
Electronic Preprint for Journal of Information Processing Vol.26

Regular Paper

Improvement of a Library for Model Checking
under Weakly Ordered Memory Model with SPIN

KosukeMatsumoto1,a) Tomoharu Ugawa1,b) Tatsuya Abe2,c)

Received: July 23, 2017, Accepted: October 1, 2017

Abstract: Modern multi-core CPUs might execute memory access instructions of programs out-of-order. However,
the SPIN model checker does not check out-of-order executions: it only checks in-order executions. We have devel-
oped a library for SPIN that enables checking such out-of-order executions with respect to two memory models, the
total store ordering (TSO) and the partial store ordering (PSO). This library provides models of variables shared with
multiple threads (shared variables), and read and write macros to access them. Nevertheless, this library has three
problems. First, although SPIN accepts Linear Temporal Logic (LTL) formulas, which are used for representing prop-
erties to be checked such as safety and liveness, our library did not support LTL formulas referring to shared variables.
Secondly, guard statements, which are often used for blocking threads while a guard is not executable, cannot refer
to shared variables. Finally, the user was unable to specify initial values of shared variables, but they are initialized
with zero. As presented herein, we improved the library to resolve these problems. We produced models using our
improved library and investigated the library performance.

Keywords: SPIN, memory model, LTL, model checking

1. Introduction

The model checker SPIN is used for checking programs [7].
When we use SPIN, we make a model that models behavior of
the program such as its operations on variables and conditional
branches. The model is written in the Promela language, which
is similar to procedural languages and has a sequential execution
semantics. Then SPIN generates an automaton from the model
and checks all the states exhaustively if they satisfy the property
that we want to check.

In model checking, SPIN checks the executions in which in-
structions are executed in the order described in the program.
However, modern multi-core CPUs might complete instructions
following to a memory access instruction before the preceding
instruction is completed if they are independent of the preceding
instruction. When memory access instructions of a thread in a
multi-thread program are completed in a different order from that
of the program, another thread might observe as if the memory
access instructions are executed in a different order from that of
the program. Therefore, it is insufficient to check only those exe-
cutions in which instructions are executed in the order described
in the program. Conditions under which a CPU might complete
the subsequent instruction before completion of the preceding in-
struction are defined in the memory consistency model (memory
model) of the CPU. Memory models are different among CPUs.
For model checking of a multi-thread program, it is necessary to

1 Kochi University of Technology, Kami, Kochi 782–0003, Japan
2 Software Technology and Artificial Intelligence Research Laboratory,

Chiba Institute of Technology, Narashino, Chiba 275–0016, Japan
a) matsumoto@pl.info.kochi-tech.ac.jp
b) ugawa.tomoharu@kochi-tech.ac.jp
c) abet@stair.center

check every execution according to the memory models. How-
ever, it is an error-prone task to produce a model that simulates
all the executions that satisfy the memory model because such a
model tends to be complicated.

To facilitate modeling, we developed a library that enables
SPIN to check executions of multi-thread programs respecting
the order of completions of reads and writes to the variables that
might be accessed by multiple threads (shared variable) under
memory models [13]. The library provides a model of shared
variables and macros for reading from and writing to the shared
variables from the model that the user makes. Using this library,
the user can produce a model to check all the possible execu-
tion orders according to the memory model with a similar effort
to making a model that disregards the memory model. Macros
provided by the library are used for reading from and writing to
shared variables. WRITE is a macro for writing a value of the sec-
ond argument to the shared variable specified by the first argu-
ment. For example, WRITE(x, 1) writes one to shared variable
x. READ reads a value of the shared variable specified by the first
argument and stores it to the local variable specified by the sec-
ond argument. For example, READ(x, r) stores the value of the
shared variable x to the local variable r.

The library has three problems. First, linear temporal logic
(LTL) formulas denoting properties to be checked cannot refer to
shared variables. LTL formulas are useful to express time related
properties such as safety and liveness of a program. SPIN allows
the users to express the properties with LTL formulas that refer
to variables in the model and the point of execution, i.e., the pro-
gram counters, of each process. For example, the LTL formula
[] (want0 == 1 -> <> t0@CS)

denotes the property by which it always holds that, if shared vari-

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

able want0 becomes one, then process t0 eventually reaches la-
bel CS. This is the liveness property for the model of the Peter-
son’s mutual exclusion algorithm presented in Section 2. How-
ever, the users cannot use the above LTL formula with the library
because the model must read a value of shared variable to a local
variable using READ to use the value.

Secondly, guard statements cannot refer to shared variables.
Promela has a construct called a guard statement to block thread
execution until a condition is satisfied. Using guards simplifies
models and reduces the number of states to be explored by model
checking. For example, the guard used in Fig. 2 in Section 2
(turn == 0 || want1 == 0)

briefly expresses the behavior by which the thread is blocked until
the property of turn == 0 || want1 == 0 is satisfied. How-
ever, the guard statement above cannot be used together with the
library because of the same reason as the first problem. The
model must read a value of shared variable to a local variable
by using READ to use the value. Therefore, the guard above must
be rewritten to a loop polling the shared variable as followings:
do

::true -> atomic {
READ(turn, x);

READ(want1, y);

if

::(x == 0 || y == 0) -> break;

::else -> skip;

fi;

}
od;

Such a rewriting is sometimes difficult if guards are used as con-
ditions of non-deterministic choices.

Thirdly, the user cannot initialize a shared variable with a spe-
cific value. WRITE is the only way to write to the shared variables
provided by the library. However, it can only be used in user-
defined processes (see Section 4 for details). Therefore, no way
exists to initialize the shared variables before invoking the first
user-defined process. Shared variables are initialized with zero
according to the specification of Promela.

In this research, we improved the library to solve these prob-
lems *1. The improved library is superior to existing model check-
ers that check executions according to memory models [3], [15],
[16], [17] in the following respects: Models with this library have
high readability, the properties can be expressed with LTL, and
the models with this library are lightweight.

In the remainder of this paper, we first explain the SPIN model
checker (Section 2), the memory model (Section 3), and the li-
brary before improvement (Section 4) as preliminaries. Subse-
quently, we improve the library to solve the problem described
in this section (Section 5), implement the improved library, and
evaluate the performance of the improved library (Section 6). Ad-
ditionally, we refer to related work of model checking that deals
with memory models and LTL formulas (Section 7). Finally, we
discuss a summary of this paper and future work (Section 8).

*1 This library and the model used for this research are published at
https://github.com/plasklab/mmlib.

2. SPIN

The SPIN model checker is an automatic verification tool
that checks hardware, software and protocol based on the model
checking method [7].

2.1 Model Checking
Model checking is a formal method that exhaustively checks

the states of the model devoting attention to behavior in which
the state of checking target changes [6]. For example, when we
check a program, we produce a model that models behavior of
the program such as its operations on variables and conditional
branches. We check all the states that are values of variables that
can be taken when executed on the computer, the execution posi-
tion of the program and so on exhaustively. A model to check us-
ing SPIN is made by describing the program and the property we
want to check in Promela. After producing such a model, then the
SPIN checks exhaustively if the property that we want to check
is satisfied at all the states. Generally, the model checking has a
defect by which they can handle only targets of checking that fit
in a finite state. For example, SPIN cannot check executions for
arbitrary natural numbers. Furthermore, a defect exists by which
the number of states to be checked increases exponentially as the
model expands. Consequently, when producing a model, the in-
genuity to suppress the number of states is important.

