for BN-CONTROL since it can be used for
pre-processing. If it is found that there exists no predecessor, we can conclude
that there exists no feasible control actions leading to the desired state.

We developed algorithms for BN-PREDECESSOR, based on our previous algo-
rithms for identification of attractors 24). Though these algorithms are simple and
practical to some extent, better algorithms would be obtained by using reduction
to SAT or by using techniques employed in other methods for identification of
attractors. In particular, it might be possible to develop randomized expected
polynomial time algorithms for BN-PREDECESSOR since such algorithms are
known for K-SAT problems 1). Therefore, development of randomized expected
polynomial time algorithms for BN-PREDECESSOR is left as a future work.

We presented an improved algorithm for BN-CONTROL. However, this im-
proved algorithm is based on the assumption that all Boolean functions, which
include constant functions, are assigned uniformly at random. However, constant

IPSJ Transactions on Bioinformatics Vol. 1 23–34 (Nov. 2008) c© 2008 Information Processing Society of Japan



33 Predecessor and Control Problems for Boolean Networks

functions may not appear so frequently in real networks. Therefore, average case
analysis in more realistic situations is an important future work. Of course,
improvement of the worst case time complexity for BN-CONTROL is another
important future work.

Though BN may be too simple as a model of genetic networks, studies on BN
may provide some insights to other models. As least, negative results should
hold for more general models. Some ideas in positive results may also be useful
for designing algorithms for more general models. Therefore, extension of the
proposed algorithms for more general models is also an important future work.

Acknowledgments TA was partially supported by a Grant-in-Aid “Systems
Genomics” from MEXT and by the Cell Array Project from NEDO, Japan.
WKC was partially supported by HK RCG Grant No.7017/07P and HKU CRCG
grants. MKN was partially supported by RGC 7046/03P, 7035/04P, 7035/ 05P
and HKBU FRGs.

References

1) Achlioptas, D., Naor, A. and Peres, Y.: Rigorous location of phase transitions in
hard optimization problems, Nature, Vol.435, pp.759–764 (2005).

2) Akutsu, T., Kuhara, S., Maruyama, O. and Miyano, S.: A system for identifying
genetic networks from gene expression patterns produced by gene disruptions and
overexpressions, Genome Informatics, Vol.9, pp.151–160 (1998).

3) Akutsu, T., Hayashida, M., Ching, W-K. and Ng, M.K.: Control of Boolean net-
works: Hardness results and algorithms for tree-structured networks, J. Theoret.
Biol., Vol.244, pp.670–679 (2007).

4) Akutsu, T., Hayashida, M. and Tamura, T.: Algorithms for inference, analysis and
control of Boolean networks, Lect. Notes Comput. Sci., Vol.5147, pp.1–15 (2008).

5) Barrett, C., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns,
R.E. and Thakur, M.: Predecessor existence problems for finite discrete dynamical
systems, Theoret. Comput. Sci., Vol.386, pp.3–37 (2007).

6) Coppersmith, S.N.: Complexity of the predecessor problem in Kauffman networks,
Phys. Rev. E , Vol.75, 051108 (2007).

7) Datta, A., Choudhary, A., Bittner, M.L. and Dougherty, E.R.: External control
in Markovian genetic regulatory networks, Machine Learning , Vol.52, pp.169–191
(2003).

8) Devloo, V., Hansen, P. and Labbé, M.: Identification of all steady states in large
networks by logical analysis, Bull. Math. Biol., Vol.65, pp.1025–1051 (2003).

9) Drossel, B., Mihaljev, T. and Greil, F.: Number and length of attractors in a

critical kauffman model with connectivity one, Phys. Rev. Lett., Vol.94, 088701
(2005).

10) Garey, M.R. and Johnson, D.S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman and Co., New York (1979).

11) Garg, A., Xenarios, I., Mendoza, L. and DeMicheli, G.: An efficient method for
dynamic analysis of gene regulatory networks and in silico gene perturbation ex-
periments, Lect. Notes Bioinfomatics, Vo.4453, pp.62–76 (2007).

12) Irons, D.J.: Improving the efficiency of attractor cycle identification in Boolean
networks, Physica D , Vol.217, pp.7–21 (2006).

13) Iwama, K. and Tamaki, S.: Improved upper bounds for 3-SAT, Proc. 15th ACM-
SIAM Symp. Discrete Algoriths, pp.328–329, ACM Press (2004).

14) Kauffman, S.A.: The Origins of Order: Self-organization and Selection in Evolu-
tion, Oxford Univ. Press, New York (1993).

15) Langmead, C.J. and Jha, S.K.: Symbolic approaches for finding control strategies
in Boolean networks, Proc. 6th Asia-Pacific Bioinformatics Conference, pp.307–
319, Imperial College Press (2008).

16) Milano, M. and Roli, A.: Solving the satisfiability problem through Boolean net-
works, Lect. Notes Art. Intell., Vol.1792, pp.72–93 (2000).

