
Electronic Preprint for Journal of Information Processing Vol.26

Regular Paper

Implementation of C Library for Constructing
Packrat Parser with Statically Allocated Memory

Yuta Sugimoto1,a) AtusiMaeda1

Received: July 23, 2017, Accepted: September 28, 2017

Abstract: Packrat parsing is a recursive descent parsing method with backtracking and memoization. Parsers based
on this method require no separate lexical analyzers, and backtracking enables those parsers to handle a wide range of
complex syntactic constructs. Memoization is used to prevent exponential growth of running time, resulting in linear
time complexity at th cost of linear space consumption. In this study, we propose CPEG – a library that can be used to
write parsers using Packrat parsing in C language. This library enables programmers to describe syntactic rules in an
internal domain-specific language (DSL) which, unlike parser combinators, does not require runtime data structures
to represent syntax. Syntax rules are just expressed by plain C macros. The runtime routine does not dynamically
allocate memory regions for memoization. Instead, statically allocated arrays are used as memoization cache tables.
Therefore, programmers can implement practical parsers with CPEG, which does not depend on any specific memory
management features, requiring fixed-sized memory (except for input string). To enhance usability, a translator to
CPEG from an external DSL is provided, as well as a tuning mechanism to control memoization parameters. Pars-
ing time compared to other systems when parsing JavaScript Object Notation and Java source files are given. The
experimental results indicate that the performance of CPEG is competitive with other libraries.

Keywords: Packrat parsing, DSL, C language, parsing

1. Introduction

Packrat parsing [3] is a recursive descent parsing method that
can handle a wide variety of grammars using backtracking. To
construct parsers with this method, a notation called parsing ex-
pression grammars (PEGs) is used to describe grammars. In-
corporated memoization enables linear time parsing. Moreover,
since these parsers can execute unbounded lookahead, they do not
require separate lexical analyzers.

A domain-specific language (DSL) is a computer language de-
signed to express data and/or programs of some specific domains
using vocabulary or notations specially chosen for that purpose.
Grammar description for parsing, including PEG, can be viewed
as a DSL designed for parsing. Internal DSLs use syntactic con-
structs of a particular general-purpose programming language
(host language) to express domain-specific knowledge. Since ex-
ternal DSLs are distinct programming languages, they are not re-
stricted by the syntax of other languages, although they require
dedicated parsers.

In this paper, we propose CPEG, a C library which, by de-
scribing grammars in PEG-like notation, enables implementation
of parsers using packrat parsing. The design goals of CPEG in-
cludes brief and lightweight implementation of the library and in-
dependence from memory-management schemes, which ensures
incorporation into a wide range of C programs. The core of CPEG

1 Department of Computer Science, Graduate School of Systems and In-
formation Engineering, University of Tsukuba, Tsukuba, Ibaraki 305–
0006, Japan

a) sugimoto@ialab.cs.tsukuba.ac.jp

itself does not require a dynamic memory-allocation library such
as malloc. However, all the input text must be accessed as a
single array, by reading into the buffer or being mapped to the
buffer in advance. To restrict total memory usage including input
strings, the grammar must be tweaked to prevent backtracking
and/or the size of input must be bounded. This is a limitation
common to any parser relying on PEG.

2. Background

2.1 Parsing Expression Grammar
Parsing expression grammar [4] is a recognition-based formal

grammar. In PEG, grammar rules are expressed in the form
N ← e, where N is a nonterminal and e is a parsing expression.
Parsing expressions are summarized in Table 1.

Unlike context-free grammars, PEG is characterized by or-
dered choice operator /, which prioritizes alternatives. In parsing
expression e1/e2, e1 is attempted first, and if it failed, the parser
then backtracks and attempts e2. In this way, ambiguity is elimi-
nated and the parser always derives a unique result.

Also, and-predicate &e and not-predicate !e enable unbounded
lookahead without consuming input. In LL(k) or LR(k) grammar,
the number of lookahead symbols are bounded; thus, parsers us-
ing them generally require lexical analyzers to split an input string
into tokens. In contrast, the PEG-based parsing algorithm does
not require separate lexical analyzers.

2.2 Packrat Parsing
Packrat parsing is a recursive descent parsing method that rec-

ognizes input based on grammars described in PEG. Generally,

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 1 Parsing expression.

empty string : ε
literal string : “a”
nonterminal : N
concatenation : e1e2

ordered choice : e1/e2

zero or more repetition : e∗
and-predicate : &e
not-predicate : !e

parsers using this method associate a grammar rule N ← e with
a function that receives an input string and attempts to match the
string with e. The matching result is represented as the remaining
portion of the input string after the match (and optionally seman-
tic value). Choice operator ‘/’ is implemented using backtrack-
ing. The result of this function is memoized to enable linear-time
parsing.