2.2 Promela
Promela has syntax like C, and we can use the macros of C.

It is suitable for model description of multi-thread program and
has a construct to describe process corresponding to the thread.
Statements written in each process are interleaved with the state-
ments of other processes and are executed in the described order.
In Promela, an expression delimited by “;” or “->” is treated as
a statement. Every statement in the model is evaluated to true or
false. False statements are not executed. This process is desig-
nated as blocking, which means that the execution of the process
stopped by a false statement is not executed.

As an example, we model a program in C of the Peterson’s
mutual exclusion algorithm shown in Fig. 1 with Promela. First,
we explain the program of Fig. 1. The global variables want0
and want1 in Fig. 1 are the flags. Each flag informs the other
thread that the thread t0 and t1 are about to enter the critical
section. The global variable turn expresses the thread that can
preferentially enter the critical section at that point. First, for t0
to enter the critical section, t0 notifies the other thread that t0 is
about to enter the critical section by setting want0 to one. Next,
t0manipulates turn so that the other thread preferentially enters
the critical section. Then, t0 waits until want1 becomes zero or
turn becomes zero by manipulation of the other thread. If con-
ditions are satisfied, t0 exits the wait state and enters the critical
section. Finally, when t0 leaves the critical section, t0 informs
the other thread of this fact by setting want0 to zero. Figure 2 is a
model of Fig. 1. In Promela, we describe a process corresponding
to a thread by using the keyword proctype. In addition, an init
process that is executed before the user-defined process is useful.
The user-defined process is executed with the run instruction as

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 1 Mutual exclusion program using Peterson’s algorithm in C.

Fig. 2 Promela model for the program in Fig. 1.

in line 21 *2. The range enclosed by atomic { } in lines 20–23
is executed as a group of instructions and is not interleaved as far
as it can be executed. The repetition is described between do and
od. However, the wait state of Fig. 1 by while is modeled using
the blocking statement of line 6 of Fig. 2. A statement described
as a condition for executing the following statement, such as line
6, is called a guard. Although not used in Fig. 2, the conditional
branch is written between if and fi as follows. The statement
followed by “->” is executed if the guard after “::” is true.
if

::(x == 0) -> x = 1;

::(y == 0) -> y = 1;

fi;

The statement following one of the guards is executed nonde-
terministically if more than one guard gets true simultaneously.
However, if all statements following “::” are false, then the pro-
cess is blocked. In Promela, in addition to integer type variables,

*2 We can also describe a process that starts automatically with the keyword
active proctype, but it is not addressed in this research.

channel type variables are prepared. They can be treated as FIFO
queues. Furthermore, it is possible to describe a label for use in
an LTL formula or the like. For example, we can describe a label
such as CS: as line 11.

2.3 How to Describe the Properties
SPIN has two methods to describe properties that models

should satisfy. One is to use assert statements. The other is
to use LTL formulas.

In the former method, we insert a statement assert(ψ) at
an arbitrary place in a model where the formula ψ is defined as
presented below:

ψ� � | P | ¬ψ | ψ ∨ ψ

where � denotes a propositional constant denoting truth. P is
a propositional variable that is available in SPIN, for example,
equations (==) or inequation (<) between variables and immedi-
ate values. For additional details, see Ref. [7]. A formula ¬ψ
denotes the negation. A formula ψ0 ∨ ψ1 denotes the disjunction
of ψ0 and ψ1. The conjunction and implication are abbreviations
using them.

SPIN does nothing if a formula is satisfied at the place in a
model and halts with an error otherwise *3.

Although an assert statement matters whether the argument
formula is satisfied at the place, an LTL formula represents a tem-
poral property (about the present and future) such that, for a given
property, the truth value of the property is eventually satisfied.
LTL formulas ϕ are defined as

ϕ� � | P | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ .

A formula Xϕ denotes that ϕ is satisfied at the next state. A
formula ϕ0 U ϕ1 denotes that ϕ0 is satisfied until ϕ1 is satisfied,
and ϕ1 is eventually satisfied. We define the following notation,
for convenience:

�ϕ ≡ � U ϕ

�ϕ ≡ ¬�¬ϕ .

Formulas �ϕ and �ϕ denote that ϕ is eventually satisfied and
that ϕ is always satisfied.

We define semantics for LTL formulas. A set of execution
paths that SPIN explores can be regarded as a transition sys-
tem. We define the transition system as a Kripke model M =
〈M,R, val〉, i.e., M is a set of states, R is a relation on M, val

is a function from the set of propositional variables to the set of
subsets of M. We define a path π on M as a (finite or infinite)
sequence of M, where any adjacent pair is related by R. A state
π(i) denotes the i-th state of π where π(0) is the first state of π.
We write πi as the suffix of π starting at i. We define satisfiability
of an LTL formula ϕ by a path π onM as

M, π � � ⇐⇒ true

M, π � P⇐⇒ π(0) ∈ val(P)

M, π � ¬ϕ⇐⇒ M, π � ϕ
*3 Although we can run SPIN without being stopped even if an error is

detected, we do not address that case in this paper.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

M, π � ϕ0 ∨ ϕ1 ⇐⇒ M, π � ϕ0 orM, π � ϕ1

M, π � Xϕ⇐⇒ M, π1 � ϕ

M, π � ϕ0 U ϕ1 ⇐⇒ M, π j � ϕ1 for some j ∈ N,
andM, πi � ϕ0 for any i < j .

By definition,

M, π � �ϕ⇐⇒ M, πi � ϕ for some i ∈ N
M, π � �ϕ⇐⇒ M, πi � ϕ for any i ∈ N

hold. We write M,m0 � ϕ if M, π � ϕ is satisfied for any path π
with a starting state is m0 ∈ M onM.

In Promela, the implication, �, and � are denoted by ->, <>,
and [].

In Fig. 2, a liveness property is shown by which if want0 ==
1 is satisfied, then it always holds that the line at t0@CS is even-
tually processed. That is denoted as
[](want0 == 1 -> <> t0@CS) .

Given an LTL formula that represent a property to be verified,
SPIN translates the negation of the LTL formula into a special
process called a never process *4. A never process runs indepen-
dently of other processes. If the negation of the LTL formula
is satisfied, then the Büchi automaton corresponding to the never
process entries a loop including acceptance states, and SPIN halts
with an error.

3. Memory Model

Modern multi-core CPUs might complete instructions follow-
ing a memory access instruction before the preceding instruction
completes if they are independent of the preceding instruction.
As a result, each thread might observe a sequence of memory
access instruction executed by another thread as if the thread ex-
ecuted the instructions in a different order from the program in
multi-thread programs. The conditions under which a CPU might
complete the subsequent instruction before completion of the pre-
ceding instruction are defined in the memory model of the CPU.
Memory models are different from CPU to CPU.