17) Motwani, R. and Raghavan, P.: Randomized Algorithms, Cambridge University
Press, New York (1995).

18) Pal, R., Datta, A., Bittner, M.L. and Dougherty, E.R.: Intervention in context-
sensitive probabilistic Boolean networks, Bioinformatics, Vol.21, pp.1211–1218
(2005).

19) Pal, R., Ivanov, I., Datta, A., Bittner, M.L. and Dougherty, E.R.: Generating
Boolean networks with a prescribed attractor structure, Bioinformatics, Vol.21,
pp.4021–4025 (2005).

20) Rolf, D.: Improved bound for the PPSZ/Schöning-Algorithm for 3-SAT, J. Satis-
fiability, Boolean Modeling and Computation, Vol.1, pp.111–122 (2006).

21) Samuelsson, B. and Troein, C.: Superpolynomial growth in the number of attrac-
tors in kauffman networks, Phys. Rev. Lett., Vol.90, 098701 (2003).

22) Tamura, T. and Akutsu, T.: Detecting a singleton attractor in a Boolean network
utilizing SAT algorithms, IEICE Trans. Fundamentals., to appear.
Preliminary version has appeared as: An O(1.787n)-time algorithm for detecting a
singleton attractor in a Boolean network consisting of AND/OR nodes, Lect. Notes
Comput. Sci., Vol.4639, pp.494–505 (2007).

23) Wuensche, W.: Basins of attraction in cellular automata, Complexity, Vol.5, pp.19–
25 (2001).

24) Zhang, S-Q., Hayashida, M., Akutsu, T., Ching, W-K. and Ng, M.K.: Algorithms
for finding small attractors in Boolean networks, EURASIP J. Bioinform. Syst.
Biol., Vol.2007, 20180 (2007).

IPSJ Transactions on Bioinformatics Vol. 1 23–34 (Nov. 2008) c© 2008 Information Processing Society of Japan



34 Predecessor and Control Problems for Boolean Networks

(Received June 11, 2008)
(Accepted July 7, 2008)

(Released November 28, 2008)

(Communicated by Tetsuo Shibuya)

Tatsuya Akutsu received his M.Eng. degree in Aeronautics
in 1996 and a Dr.Eng. degree in Information Engineering in 1989
both from the University of Tokyo, Japan. From 1989 to 1994, he
was with Mechanical Engineering Laboratory, Japan. He was an
associate professor in Gunma University from 1994 to 1996 and
in Human Genome Center, the University of Tokyo from 1996 to
2001 respectively. He joined Bioinformatics Center, Institute for

Chemical Research, Kyoto University, Japan as a professor in Oct. 2001. His
research interests include bioinformatics and discrete algorithms. He is a member
of ACM, IEICE, ISCB and JSBi.

Morihiro Hayashida received his M.Sci. degree in Informa-
tion Science from the University of Tokyo in 2002 and his Ph.D.
degree in Informatics from Kyoto University in 2005. He is cur-
rently an assistant professor in Bioinformatics Center, Institute
for Chemical Research, Kyoto University. His current research
interests include issues related to protein function prediction and
bioinformatics.

Shu-Qin Zhang received her Master degree in Operations Re-
search and Control Theory from Beijing Institute of Technology,
China in 2003 and the Ph.D. degree in applied mathematics from
the University of Hong Kong, Hong Kong in 2007. She then joined
School of Mathematical Sciences, Fudan University, China as an
assistant professor. Her main research interests include bioinfor-
matics and scientific computing.

Wai-Ki Ching is a lecturer at the Department of Mathematics,
the University of Hong Kong. He obtained his B.Sc. (1991) and M.
Phil. (1994) degrees in Mathematics from the University of Hong
Kong. He then obtained his Ph.D. degree in Systems Engineering
and Engineering Management (1998) from the Chinese University
of Hong Kong. He was a visiting post-doc fellow at the Judge
Business School of the Cambridge University (1999–2000), and

was a lecturer at the University of Southampton (2000–2001). He has published
over 150 papers in refereed journals, book chapters and conference proceedings.
His research interests include data modelling, optimization algorithms, systems
engineering and bioinformatics.

Michael K. Ng is a Professor in the Department of Math-
ematics at the Hong Kong Baptist University. He obtained his
B.Sc. degree in 1990 and M.Phil. degree in 1992 at the University
of Hong Kong, and Ph.D. degree in 1995 at Chinese University
of Hong Kong. As an applied mathematician, Michael’s main
research areas include Bioinformatics, Data Mining, Operations
Research and Scientific Computing. Michael has published and

edited 5 books, published more than 160 journal papers. He has reviewed pa-
pers for more than 40 international journals. He currently serves on the editorial
boards of several international journals.

IPSJ Transactions on Bioinformatics Vol. 1 23–34 (Nov. 2008) c© 2008 Information Processing Society of Japan