In the most naive form of implementation, a memoization ta-
ble occupies a storage size proportional to the product of the input
size and number of nonterminals. Many studies have focused on
reducing the size of a memoization table (Refs. [7], [11], [13],
[14], [19], [20]).

2.3 DSLs for Parsing
We now summarize the common implementation techniques

of parsers or parser generators from the viewpoint of grammar
description as a DSL.
2.3.1 Parser Combinators

Some parsing libraries for languages, such as C++ or Haskell,
exploit a kind of internal DSL called a parser combinator, which
has a set of primitive parsers implemented as first-class func-
tions or objects and combinators to compose complex parsers.
Popular parser combinator libraries include Boost.Spirit [8] and
cpp-peglib [9] for C++, and parsec [12] for Haskell. They pro-
vide simple parsers that correspond to terminals and nontermi-
nals, with constructors that correspond to operators in grammar
rules, which can be used to describe grammar rules in terms of
expression of host languages to implement parsers. Generally,
debugging of parsers rely on debugging functionalities of host
languages.
2.3.2 Parser Generators

There are numerous systems called parser generators includ-
ing Yet Another Compiler-Compiler (yacc) [10] developed on
Unix in the 1970s, Bison [6], which is upward compatible to yacc,
and many others ([7], [16], [18]). A parser generator translates in-
put files that describe grammar rules written in notation specially
designed for that purpose, and outputs parser programs in source
code of languages such as C or Java.

The notation for an input file of a parser-generator system can
be regarded as an external DSL that has its own syntax, which
differs from general-purpose programming languages, but opti-
mized for the very purpose of writing parsers. Users, however,
must learn new grammar and how to use those tools that are not
familiar to them.

3. Proposed Library

Our CPEG can be used to construct parsers by writing grammar
rules in some internal DSLs hosted by C and closely correspond-

Table 2 Parsing expression and CPEG macros.

Meaning Parsing expression Macros
empty string ε EMPTY()

any character . ANY()

literal character ‘a’ CHAR(’a’)

literal string “abc” STR("abc")

concatenation e1e2 . . . SEQ(e1, e2, ...)

ordered choice e1/e2/ . . . ALT(e1, e2, ...)

zero or more e∗ REPEAT0(e)

one or more e+ REPEAT1(e)

option e? OPTION(e)

and-predicate &e ANDPRE(e)

not-predicate !e NOTPRE(e)

ing to PEG.
The design goal of CPEG is to be simple, predictable, and ef-

ficient in implementation. The goal also includes independence
from memory-management schemes (e.g., malloc). As described
later, since memoization tables do not depend on any memory-
management schemes, it is relatively easy to put a bound on
memory usage (if grammars and/or input string length are prop-
erly limited) or incorporate specific memory-management sys-
tems such as garbage collectors.

3.1 Defining Grammar Rules
To write parsers using CPEG, users define functions (parsing

functions) that correspond to nonterminals that appear on the left-
hand side of grammar rules, and write grammar descriptions us-
ing parsing expressions.

To define parsing expressions, macros BEGIN RULE, END RULE
are used as

BEGIN_RULE(nontermina}) {

parsing expression;

} END_RULE

The BEGIN RULE macro is expanded into a function header and
prologue part which include the definition of a memoization ta-
ble and code to check whether input is already memoized. The
END RULE is expanded into an epilogue that stores the results of
parsing for the rule into the memoization table.

3.2 Writing Down Parsing Expressions Using CPEG
Each element of a parsing expression corresponds to macros

in CPEG, as listed in Table 2. Concatenation (SEQ) and ordered
choice (ALT) can be simple macros with two arguments, but we
implemented them to accept a variable (up to ten) number of ar-
guments for convenience.

The following global variables are used for parsing.
input a pointer that points to the head of input text (which is a

null-terminated string array).
pos an integer variable used to indicate the current position in

the input. input[pos] means character at position pos in
input.

val a semantic value is assigned to this variable after parsing.
failed true if parsing failed, false if succeeded.

The body of the rule surrounded by BEGIN RULE and END RULE
may include arbitrary C code if it does not affect the value of the
variables above. In the following, we define the macros that cor-
respond to each PEG element. In either case, pos does not change
when parsing fails.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

EMPTY: EMPTY is a parsing expression that matches an empty
string. It always succeeds and never changes pos.

ANY: matches any character. Succeeds unless pos is past the
end of input and advances pos by one.

CHAR: succeeds when argument character matches
input[pos], and advances pos by one.

SEQ: represents the concatenation of parsing expressions. Ar-
gument expressions are executed in order. It succeeds only
if all of arguments succeed. If one of them fails, the whole
SEQ expression fails, and poswill be rolled back to the point
before SEQ is entered.