In this research, we consider write instructions (Stores) and
read instructions (Loads). Here, we write A→ B when a thread
executes memory access instructions A and B in this order. The
four possible execution orders of two memory access instructions
are Store→Store, Store→Load, Load→Store, and Load→Load.
In this research, we regard a memory model as a definition spec-
ifying whether a CPU might complete the subsequent instruction
before completion of the preceding instruction for each of the
above four execution orders when its two memory access instruc-
tions access different memory addresses. When a sequence of
memory access instructions executed by a thread might be ob-
served by another thread as if the instructions were executed in a
different order, we say that the execution order is relaxed.

An architecture that has a memory model with some relaxed
execution orders might yield different results than those a user
expected. Such an architecture provides a fence instruction that
forces an execution order of memory access instructions. By
inserting the fence instruction, the memory access instructions

*4 Another method is to insert the LTL formula in a Promela model.

Fig. 3 Example of program that can yield different results in SC and TSO.

preceding the fence are always complete before the subsequent
memory access instructions to the fence.

In this research, we discuss three memory models: sequen-
tial consistency (SC) [10], total store ordering (TSO) [4], and par-
tial store ordering (PSO) [4]. In SC, any execution order is not
relaxed. In TSO, only execution order Store→Load is relaxed.
In PSO, Store→Store is relaxed as is Store→Load. Figure 3
presents an example of a program that can yield different re-
sults when executed under SC and TSO. In Fig. 3, Store(x, 1)
writes one to memory address x. Load(y, eax) reads the value
from memory address y and stores it in the eax register. For ex-
ample, if thread A reads zero from y on the second line, then
thread B always reads one from x on the second line in SC. In
TSO, however, thread B might read zero because execution order
Store→Load is relaxed.

4. Previous Version of Library

In this section, we explain the previous version of the library.
We improve this library in Section 5.

The library provides a model of shared variables and macros
for reading from and writing to the shared variables according to
memory models. The models that the users write are intended to
access shared variables by using these macros. It happens only
through the shared variables that a thread observes the effect of
the memory model. It observes that the CPU completes memory
access instructions in a different order from that of the program.
Consequently, a model incorporating the memory model merely
requires properly modeled shared variables and methods of ac-
cessing it. For local variables, which are unaffected by the mem-
ory model, the models that the users write are intended to access
them in the standard manner in Promela. In the remainder of this
paper, we refer to a model written by the user as a user model.
We also refer to a process defined by the user except for init in
user models as a user process.

The library deals with SC, TSO, and PSO. Under these mem-
ory models, only the execution orders of memory access instruc-
tions Store→Load and Store→Store can be relaxed. Both of these
execution orders allow succeeding memory access instructions to
be completed before the preceding Store. Consequently, to model
memory access instructions according to these memory models,
some mechanism is necessary that might defer reflection of the
result of a Store instruction to memory until the results of the
subsequent memory access instruction are reflected. The library
realizes the behavior according to TSO and PSO using the store

buffers and the memory process. The library uses the store buffer

to hold the information of Stores executed by a user process. The
memory process is a special process to reflect the contents of the
store buffer to memory. We must also consider that the instruc-
tions that a thread observes as if they were executed in a differ-
ent order from the program are those that are executed by other
threads. In other words, a thread can load the value stored by

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

itself immediately. To realize this, the library uses the copy of

shared memory for each thread that records the information of
Stores executed by the thread. When a thread reads a variable
written by the Store executed by the thread, and when the Store
has not been reflected to shared memory, it reads from the copy
of shared memory rather than shared memory.

In this design, the memory process cannot function while a
user process is executing an atomic block. A case in which the
store buffer becomes full and the user process blocks is an ex-
ception. Therefore Stores are not reflected to shared memory un-
til the process leaves the atomic block. However, the execution
where Stores in the store buffer are reflected to the shared mem-
ory during the execution of the atomic block would yield the same
result as the execution where those Stores are reflected immedi-
ately after the atomic block because 1) the user process executing
the atomic block can load the Stores executed by itself without
referring shared memory, and 2) other user processes cannot run.

The users of the library must give parameters, such as the num-
bers of user processes and shared variables appear in the user
model, to the library. More specifically, the users must define the
following three parameters as macros before including the library
in the user model: the number of user processes (PROCSIZE), the
number of shared variables (VARSIZE) and the size of the store
buffers (BUFFSIZE). We must be aware of the risk that we cannot
check some cases because BUFFSIZE works as a limitation on
the number of Stores that can be relaxed simultaneously. Giving
correct parameters is responsible to the library users.

The macros provided by the library are listed below. The
macros expect the memory address instead of a shared vari-
able because shared variables are modeled as memory addresses,
which are integers between zero and VARSIZE − 1.
WRITE(a, v)

performs a Store according to the memory model. a is the
memory address to which the value v is written.

READ(a, x)

performs a Load according to the memory model. a is the
memory address from which a value is read, and the value is
stored to the local variable x.

FENCE()

performs a fence operation.
Real CPUs provide atomic memory access instructions such as a
compare-and-swap (CAS) instructions in addition to these three
instructions. Although this library does not provide macros cor-
responding to such instructions, some of them can be realized by
combining the provided macros. For example, the CAS instruc-
tion of SPARC TSO can be realized by a combination of READ,
WRITE and FENCE macros in an atomic block of Promela.

This library is implemented as explained below.
The library implements the set of shared variables as an array

for every memory models.
For SC, WRITE writes to a shared variable and READ reads from

it in the same manner as a standard array access in Promela.
FENCE does nothing.

In TSO, WRITE can be reflected to memory after the subsequent
READ because execution order Store→Load is relaxed. Conse-
quently, the library uses the memory process, the store buffers,

Fig. 4 Implementation of WRITE macro for TSO.

Fig. 5 Implementation of READ macro for TSO.

which are managed in a FIFO manner, the copies of shared mem-
ory, and the counters to count the Stores for each shared vari-
able stored in the store buffer. A store buffer, a copy of shared
memory, and counters are provided for each user process. They
are arranged in arrays that are indexed by the process ID of each
user process. The memory process executes the following steps
atomically to reflect the Stores of each user process to the shared
variables.
(1) The memory process selects a user process nondeterministi-

cally and fetches the least recent Store from it.
(2) The memory process reflects the Store fetched in step (1) to

the shared variable.
(3) The memory process decrements the counter that belongs to

the user process selected in step (1) and which corresponds
to the shared variable to which the Store is reflected in step
(2).

WRITE executes the followings atomically as shown in Fig. 4.
• WRITE inserts a pair of the memory address and the value

to be written, both of which are given as its parameters, to
the store buffer (queue) of the user process that is executing
WRITE.

• WRITEwrites the value to be written to the copy of the shared
variable (buffer) corresponding to the memory address.

• WRITE increments the counter (counter) corresponding to
the memory address.

In Fig. 4, pid is the process ID that is executing WRITE, s is the
memory address, and v is the value to be written. As shown in
Fig. 5, READ atomically
• reads the value from either the shared variable

(shared memory) indexed by the memory address given as
a parameter or the copy of it, depending on the contents of
the store buffer of the user process that is executing READ,
and

• writes it to the local variable specified by the parameter.
Because the memory process reflects the contents of the store
buffer to the shared variable while interleaving with the user pro-
cess, the preceding Store can be reflected to the shared variable
after the subsequent Load is executed as a result of interleaving.
Therefore, Store→Load is relaxed. FENCE immediately reflects

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 6 Implementation of WRITE macro for PSO.

Fig. 7 Implementation of READ macro for PSO.

all of the store buffer contents to the shared variable.
In PSO, execution order Store→Store is relaxed: WRITE might

be reflected to memory after the subsequent memory access in-
struction. Consequently, a store buffer is provided for each user
process and each shared variable. WRITE inserts only the value to
be written to the store buffer corresponding to the target shared
variable among the store buffers corresponding to the process ID
of the user process, as presented in Fig. 6. In Fig. 6, gcounter
is a counter that counts the total number of Stores held in the
store buffer. For READ, unlike TSO in which READ refers to the
counter to count the Stores stored in the store buffer, the len func-
tion is used to obtain the length of the channel. Consequently,
PSO does not need the counters as shown in Fig. 7. FENCE is
the same as TSO. Because separate store buffers are provided for
each shared variable, the preceding Store may be reflected to the
shared variable after a subsequent Store is reflected by interleav-
ing if these two Stores write to different shared variables. There-
fore, Store→Store is relaxed. Store→Load is relaxed for the same
reason as TSO.

In the remainder of this section, we describe the use of macros
provided by the library.

Figure 8 is a similar model to that of Fig. 2 in which global
variables and processes t0 are modified to use the library. Lines
from 1–3 define macros for the parameters. Because two pro-
cesses exist, t0 and t1, PROCSIZE is defined as two. Be-
cause three shared variables are used, want0, want1 and turn,
VARSIZE is defined as three. BUFFSIZE is defined as three be-
cause the number of writes to the same shared variable in any pro-
cess is three at most. The following lines, lines 4–6, are macros
for improving the model readability. These macro definitions al-
low the user to address shared variables as intuitively as the user
model without this library because shared variables are modeled
as integers from zero to VARSIZE− 1. The file tso.h included in
line 7 is the library. This file is for checking executions accord-
ing to TSO. From the line 8 onward is the model in which writing
and reading accessing shared variables are modified to use macros
provided by the library. Lines 8–10 of Fig. 2 were rewritten to a
model that includes repetition as lines 14–24 of Fig. 8, because
we cannot describe guards referring to shared variables with this

Fig. 8 Part of Promela model with the library of the previous version for a
mutual exclusion program using Peterson’s algorithm.

library in the same manner as we can do in Promela without this
library.

5. Improve Library

The library has two restrictions. First, the model must read a
value of a shared variable to a local variable using READ to use
the value. For example, the user cannot refer directly to a value
of a shared variable in expressions. Secondly, the user can use
WRITE and READ only in the user process, because both are im-
plemented such that they are dependent on the process ID of the
executed process. For example, it cannot be used in an init pro-
cess or in an LTL formula. In this section, we extend the library
to provide new macros that can solve problems arising from these
restrictions.

When the user writes an expression referring to the value of
a shared variable, it is necessary to store the shared variable in
a local variable and evaluates the expression incorporating the
local variable. However, because each process is executed while
interleaving, even if the value of the shared variable is read imme-
diately before evaluating the expression, it is not necessarily the
latest value when evaluating the expression. Therefore, the user
cannot use the guard referring to the shared variable in the user
model as it is when using the library. It is necessary to rewrite the
user model as shown in lines 14–24 of Fig. 8. Therefore, for this
research, we provide a new READ, which directly returns a value
of a shared variable instead of the previous READ, which stores a
value of a shared variable in the local variable. The new READ
macro makes it possible to refer the shared variable from a guard
because of this. In this research, we provide a new READ macro
as explained below.
READ(s)

performs a Load according to the memory model and returns
the value of the shared variable s.

Because shared variables are managed by this library, the user
needs to use WRITE to write a value to a shared variable. How-

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

ever, WRITE is useful only in the user process although an initial
value of a shared variable must be set before executing the user
process. As a result, the initial value of the shared variable be-
comes zero according to the specification of Promela. Therefore,
this research provides a macro for setting initial values as follows,
so that shared variables can be initialized in the init process.
INIT(s, v)

sets the initial value of the shared variable s to v.
This macro writes directly to the array of shared variables without
going through the store buffer.

When performing a check using an LTL formula, the LTL for-
mula cannot refer to shared variables because READ of the pre-
vious version cannot refer directly to shared variables. Further-
more, an LTL formula that refers to a shared variable cannot be
described even if a new READ is used because READ depends on
the process ID of the user process that executes READ. Therefore,
this research makes it possible to refer shared variables from an
LTL formula by providing a dedicated macro GSVAR. However,
the value of memory observable for each process might be dif-
ferent depending on the memory model. Consequently, in this
research, in addition to the GSVAR macro, which refers to a value
of a shared variable reflected in the shared memory, we also pro-
vide the SVAR macro, which refers to a value of a shared variable
observable from a certain process, as follows.
GSVAR(s)

returns the value of the shared variable s.
SVAR(p, s)

returns the value of the shared variable s that are observed
from the user process p.

If we prepare a process that does not write to any shared variables
at all, then the result of SVAR executed by that process will always
be the same as GSVAR. However, this research provides a mech-
anism to refer to the value of each shared variable as a GSVAR
macro, because the process prepared for the realization of GSVAR
is a useless process, and is irrelevant to the user model.

Below, we describe the implementation and usage of this newly
provided macro.

5.1 Guard Macro
In this section, we describe the implementation and usage of a

new READ, which directly returns the value of the shared variable
to refer to the shared variable from the guard.

SC requires no special ingenuity. The new READ is imple-
mented in the way that a value of the shared variable of the argu-
ment is returned in the normal manner. For TSO, we implemented
READ as follows. If a Store targeting the same shared variable as
the argument of READ does not exist in the store buffer corre-
sponding to the process ID of the process that executed READ,
then READ returns the value of the shared variable; otherwise
READ returns the value of the copy of shared memory correspond-
ing to the process ID of the executed process, as shown in Fig. 9.
For PSO, we implemented READ as follows. If the store buffer
corresponding to the same shared variable as the argument of
READ among the store buffers corresponding to the process ID
of the process that executed READ is empty, then READ returns the
value of the shared variable; otherwise READ returns the value of

Fig. 9 Implementation of new READ macro for TSO.

Fig. 10 Implementation of new WRITE macro for TSO.

the copy of shared memory corresponding to the process ID of
the executed process.