STR: if an argument string matches the input, pos will be ad-
vanced by the length of the string. The STR("c1c2 . . . cn")

has the same meaning as SEQ(CHAR(’c1’), CHAR(’c1’),

· · ·, CHAR(’cn’)).
ALT: the first argument expression is executed and if it suc-

ceeds, the whole ALT expression succeeds. If failed, next
argument is tried. If all expression fails, the whole ALT ex-
pression fails

REPEAT0: represents repetition of zero or more times and
takes any parsing expression as an argument. It is executed
until it fails. The REPEAT0 always succeeds.

REPEAT1: REPEAT1(e) represents repetition of one or more
times. It is the same as SEQ(e, REPEAT0(e)).

OPTION: OPTION(e) represents an optional expression. It is
the same as ALT(e, EMPTY()).

ANDPRE: represents an and-predicate and takes any parsing
expression e. If execution of e succeeds, ANDPRE also suc-
ceeds; otherwise, ANDPRE fails. In either case, pos does not
advance.

NOTPRE: represents a not-predicate and takes any parsing ex-
pression as an argument. If it succeeds, NOTPRE fails; oth-
erwise, NOTPRE succeeds. In either case, pos does not ad-
vance.

CHARSET: if input character is included in the argument,
which is a set of characters (in type cpeg charset t, de-
scribed later), it advances pos by one.

3.3 Literal Strings and Character Sets
In principle, a combination of literal characters CHAR(c) and

concatenation SEQ(e1, e2, . . .) is sufficient to express a gram-
mar rule matching a string. Also, CHAR(c) and ALT(e1, e2, . . .)

can express a rule matching any element in a set of characters
(charset). However, this is rather cumbersome, so for conve-
nience, we provide notations for literal strings and charsets, as
in many other implementations.
3.3.1 Literal Strings

The macro STR represents an expression that succeeds when
its argument matches the string starting from input[pos] and
increases pos by the length of the string.

Figure 1 illustrates an example of grammar description using
STR. A rather complicated combination of SEQ and CHAR can be
rewritten to be a concise expression with STR.
3.3.2 Character Sets

In many variants of PEG, notation [c1c2 · · · cn] (where
c1c2 · · · cn are arbitrary characters) is used to abbreviate a parsing

Fig. 1 Example of STR.

Fig. 2 Grammar of additive-multiplicative expressions.

Fig. 3 Code to parse additive-multiplicative expression.

expression ‘c1’ / ‘c2’/ · · · /‘cn’. In other words, the notation repre-
sents an expression that succeeds if and only if an element of the
charset c1, c2, . . . , cn matches the next input character. Also, no-
tation [c1–c2] represents a parsing expression that succeeds when
the next input character is an element of the charset that have a
character code greater than or equal to c1 and less than or equal
to c2.

Our CPEG provides macro CHARSET(s), which takes a value
of type cpeg charset t representing a charset, and denotes a
matching to an element of that set. (Since the library assumes
the 8-bit character set JIS X0201 for the input text to CPEG, type
cpeg charset t is implemented as a flag array of size 256.)

The following functions initialize the variables of
cpeg charset t.
cs simple(set, ch) Add ch to a charset set.
cs range(set, ch1, ch2) Add all characters from ch1 to ch2

into a charset set.
cs union(set, base set) Add all the characters in the given

charset base set to another charset set.
cs complement(set) Change a charset set to the complement

of the charset set.
Figure 3 shows an example of using charset. This CPEG code

implements the PEG for parsing additive and multiplicative ex-
pressions of decimal numbers (Fig. 2).

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 4 C macro definition for concatenation (two-arg version).

Fig. 5 C macro definition for ordered choice (two-arg version).

In the first line of Fig. 3, file cpeglib.h, in which macros and
data types are defined, is included. After that, rule names are
declared using the DECLARE RULES macro, which is expanded
into function prototypes. In the main function, the character set
digit is initialized and the start symbol E is called to execute the
parsing process.

3.4 Library Implementation Based on Macros
In the design of CPEG, we decided to use C macros for writing

a PEG-based parsing expression because
(1) macros do not require any dynamically allocated memory to

express grammar rules,
(2) relatively fast execution will be achieved, and
(3) C code for actions and semantic predicates can be inserted

in grammars.
When a set of grammar rules is expressed by data structures of

the host language, as in parser combinators where objects for ter-
minals and nonterminals are combined with operators to compose
complex grammar rules, dynamic memory allocation is required
in general to construct grammar rules at runtime. In CPEG, how-
ever, grammar rules are described by C macros and expanded into
C code at compile time, eliminating the need of dynamic memory
allocation for grammar rules.

In addition, since grammar rules are expressed in a control
structure in C language instead of data structures interpreted at
runtime, the execution speed would be faster.