With previous version library, the user uses READ to read the
value of shared variable x to local variable a as shown below.
READ(x, a);

The new READ is used as shown below.
a = READ(x);

Using the new READ, the user can model the wait state includ-
ing the repetition as lines 14–24 of Fig. 8 with one statement as
follows, so that it does not include repetition.
(READ(turn) == 0 || READ(want1) == 0);

The new READmight be used in the second argument of WRITE
to return the value of the shared variable directly. A problem
arises when READ that reads the variable to which WRITE is writ-
ing is used as the second argument of WRITE because the loca-
tion to be read with READ changes between when storing the read
value in the store buffer and when storing it in a copy of shared
memory in the implementation of WRITE for TSO shown in Fig. 4.
Therefore, we changed the implementation of WRITE to store the
second argument in the local variable at the beginning as shown
in Fig. 10. We changed PSO in the same way.

5.2 Macros to Refer to Shared Variables from LTL Formula
In this section, we describe the implementation and usage of

GSVAR and SVAR to refer to the value of the shared variable from
an LTL formula.
5.2.1 Implementation

SC requires no special ingenuity. The GSVAR and SVAR are im-
plemented in the way that a value of the shared variable of the
argument is returned in the normal manner. Specifically, GSVAR
is implemented to return the value of the shared variable of the
argument. Also, SVAR is implemented to return the value of the
shared variable specified as the second argument, irrespective of
the process specified by the first argument.

For TSO, it is noteworthy that the contents written by each pro-
cess are accumulated in the store buffer for each process. GSVAR
is implemented to return the value of the shared variable of the
argument, irrespective of the store buffer counters. SVAR is im-
plemented such that if the Store targeting the same shared vari-
able as the second argument does not exist in the store buffer cor-
responding to the process ID specified by the first argument, it

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 11 Implementation of SVAR macro for TSO.

returns the value of the shared variable. Otherwise, returns the
value of the copy of shared memory of the process specified by
the first argument, as shown in Fig. 11. It is worth noting that we
can refer to the process ID of a specific process by an expression
ProcessName: pid in Promela.

PSO is also defined in the same way as TSO.
5.2.2 Usage

When referring to the value of a shared variable in an LTL for-
mula, it is necessary to devote attention to whether the referred
value is the value held by the shared variable or the value of the
shared variable observed from a process. These might be differ-
ent in TSO and PSO. For example, the user wants to check that
whenever the shared variable want0 becomes one, it eventually
returns to zero and the block of the following statement of process
t1 in line 14 in the model of Fig. 2 is released.
(turn == 1 || want0 == 0);

In that case, because it is important how the value of the shared
variable is observed from the process t1, the user should use
SVAR as shown below.
[](SVAR(t1, want0) == 1 ->

<>SVAR(t1, want0) == 0)

If there is a process that does not appear in the model of Fig. 2,
and the user is interested in the change in the value of the shared
variable want0 observed from that process, the user should use
GSVAR to check the value of the shared variable directly as the
following example.
[](GSVAR(want0) == 1 ->

<>GSVAR(want0) == 0)

Incidentally, the initial value of the variable becomes zero
when not specifying the initial value in Promela. In this research,
we provide INIT to set the initial value of the shared variable, but
the value of the shared variable remains zero until the user sets the
initial value with INIT. Therefore, for example, an LTL formula
such as <>(GSVAR(x) == 0) is satisfied in the initial state. Con-
sequently, the user cannot check it correctly. However, if the user
changes the user model and the LTL formula so that the initial-
ization is completed explicitly, then such a property can also be
checked. For example, a method of introducing a flag exists, in-
dicating that model initialization has been completed as a normal
global variable. The flag is manipulated at the position where ini-
tialization of the shared variable in the init process is completed.
In this method, the user introduces the global variable flag as a
flag and manipulates the flag as follows.
flag = 1; flag = 0;

Let m0 be the state where the flag is set after initialization. Such
a state is only one state. In addition, transform the LTL formula
ϕ as shown below.

� (flag→ ϕ)

We prove that the original LTL formula ϕ and its translation

� (flag→ ϕ) are equivalent in a sense.
LetM = 〈M,R, val〉 andM′ = 〈M′,R′, val′〉 be Kripke models

where m0 ∈ M and val(flag) = ∅, and

m′0 � M M′ = M ∪ {m′0}
R′ = R ∪ {〈m′0,m0〉} val′(flag) = {m0}
val′(p) \ {m′0} = val(p) for any p � flag .

Lemma 1. Assume that ϕ does not contain flag, then M, π � ϕ
is equivalent toM′, π � ϕ.

Proof. By induction on ϕ. �

Proposition 2. Assume that ϕ does not contain flag. Then,

M,m0 � ϕ is equivalent toM′,m′0 � � (flag→ ϕ).

Proof. Assume that M,m0 � ϕ. Let π be a path for which the
starting state is m′0 onM′. Because π has the prefix m′0m0, π1 is a
path with starting state m0 onM. Therefore,M, π1 � ϕ holds.

By definition,

M′, π � � (flag→ ϕ)

⇐⇒ M′, πi � flag→ ϕ for any i ∈ N
⇐⇒ M′, π1 � flag→ ϕ andM′, πi � flag→ ϕ for any i � 1

⇐⇒ M′, π1 � ϕ .

Because M′, π1 � ϕ is equivalent to M, π1 � ϕ by Lemma 1,
M′,m′0 � � (flag→ ϕ) holds.

LettingM,m0 � ϕ, by definition, there exists a path π for which
the starting state is m0 on M such that M, π � ϕ. By Lemma 1,
M′, π � ϕ holds. Because m0 ∈ val′(flag), M′, π � flag → ϕ

holds. Because the super-sequence of π with the prefix m′0 (de-
noted by m′0π) is a path on M′, M′,m′0π � � (flag→ ϕ) holds.
Therefore,M′,m′0 � � (flag→ ϕ) holds. �

Those not managed by the library such as global variables other
than shared variables, local variables, and labels are referred to in
the LTL formula in the same way as plain Promela, as described
in Section 2.3.

5.3 Validity of Modeling
Our library uses the store buffers and copies of the shared vari-

ables to model TSO and PSO. This is a standard approach to
produce an operational models of memory models. In fact, ear-
lier work often uses a similar modeling to explain memory mod-
els [12], [16]. In this section, we explain that the modeling of
our library is valid by presenting correspondence to the modeling
explained by Travkin et al. [16].

Travkin et al. explained the TSO and PSO memory models as
models in which each process has one or more store buffers. Their

store buffer behaves as a cache as well as a FIFO queue to defer
reflecting writes. Unlike real caches, however, the cache is not
guaranteed to be consistent with shared memory and store buffers
of other processes. Writes performed by using a process (write

operations) are cached in the store buffer. The process occasion-
ally flushes the store buffer (flush operation) to reflect the writes.
In their semantics, a single flush operation reflects only the oldest
write to shared memory. A Read performed by using a process
(read operation) reads from shared memory only when the value
of the variable from which the process is reading is not cached in

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

the store buffer. The fence operation forces the flush operations to
empty the store buffer.

Our library realizes two roles of their store buffer with separate
mechanisms: a role as a FIFO queue to defer reflecting writes and
a role as a cache. The former is realized with Promela’s channels
(we call these channels the store buffers) and a memory process.
The latter is realized with the copies of shared variables. Another
difference is that the memory process reflects writes in our library
while user processes perform the flush operations nondeterminis-
tically by themselves to reflect writes in the model of Travkin et
al. Nevertheless, they are fundamentally the same because the
operation to reflect a single write is an atomic one. For that rea-
son the result of model checking is unaffected by who performs
it.