The core definition for SEQ, concatenation of parsing expres-
sions, is shown in Fig. 4. The STMT macro is an idiom used to
define macros consisting of multiple statements [21]. Also, the
core part of the ordered choice (ALT) is defined in Fig. 5.

Including arguments e1, e2 of these macros and the macros
themselves, all parsing expressions obey the protocol that “if suc-
ceeded, set failed to false and assign the parsing result (the se-
mantic value) to val; otherwise, reset pos to the previous value
and set failed to true.” Although the expansion introduces a
number of assignments to failed and conditional branches on

Fig. 6 Code for calculating additive-multiplicative expression.

Fig. 7 Semantic predicate example.

the value of failed, most of them are eliminated by optimiza-
tion with the C compiler.

An arbitrary expression or statement can be written as e1, e2
in the macros above, as far as it does not violate the protocol.

Figure 6 shows the code to parse and calculate additive-
multiplicative expression of the grammar in Fig. 2. Before includ-
ing file cpeglib.h, a semantic value type CPEG VALUE TYPE is
defined as int. In the grammar rules, semantic values are calcu-
lated by copying the previous value of val and setting val to the
result of addition or multiplication of the value.

The value of val can be examined in C code and reflected
to the value of fail, effectively implementing semantic pred-

icate [17], which uses the result of semantic analysis to direct
parsing behavior.

Figure 7 shows the code that successfully parses a string com-
posed of ’a’ and ’b’ only when the number of ’a’ is greater
than or equal to that of ’b’. Using this feature, programmers can
write a grammar rule that succeeds only if a given identifier is
registered in the symbol table, for example.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 8 Structure of memoization-table entry.

3.5 Implementation of Memoization Table
As mentioned earlier, CPEG maps each nonterminal into a C

function. In our methodology, the memoization table is allocated
statically as a static storage local to the corresponding C func-
tion. This static allocation not only eliminates the overhead of
dynamic allocation, but also it is necessary to achieve our design
goal that CPEG does not depend on memory-allocation functions
such as malloc.

The size of memoization tables is fixed at compile time and
can be specified by CPEG MEMO SIZE (the default value is 256
entries). Each entry of those tables contains the following three
fields (Fig. 8):
frompos: the value of pos where parsing started.
topos: the value of pos where parsing finished. When parsing

was failed, FAIL(−1) is assigned to.
v: the value of val (meaningful only if parsing succeeded).

Since memoization tables have a fixed size, some parsing
results may not be memoized if the input is very large. In
CPEG, a memoization table is treated as a cache of a true

memoization table, and entries are accessed through an index
pos%CPEG MEMO SIZE. If the frompos field of that entry is equal
to pos, then the access is considered as a hit. In that case, if
topos is FAIL, the table reveals that the parsing attempt already
failed for the rule at pos and the parser can immediately return
from the function after setting failed to true. Otherwise, the
parser changes pos to topos, sets val to the value in the v field,
and returns.

In the miss case, i.e., frompos of the entry at the index
pos%CPEG MEMO SIZE is not pos, the right-hand side of the rule
is executed and the result is stored in the entry of the table. When
the entire function succeeded, the value of pos at the time the
function is called is stored in frompos, the value of pos at the
end of parsing is stored in topos, and the semantic value val is
stored in v. When parsing failed, the value of pos at the time
the function is called is stored in frompos and FAIL is stored in
topos. In either case, the old values in the entry are overwritten.
Initially, the frompos of the entry at index zero is set to NO POS,
which is a negative value, to avoid a wrong cache hit.

This implementation technique can be considered as a simpli-
fied version of the elastic sliding window [11]. In our technique,
the memory size for memoization can be bounded to a constant
value, but the linear execution time is not theoretically guaran-
teed since the parser may recalculate a previously recorded value,
which was overwritten by the result for another position, which
corresponds to the cache line replaced with the value of a dif-
ferent memory address. However, the recalculation only affects
computational cost, not the correctness of the result. Also, a very
small cache size has been reported to be sufficient in practice to
achieve reasonable performance ([11], [19], [20]).

Figure 9 shows the definition of the PROLOGUEmacro, which is

Fig. 9 C macro definition for PROLOGUE.

Fig. 10 C macro definition for EPILOGUE.

included in BEGIN RULE described in Section 3.1, and the defini-
tion of the other macros referred from PROLOGUE. The memoiza-
tion table for a nonterminal is statically declared and initialized
in MEMO TABLE. When the function corresponding to a nontermi-
nal is invoked, the entry corresponding to pos is examined. If
the cache access hits, the function immediately returns the mem-
oized value (MEMO CHECK). Otherwise, the body of the function is
executed after the index of the entry where EPILOGUE stores the
result is assigned to first pos.

The definition of the EPILOGUE macro is shown in Fig. 10.
This macro is included in END RULE and it implements the mem-
oization mechanism together with PROLOGUE. First, firstpos,
the position where parsing started, is stored in the frompos field
of the memoization table entry. If the parsing fails, assign FAIL
into topos field. Otherwise, assign pos and val into topos and
v, respectively.

When the macro CPEG DO MEMOIZE is undefined or defined as
a constant zero, then PROLOGUE and EPILOGUE are replaced with
empty macros that effectively do nothing.

3.6 External DSL Support
Since it is fairly straightforward to translate PEG into the

CPEG internal DSL, only a little effort is required to learn the
CPEG notation. Still, the syntactic restriction of C macros makes
grammar description somewhat redundant. To improve produc-
tivity in writing a large set of grammar rules, and to promote the
reuse of grammar rules written for other PEG-based systems, we
implemented a tool that generate a C source program using the
CPEG notation from an external DSL closer to PEG.

This tool supports the Mouse [18] grammar description format
as its input file (excluding actions). The Java parser used in the
experiments discussed in Section 4 was automatically translated
by this tool into CPEG (Fig. 12) from the Java 1.7 grammar rules
distributed together with Mouse (Fig. 11).

Using this tool, a programmer can first generate a skeleton

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 11 Excerpt of Java 1.7 grammar in the Mouse format.

Fig. 12 CPEG translated from Java 1.7 grammar (excerpt).

CPEG parser from relatively short grammar description. Then
she can add her own semantic actions to the output so that she
can easily build a large parser.

3.7 Profiling and Tuning Memoization Performance
In CPEG, the size of a memoization table (measured in number

of entries) for each function is fixed at runtime. Because of this
design decision, the parsing is not guaranteed to terminate in lin-
ear time. Our CPEG provides a scheme to modify the table size

Fig. 13 Grammar with extreme backtracking.

Table 3 Memoization performance for extremely backtracking grammar.

Memoization-table size E miss/call P miss/call
No memo 32,767/32,767 81,918/81,918

1 15/29 29/31
16 15/29 22/31

256 15/29 15/31
1,024 15/29 15/31

if necessary. Although a larger table size does not guarantee lin-
ear time-complexity for unbounded input size, a huge table size
is rarely required in practice. In fact, Refs. [19] and [20] showed
that it is sufficient to reserve just two linearly searched cache en-
tries per each nonterminal to eliminate most occurrences of back-
tracking when parsing source code in C and Java. Also, Ref. [11]
reported that, even for an input that exhibits a relatively bad be-
havior with maximum backtrack distance of 247 kB (JQuery), a
memoization table with only 32 entries, which is accessed using
a modulo operation like ours, is practically sufficient.

These studies also reported that there are a number of nonter-
minals for which memoization tables never hit. Memoization is
completely useless for them.

In CPEG, the size of a memoization table can be changed by
defining CPEG MEMO SIZE, which can be redefined for each func-
tion by combining #undef and #define.

To disable memoization, the macro CPEG DO MEMOIZE is de-
fined to zero. Doing this suppresses all array declarations and
read/write accesses of memoization tables. If memoization is not
effective or desirable, this feature saves memory and reduces ex-
ecution time. Since this macro can also be redefined, a program-
mer can control whether each function is to be memoized or not
on a per-function basis.
CPEG DO COUNT is a simple support for measuring memoiza-

tion performance for each nonterminal. By setting this to a non-
zero value, the BEGIN RULE(N)macro additionally declares vari-
ables cpeg N called and cpeg N missed, both of which are of
type long and record the number of invocations of N and the num-
ber of times probing into the memoization table of N is missed,
respectively. Currently, programmers must manually write the
code for printing the values of these variables.

Table 3 shows the measured counts for the parser generated
from a grammar artificially designed to cause an extremely large
number of backtracking (Fig. 13), with input string “1+1+· · ·+1”
(29 characters long, containing 15 ’1’ characters and 14 ’+’
characters). During the measurement, we changed the table size
for memoization. The results suggest that memoization is effec-
tive for both nonterminals E and P. The table with one entry is
sufficient for E, and 16 entries may be insufficient (the perfor-
mance may be improved when more entries are available) for P.

The hit rates for all the nonterminals were zero when the in-
put was parsed by the JavaScript Object Notation (JSON) parser
written using CPEG for the experiments in Section 4. The mem-
oization was totally unnecessary in that case. Table 4 shows the
call count and hit rate of the memoization table for nonterminals

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 4 Hit rate of memoization table for Java 1.7.