The write and fence operations of Travkin et al. correspond re-
spectively to our WRITE and FENCE macros. The semantics of
read operation of Travkin et al. is the same as the READ macro
in the previous library. The read operation copies the value of a
shared variable to a local variable given as a parameter. Strictly
speaking, the read operation does not correspond to the READ
macro of the new library. However, the new READ can emulate
the read operation as the following example, which reads shared
variable x to local variable a.

a = READ(x);

As long as the users use the READ macro in this manner, our li-
brary behaves under the memory model of TSO and PSO that
Travkin et al. modeled.

Even when the users use the READmacro in a different manner,
the behavior of our library does not deviate from the TSO and
PSO of Travkin et al. For example, the statement
WRITE(x, READ(y)),

where the READ macro is used as a parameter for a WRITE, the
macro behaves as the same as
atomic{tmp = READ(y); WRITE(x, tmp)}

because the WRITE macro saves the result of the READ macro into
a temporary local variable inside it. It then uses the temporary
variable in the write operation as we described in Section 5.1.
Therefore, the behavior of our library does not deviate from the
TSO and PSO described by Travkin et al. For the case in which
the users use the READmacro in a guard statement, our library also
behaves within the TSO and PSO of Travkin et al. For example,
a model that uses a guard
(READ(x) == 0)

checks those execution traces of the model that is obtainable by
replacing the above guard with
atomic{tmp = READ(x); (tmp == 0)}

that has READ(x) yielding zero. From this discussion, the mod-
eling of our library corresponds to the modeling of TSO and PSO
explained by Travkin et al.

6. Experiment

We investigated whether the library was implemented cor-
rectly. We also checked whether the library was able to check
models correctly using LTL formulas referring shared variables
and evaluated its performance.

We investigated it in the same way as in Ref. [13]. Specifi-

cally, we investigated using the test program collection (x86-TSO
litmus test) [14] to ascertain whether it conforms to the mem-
ory model of x86-TSO. The x86-TSO litmus test contains the
programs, possible results, and unexpected results when execut-
ing those programs under x86-TSO. We investigated whether the
TSO model of the library matches the expected result of the x86-
TSO litmus test. We also investigated correctness of the PSO
model of the library by comparing the results with the execu-
tion results of McSPIN [3], which is a model checker considering
memory models. As a result, we obtained the expected result in
all tests.

In the following sections, we discuss the results of the inves-
tigation of whether the model checking using the LTL formulas
can be performed correctly. Then we present the performance of
the library.

6.1 Methodology
To investigate whether the user can perform checks correctly

using LTL formulas and to evaluate the library performance, we
used some of the models described in Refs. [5] and [11]. From
Ref. [5], we used models that uses LTL formulas and whose re-
sults are stated, as shown in Table 1. However, because the
library handles only integer shared variables, we excluded one
model that uses channel-type shared variables. The “Model
name” column represents the place described in Ref. [5]. Of
the models presented in Table 1, Question 2.1 and 3.7 are mod-
els we used because they used LTL formulas to check liveness
and safety. From Ref. [11], we used the models of mutual ex-
clusion algorithms for two processes, as presented in Table 2.
The “Model name” column represents the algorithm names. In
Ref. [11], when checking executions according to TSO and PSO
of each model, the position in which the fence instruction should
be inserted for mutual exclusion to work property is indicated
clearly. Therefore, the models presented in Table 2 hold safety.
These models include reading of shared variables, guards that re-
fer to shared variables, and setting initial values of shared vari-
ables.

Whether or not the macro referring to the shared variable from
LTL formulas behaves correctly was judged by comparison with
the checked results described in Ref. [5] and by ensuring that the
property of liveness and safety hold for the model of Ref. [11].

Section 3.5.2, Question 3.1, Question 3.7 and Dijkstra are mod-
els for which initial values other than zero must be set for shared
variables. The correctness of INIT was investigated using these
models. The performance was evaluated in terms of memory us-
age (the number of bytes used to represent one state multiplied
by the number of states) and the execution time.

The models in Table 1 and Table 2 were checked using LTL
formulas. For model checking without the library of the mod-
els in Table 1, we used the original model described in Ref. [5].
When the models in Table 2 using the library, we checked the
model written in plain Promela. For model checking with the li-
brary, we checked the models that we produced by modifying the
models in Table 1 and Table 2 to use the library.

Following the name in the “Model name” column in Table 1
and Table 2, we described (L) if we checked liveness and (S) if

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 1 Results of model checking for models in a textbook on model checking.

Result

Document SC TSO PSO

Execution time Execution time Execution time Execution time
Model name Memory (KB) (s) Memory (KB) (s) Memory (KB) (s) Memory (KB) (s)

Section 3.5.2 46.5 0 129.6 0 4210.4 0.02 4991.5 0.02

Exercise 2.2 0.2 0 0.3 0.01 24.9 0.07 26.1 0.07

Question 2.1 (L) 1.7 0 5.0 0.11 130.6 0.02 1914.0 0.02

Question 2.1 (S) 2.7 0 2.5 0.02 5.3 0.13 8.8 0.13

Question 3.1 0.8 0 1.8 0 1477.4 0.01 >47 GB >42.6

Question 3.3 1.9 0 2.3 0 150.0 0.07 146.3 0.07

Question 3.7 (L) 1.5 0 2.0 0 251.6 0.13 176.4 0.13

Question 3.7 (S) 0.8 0 1.1 0.03 36.9 0.06 25.9 0.06

Table 2 Results of model checking for correct running under the memory models.

Result

Document SC TSO PSO

Execution time Execution time Execution time Execution time
Model name Memory (KB) (s) Memory (KB) (s) Memory (KB) (s) Memory (KB) (s)

Burns (L) 5.8 0 5.8 0 719.3 0.03 710.5 0.03

Burns (S) 2.9 0 2.9 0 369.0 0 364.5 0

Dekker (L) 17.3 0 17.3 0 1929.1 0.08 4084.2 0.08

Dekker (S) 8.9 0 8.9 0.01 981.8 0.01 2069.2 0.01

Dijkstra (L) 8.2 0 8.2 0.03 89.4 0.04 113.7 0.04

Dijkstra (S) 16.2 0 16.2 0 1365.3 0.03 2216.4 0.03

Lamport Bakery (L) 2.6 0 2.6 0 25.9 0.12 42.0 0.12

Lamport Bakery (S) 41.9 0 41.9 0 2002.6 0.01 3235.2 0.01

Lamport Fast (L) 15.5 0 15.5 0.05 396.5 0.05 237.7 0.05

Lamport Fast (S) 37.7 0 37.7 0.10 3230.2 0.03 5652.8 0.03

Peterson (L) 5.4 0 5.4 0 214.0 0.03 601.6 0.01

Peterson (S) 2.8 0 2.8 0 113.7 0 184.0 0

Peterson∗ (L) - - - - - - 270.9 0.03

Peterson∗ (S) - - - - - - 143.6 0

Szymanski (L) 9.4 0 9.4 0 1732.0 0.03 1752.2 0.03

Szymanski (S) 5.2 0 5.7 0.01 1098.7 0.02 1111.5 0.02

we checked safety. For the models in Table 1, we checked using
the LTL formulas described in Ref. [5]. For the models in Table 2,
we added a label CS representing the critical section and checked
it using LTL formulas. For example, when checking the liveness
of the process P, if P asserts entry of the critical section by setting
the shared variable F to one, then the LTL formula is expressed
as shown below.
[] ((SVAR(P, F) == 1) -> <> P@CS)

The liveness was checked under weak fairness with the -f option.
During the check process, PROCSIZE and VARSIZE within the

parameters of the library are defined in accordance with the num-
ber of user processes and the number of global variables of re-
spective models. BUFFSIZE is defined as five in all models
because some models include user processes that perform un-
bounded number of iterations containing writes. Furthermore,
when checking the model of Table 2 with TSO and PSO, fence
instructions are as Ref. [11] suggests inserted so that mutual ex-
clusion works properly in each memory model.

The experimental environment was Ubuntu 16.04.2 LTS, Intel
Core i7-6700K 4.00 GHz.

6.2 Results
For the SC in Table 1, the results for all models matched results

presented in Ref. [5]. For TSO and PSO, the results for checking
liveness and safety differed from Ref. [5], but their differences
can be regarded as reasonable because these models were algo-
rithms in which mutual exclusion does not work properly in mem-
ory models where the execution order is relaxed. The model in
Section 3.5.2 was unaffected by the memory model because the
number of user processes is one. By this model, we confirmed
that the macros for TSO and PSO worked correctly, even in mod-
els with only a single user process, because the results matched
Ref. [5]. Question 3.1 was also a model that has a single user
process. We confirmed that the checking result of the matched
the results Ref. [5] for TSO. However, for PSO, the number of
states to be explored was too large. For that reason, the checking
process was terminated when 47 GB of memory was used.

For liveness in the models in Table 2, the results with SC
matched the results of checking the model written in plain
Promela. Safety was not satisfied when the model of Peterson was
checked with PSO. We confirmed the description of Ref. [11].
The text revealed that the authors did insert the fence instruc-
tion to make the mutual exclusion work properly possible in PSO
in their experiment *5. However, the model for PSO shown in

*5 p.161

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

the document did not include fence instructions. Therefore, we
checked the model which inserted the fence instruction to make
the mutual exclusion work properly with PSO. We presented the
result as Peterson∗. Peterson∗ confirmed that safety was satisfied
with PSO and the mutual exclusion was established.

The results described above demonstrate that the checks per-
formed using the LTL formulas referring to the shared variable
were implemented correctly using the macro provided by the li-
brary.

Memory usage (KB) and execution time (s) necessary for
checking each model are presented in the “Memory” and “Exe-
cution time” columns in Table 1. These results are memory usage
and execution time required by SPIN to detect a counterexample
or to terminate the checking without detecting a counterexample.

Every memory model for all models took more memory and
execution time than the models in Ref. [5] or Ref. [11].

For example, checking the liveness of the model in Question
2.1 with PSO took 1,000 times more memory than the model in
Ref. [5] which is written in plain Promela. This was true because
each thread wrote to two shared variables in the model in Ques-
tion 2.1, whereas each user process wrote to only one shared vari-
able in all other models in Table 1, except for Question 3.1. In
PSO, because each user process has a store buffer for each shared
variable, the number of states increases greatly when checking
a model in which one user process manipulates multiple shared
variables. In a model where each user process writes to only one
shared variable, each user process uses only a single store buffer,
the number of states should be the same as that of TSO.

When checking the model of Question 3.1 with PSO, we ter-
minated the checking process when 47 GB of memory were used
because the number of states to be explored was too large. This
was because, in the Question 3.1, one user process wrote to many
shared variables. As described above, because PSO has the store
buffer for each user process and each shared variable, in a model
in which one user process writes to multiple shared variables, the
number of states to be explored is larger with PSO than with
TSO. Question 3.1 is a model in which one user process wrote
to six shared variables. It can be expected that a huge amount
of memory and execution time are necessary to check this model
considering that the model of Question 2.1, which wrote to two
shared variables, required 1,000 times more memory than the
model written in plain Promela. In fact, such a result was ac-
tually obtained. A model with a single user process like Question
3.1 can be checked without the library because the model written
in plain Promela and the model using the library are expected to
give the same result in any memory model.

The discussion presented above clarifies that the library has
characteristics that model checking of a model in which a sin-
gle process writes to many shared variables with PSO causes a
state explosion. It is worth noting the approaches that are based
on the idea that uses store buffers to defer writing to shared vari-
ables [16], [17] are expected to share this characteristic.

In contrast, model checking of Question 3.7 with PSO used
less memory than with TSO. In this model, the bytes necessary
to express a single state were fewer with PSO than with TSO.
This difference in the number of bytes arose because a counter for

each process required for TSO implementation was unnecessary
in PSO, and PSO inserted only a value to a store buffer, whereas
TSO inserted a pair of a memory address and a value. Therefore,
depending on the user model, the model size with PSO could be
smaller than with TSO. Although Lamport Fast in Table 2 with
PSO used less memory than with TSO, the reason was different
because PSO requires more bytes to express a single state; the
reason can be thought that SPIN detected that liveness did not
hold with PSO earlier than with TSO because the Store→Store
execution order is relaxed only in PSO.

The execution time was shorter than 0.01 s, which is the short-
est time that SPIN can measure, for most models. The model that
took the longest time except for Question 3.1 took 0.13 s.

7. Related Work

Before this research was undertaken, a number of methods of
checking execution according to the memory model with SPIN
were proposed [8], [16], [17].

Wehrheim et al. proposed a method to convert C/C++ code
into Promela code that has behavior according to TSO and PSO
via LLVM IR code [16], [17]. This method is based on the idea
of expressing the reordering of execution order of memory access
instructions that can occur in TSO and PSO by the store buffer.
This respect is similar to the method used for this research. In the
method explained by Wehrheim et al., the user writes the proper-
ties checked by an LTL formula and an assert statement as in
the plain Promela. The user can refer to a value of all global vari-
ables from within an LTL formula. However, only values that are
actually reflected in memory can be referenced. For that reason,
the user cannot refer to values of global variables that are observ-
able by a certain process unlike the SVAR instruction provided by
our method. In the method used for this research, it is possible to
refer not only to the values that are actually reflected in memory
but also to the values of a global variable that is observable by a
specific process. In addition, although Promela code generated by
the method of Wehrheim et al. has poor readability, it is necessary
to read the code to write the property to be checked. Using our
method, execution can be checked according to TSO and PSO by
virtually replacing memory access instructions for shared vari-
ables in the model without consideration the memory model to
memory access instructions provided by the library. Therefore,
the code readability is high, and the property to be checked can
be written easily.