Nonterminal Call count Hit rate [%]
LetterOrDigit 17,262,258 1.75
DOT 8,453,728 72.71
Spacing 6,325,628 0.11
Digits 4,314,321 66.13
LPAR 4,171,972 36.25
Identifier 3,447,671 20.46
AT 3,442,313 66.84
LBRK 2,926,624 25.72
HexNumeral 2,870,238 49.70
INC 2,762,779 0.02
DEC 2,751,926 0.02
Keyword 2,742,373 0.00
PLUS 2,734,821 0.02
MINUS 2,698,830 0.02
Letter 2,507,360 0.00

of the Java parser written in CPEG when it parsed JDK 1.7 source
code. The table lists the first ten nonterminals in the order of call
count. The size of the memoization table was the default 256
entries. A nonterminal with a high call count and low (zero or al-
most zero) hit rate may be a good candidate for performance tun-
ing since turning memoization off for such a nonterminal would
probably make a parser run faster.

4. Performance Evaluation

In this section, we evaluate the execution speed of CPEG in a
practical situation. Here, a recognizer is a program that parses an
input string and determines accept or reject, but does not create
any data structures such as parse trees. A parser is a program
that parses an input string and computes some semantic values
including parse trees.

The computing environment used for the experiments was
shown in Table 5. Unless otherwise noted, we measured user
CPU time as execution time. For all experiments, we repeated
program execution ten times after one warm-up run. We show
the average execution time of ten executions (or a scatter plot of
ten execution times).

4.1 JSON Parser
We implemented recognizers for JSON [2] using CPEG and

other libraries and compared their execution time when the same
JSON text is given as input.

For input, we used the largest dataset (citys) in the JSON Se-
rialization Benchmarks [1], and more complex data set (repos).
The size of citys is 2.5 MB, and that of repos is 342 kB. Each of
data sets was duplicated and concatenated several times to build
larger input files since both of them are too small to reliably mea-
sure execution time.

We compared the parser written using CPEG to the ones gen-
erated by Bison and Flex (shown Bison in graph) and the parser
written using cpp-peglib [9], which is a PEG library for C++. Al-
though there could be a room for improvement since no back-
tracking occurs for the JSON parser written in CPEG as described
in Section 3.7, we used the default CPEG parameter settings
(memoization enabled, 256 memoization table entries).

We show the measured results for citys in Fig. 14, and those
for repos in Fig. 15. Our CPEG performed better than the other
implementations.

Table 5 Experimental Environment.

CPU: 1.6 GHz Intel Core i5
OS: OS X El Capitan ver.10.11.4
Memory: 8 GiB 1600 MHz DDR3
C compiler: gcc ver.4.2.1
C compiler option: -O3
JDK version: 1.8.0 131

Fig. 14 JSON(citys).

Fig. 15 JSON(repos).

4.2 Java Parser
Figure 16 illustrates the measured results of the Java parsers.

In the graph, MOUSE indicates the result of a recognizer gen-
erated by Mouse from the Java 1.7 grammar file distributed as
a sample file with Mouse, Cpeg indicates a recognizer generated
from the same grammar file converted to C code using CPEG, and
Xtc indicates a parser generated using Rats! [7] and distributed as
a part of the xtc compiler, which accepts Java 1.7 source code.
The source files of JDK 1.7 (contents of jdk1.7.0 75.src.zip)
are used as input. The graph shows user CPU time when the first
100, 200, . . ., and 1,000 input files were given to the parsers in
the order displayed by find dir -name ’*.java’.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 16 Java parsers (user CPU time).

Fig. 17 Java parsers (real-time excl. VM startup).

Fig. 18 Java parser (CPEG only, up to 7,000 files).

Since the start symbol of Java grammar is a compilation unit,
i.e., one file, all the parsers were reinvoked whenever starting
to parse a new file. Hence, the user CPU time for Mouse and
xtc include the startup time of the Java virtual machine (VM),
which occupies a significant portion of the measured time. Since
Mouse and xtc have facilities to measure only the parsing time,
excluding the VM startup time, we also conducted the experi-
ment by using these features. Figure 17 shows the results of
Mouse with the -t option given to the mouse.TryParser class

Fig. 19 Parsing time relative to memoization-table size.

Fig. 20 Cache hit rate relative to memoization-table size.

and the results of xtc with the -performance -measureParser
-java7 -ast option given to the xtc.lang.Java class. The
numbers indicates the real-time for parsing, measured using
System.currentTimeMillis(). These times are much shorter
than user CPU time including VM startup. For CPEG, the figure
shows the real-time of the entire execution of the parser. Note
that xtc is a parser that constructs parse trees, while the other two
are recognizers.

We did not specially tune CPEG. We used the default mem-
oization parameters. The experiments showed that CPEG ran
faster than Mouse and xtc although the implementation languages
differ.

There are 7,448 files in the JDK 1.7 source distribution. How-
ever, we used only up to 1,000 of them for measuring Mouse and
xtc (repeated ten times for each size) due to time limitation. Fig-
ure 18 shows the results of CPEG (both user CPU time and real
time) for up to 7,000 files. It reveals that there is no particular
bias for the first 1,000 files.

Figure 19 illustrates the parsing time of the Java recognizer
written using CPEG relative to the size of the memoization table

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

(in terms of number of entries). The graph shows the average
parsing time and the interval of ±1SD (standard deviation). The
parsing time was measured by using 1,000 Java files for input, as
in the previous experiments. As mentioned in Section 3.7, the ac-
cesses to the memoization table hits for only several nonterminals
in Java parsers. However, from Fig. 19, we could draw no clear
relation between the size of the memoization table and the pars-
ing time. The performance benefit obtained by a larger table size
is not supposed to be significant compared to other factors and/or
fluctuations. One hypothesis is that the parser may show lower
locality of references with a larger table size. To verify this, we
used Ref. [15] and measured the hit rate of the L2 and L3 caches
of the CPU. The results are shown in Fig. 20. Again, we could
find no clear relation.

5. Conclusion

We proposed CPEG, a C library for writing parsers, which ex-
ploits the macro facility of C language to describe grammar rules
(unlike parser combinators, in which grammar rules are dynami-
cally allocated as runtime data structures), and statically allocate
tables for memoization. As a result, CPEG does not rely on any
specific memory-management schemes and can be easily used to
implement parsers in a wide range of C programs *1.

Our comparison between our library and other existing li-
braries with respect to the parsing time of JSON and Java source
files justifies the performance of CPEG is not slower than the
other libraries.

5.1 Related Work
There are parser combinator libraries for C++ that support

PEG [5], [9]. These libraries have a number of advantages such
as collision avoidance by namespaces, expressiveness by operator
overloading, and flexible but safe use of data types by parametric
types. However, some developers might find CPEG preferable
since it supports C instead of C++ and does not require any dy-
namic allocation, which is in common with most parser combina-
tors, but requires only statically allocated memory.

Implementation of memoization tables using forms of ring
buffers or sliding windows are already known [11], [13], [14].
CPEG differs from the existing systems in that it does not dy-
namically resize tables, it relies solely on static-memory man-
agement, and its implementation is very simple. In particular,
if CPEG MEMO SIZE is a power of two, highly efficient code will
be generated for modulo operation because of the optimization
by the C compiler. Consequently, the overhead of memoization
would be minimal in CPEG.

Mouse [18] also uses a fixed-size cache for memoization.
Based on the observation that the backtracking due to PEG can
be reduced by a small number of the entries (the authors re-
ported that two entries are sufficient), Mouse generates PEG-
based parsers that use zero (no memoization) to 9 *2 cache en-
tries. In pathological cases such as those shown in 3.7, such a
small number of entries may not be sufficient.

*1 The source code is published at https://github.com/ialab/cpeglib/.
*2 Note that the entries do not form a ring buffer nor a modulo-indexed

array. They are linearly searched. The input position is a search key.

Kuramitsu [11] argued that since it is difficult to intuitively pre-
dict whether a nonterminal requires memoization, dynamic adap-
tation is preferable. In some practical cases, however, the be-
havior is predictable from the statistics obtained from a number
of test cases. In those cases, eliminating memoization before-
hand will reduce overheads better than dynamically detecting the
need for memoization. The existence of such cases (and how fre-
quently if exist) is a question that requires further study.

5.2 Future Prospect
Grammar-specific debugging functionality would provide bet-

ter supports than typical C debuggers to find and correct erro-
neous grammar description. It could greatly help easily imple-
ment parsers. Also, a user-friendly interface for performance
measurement is needed.

Because of the redundancy of the relatively low-level notation
of CPEG, we provided a translator tool from our external DSL
based on the Mouse format. This tool serves as a good exam-
ple to show the practicality of CPEG. It is an interesting idea to
use CPEG as a target of translation from other higher-level DSLs
since this approach preserves the advantages of CPEG while en-
abling further functionality and ease of grammar description.

Acknowledgments The authors would like to thank Profes-
sor Shigeru Chiba, University of Tokyo, for his constructive com-
ments to the draft of the paper.

References

[1] Bloschetsov, A.: JSON Serialization Benchmarks (online), available
from 〈https://github.com/bura/json-benchmarks〉 (accessed 2017-06-
24).

[2] ECMA: ECMA-404: The JSON Data Interchange Format, ECMA In-
ternational (online), available from
〈http://www.ecma-international.org/publications/files/ECMA-ST/
ECMA-404.pdf〉 (accessed 2017-06-22).

[3] Ford, B.: Packrat Parsing: Simple, Powerful, Lazy, Linear Time,
Functional Pearl, Proc. 7th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’02, New York, NY, USA, pp.36–
47, ACM (online), DOI: 10.1145/581478.581483 (2002).

[4] Ford, B.: Parsing Expression Grammars: A Recognition-based Syn-
tactic Foundation, Proc. 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’04, New York,
NY, USA, pp.111–122, ACM (online), DOI: 10.1145/964001.964011
(2004).

[5] Frey, D.: Taocpp/PEGTL: Parsing Expression Grammar Template Li-
brary (online), available from 〈https://github.com/taocpp/PEGTL〉
(accessed 2017-06-24).

[6] FSF: GNU Bison – The Yacc-compatible Parser Generator, Free Soft-
ware Foundation (online), available from 〈https://www.gnu.org/
software/bison/manual/〉 (accessed 2017-06-22).

[7] Grimm, R.: Better Extensibility Through Modular Syntax, Proc. 27th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’06, New York, NY, USA, pp.38–51, ACM
(online), DOI: 10.1145/1133981.1133987 (2006).

[8] Guzman, J.D.: Home of The Boost.Spirit Library (online), available
from 〈http://boost-spirit.com/home/〉 (accessed 2017-06-23).

[9] Hirose, Y.: C++11 Header-Only PEG (Parsing Expression Grammars)
Library (online), available from 〈https://github.com/yhirose/
cpp-peglib〉 (accessed 2017-06-23).

[10] Johnson, S.C.: Yacc: Yet Another Compiler-Compiler, UNIX Pro-
grammer’s Manual, Vol.2, Bell Telephone Laboratories, 7th edition,
pp.353–387 (1978).

[11] Kuramitsu, K.: Packrat Parsing with Elastic Sliding Window, Journal
of Information Processing, Vol.23, No.4, pp.505–512 (online),
DOI: 10.2197/ipsjjip.23.505 (2015).

[12] Leijen, D. and Meijer, E.: Parsec: Direct Style Monadic Parser Com-
binators for the Real World, Technical Report UU-CS-2001-35, De-
partement of Computer Science, Universiteit Utrecht (2001).

[13] Mizushima, K., Maeda, A. and Yamaguchi, Y.: Packrat Parsers Can

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Handle Practical Grammars in Mostly Constant Space, Proc. 9th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Soft-
ware Tools and Engineering, PASTE ’10, New York, NY, USA, pp.29–
36, ACM (online), DOI: 10.1145/1806672.1806679 (2010).

[14] Mizushima, K., Maeda, A. and Yamaguchi, Y.: A Space Complexity
Calculation Method of Optimized Packrat Parsers, Information Pro-
cessing Society of Japan Transactions on Programming (PRO), Vol.4,
No.2, pp.77–91 (online), available from 〈http://ci.nii.ac.jp/naid/
110008616678/〉 (2011).

[15] opcm: Processor Counter Monitor (PCM) (accessed 2017-06-25).
[16] Parr, T. and Fisher, K.: LL(*): The Foundation of the ANTLR Parser

Generator, Proc. 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, New York, NY,
USA, pp.425–436, ACM (online), DOI: 10.1145/1993498.1993548
(2011).

[17] Parr, T.J. and Quong, R.W.: Adding Semantic and Syntactic Predi-
cates to LL(k): Pred-LL(k), Computational Complexity, pp.263–277,
Springer-Verlag (1994).

[18] Redziejowski, R.R.: Mouse: From Parsing Expressions to a Practi-
cal Parser (online), available from 〈http://www.romanredz.se/Mouse/〉
(accessed 2017-06-24).

[19] Redziejowski, R.R.: Parsing Expression Grammar As a Primitive
Recursive-Descent Parser with Backtracking, Fundam. Inf., Vol.79,
No.3-4, pp.513–524 (online), available from
〈http://dl.acm.org/citation.cfm?id=1366071.1366090〉 (2007).

[20] Redziejowski, R.R.: Some Aspects of Parsing Expression Grammar,
Fundam. Inf., Vol.85, No.1-4, pp.441–451 (online), available from
〈http://dl.acm.org/citation.cfm?id=2365896.2365924〉 (2008).

[21] SEI-CERT: SEI CERT C Coding Standard, Software Engineering In-
stitute, Carnnegie Mellon University (online), available from
〈https://www.securecoding.cert.org/confluence/display/c/〉 (accessed
2017-06-24).

Yuta Sugimoto graduated from the Col-
lege of Information Science, University
of Tsukuba in 2017. He is currently a
student in the Master’s program in Com-
puter Science, Graduate School of Sys-
tems and Information Engineering, Uni-
versity of Tsukuba. His research interest
is parsing of programming languages.

Atusi Maeda received his Ph.D. in engi-
neering from Keio University. He became
a research associate at The University of
Electro-Communications in 1997. He is
currently an associate professor at the Fac-
ulty of Engineering, Information and Sys-
tems, University of Tsukuba. His research
interests include implementation of pro-

gramming languages, runtime systems, and dynamic resource
management. He is a member of ACM and JSSST.

c© 2018 Information Processing Society of Japan