Wehrheim et al. use the library written in Promela, which can
check execution according to SC, TSO and PSO for comparison
in experiments with Refs. [16], [17]. This library is implemented
based on the idea using the store buffer as with this research.
However, in the library of Wehrheim et al., global variables are
hidden from the user. Consequently, the user cannot write an LTL
formula that refer to global variables as those of our previous li-
brary could not. The improved library overcomes the defect of
the library of Wehrheim et al. by providing a dedicated macro
so that the user can access shared variables (global variables that
might be accessed by multiple processes).

Tomasco et al. designed an API that behaves according to the
memory model and which uses CBMC [9] or Nidhugg [1] as a

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

backend to provide model checking according to the memory
model [15]. However, the method of Tomasco et al. does not sup-
port checking using LTL formulas.

Abdulla et al. proposed a model checker that is capable of
handling a memory model based on a stateless model check-
ing [1], [2]. The model checker of Abdulla et al. only covers the
multi-thread program written in C, but our method can also check
multi-thread programs other than C by modeling with Promela.

8. Conclusion

As described in this paper, we improved the library that we are
developing to support checking of executions according to weak
memory models with SPIN. Specifically, we improved the library
so that shared variables can be referred from guards. Addition-
ally, we improved the library so that initial values of shared vari-
ables can be set. Finally, we improved the library so that shared
variables can be referred from an LTL formula when the user
writes the properties that the user want to check.

As a result of implementing the improved library and carrying
out the experiment, we confirmed that the behavior of the macros
provided by the improved library is correct. Results of evaluation
of the performance demonstrated characteristics that a model in
which one user process writes to many variables, causes a state
explosion when it is checked with PSO. Regarding the execution
time, in the experiments other than that for which the model check
was aborted, the checking is completed within an execution time
that is sufficiently short on a modern computer.

In future works, first of all, an investigation will be conducted
to ascertain whether the behavior of TSO and PSO differs be-
tween our library and the library of Wehrheim et al. [16], [17]. In
addition, supporting more memory models and cache coherency.
Furthermore, it is the user’s responsibility in our library to set the
number of processes and the number of shared variables among
the library parameters. It is urgent to develop a mechanism that
extracts these parameters automatically from the program to be
checked for ease of use of the library. In the library, if the write
overflows from the store buffer, then the process will be blocked.
But a method exists of making an error when the write overflows
from the store buffer. Although one can easily to recognize that
the user is not performing the check correctly if the library makes
an error, the library is implemented so as to block the process
considering the use in bounded model checking. Future studies
should be conducted to extend the function to detect errors. Fur-
thermore, the library does not provide instructions with different
semantics for each CPU such as the CAS instruction. Some in-
structions can be defined by a user by combining the macros pro-
vided by the library and the functions of Promela. Nevertheless,
because some instructions cannot be defined, this point must be
improved so that representative instructions are definable.

Acknowledgments This research was partially supported by
JSPS KAKENHI Grant Numbers 16K21335 and 16K00103.

References

[1] Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C.
and Sagonas, K.F.: Stateless Model Checking for TSO and PSO, Proc.
TACAS, LNCS, Vol.9035, pp.353–367 (2015).

[2] Abdulla, P.A., Atig, M.F., Jonsson, B. and Leonardsson, C.: Stateless
Model Checking for POWER, Proc. CAV, LNCS, Vol.9780, pp.134–
156 (2016).

[3] Abe, T. and Maeda, T.: A General Model Checking Framework for
Various Memory Consistency Models, High-Level Parallel Program-
ming Models and Supportive Environments, pp.332–341 (2014).

[4] Adve, S.V. and Gharachorloo, K.: Shared memory consistency mod-
els: A tutorial, IEEE Computer, Vol.29, No.12, pp.66–76 (1996).

[5] AIST: Model Checking, Kindai Kagaku Sha (2010).
[6] Clarke, E.M., Emerson, E.A. and Sistla, A.P.: Automatic verification

of finite-state concurrent systems using temporal logic specifications,
ACM TOPLAS, Vol.8, No.2, pp.244–263 (1986).

[7] Holzmann, G.J.: The SPIN Model Checker, Addison-Wesley (2003).
[8] Kato, T., Ichiba, T., Honda, S. and Takada, H.: Model Checking of the

Spin-lock in Consideration of Hardware Behavior, EMB, Vol.2011,
No.2, pp.1–8 (2011).

[9] Kroening, D. and Tautschnig, M.: CBMC - C Bounded Model
Checker - (Competition Contribution), Proc. TACAS, LNCS,
Vol.8413, pp.389–391 (2014).

[10] Lamport, L.: How to Make a Multiprocessor Computer that Correctly
Executes Multiprocess Programs, IEEE TC, Vol.C-28, No.9, pp.690–
691 (1979).

[11] Linden, A.: On the Verification of Programs on Relaxed Memory
Models, Ph.D. Thesis, Universite de Liege (2013).

[12] Linden, A. and Wolper, P.: An Automata-Based Symbolic Approach
for Verifying Programs on Relaxed Memory Models, SPIN, LNCS,
Vol.6349, pp.212–226 (2010).

[13] Matsumoto, K., Ugawa, T. and Abe, T.: A library of memory access
instructions under relaxed memory models for SPIN, FOSE, Vol.23,
pp.63–72 (2016).

[14] Owens, S., Sarkar, S. and Sewell, P.: A better x86 memory model:
x86-TSO (extended version), Technical Report UCAM-CL-TR-745,
University of Cambridge, Computer Laboratory (2009).

[15] Tomasco, E., Nguyen, T.L., Inverso, O., Fischer, B., Torre, S.L. and
Parlato, G.: Lazy Sequentialization for TSO and PSO via Shared
Memory Abstractions, Proc. FMCAD (2016).

[16] Travkin, O. and Wehrheim, H.: Verification of Concurrent Programs
on Weak Memory Models, Proc. ICTAC, LNCS, Vol.9965, pp.3–24
(2016).

[17] Wehrheim, H. and Travkin, O.: TSO to SC via Symbolic Execution,
Proc. HVC, LNCS, Vol.9434, pp.104–119 (2015).

Kosuke Matsumoto was born in 1994.
He received his B.E. degree from Kochi
University of Technology in 2017. He re-
ceived the IEEE Computer Society Japan
Chapter FOSE Young Researcher Award
in 2016.

Tomoharu Ugawa received his B.Eng.
degree in 2000, M.Inf. degree in 2002,
and Dr.Inf. degree in 2005, all from Kyoto
University. He worked for a research
project on real-time Java at Kyoto Univer-
sity from 2005 to 2008. In 2008–2014,
he was an assistant professor at the Uni-
versity of Electro-Communications. He is

currently an associate professor at Kochi University of Technol-
ogy. His work is in the area of implementation of programming
languages with specific interest of memory management. He re-
ceived IPSJ Yamashita SIG Research Award in 2012.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Tatsuya Abe was born in 1979. He re-
ceived his B.Sc. and Ph.D. degrees from
Kyoto University and the University of
Tokyo in 2002 and 2007, respectively. He
worked for National Institute of Advanced
Industrial Science and Technology, Kyoto
University, and RIKEN. He is currently
a senior research scientist at STAIR Lab,

Chiba Institute of Technology. His research interests include pro-
gramming languages, program verification, concurrency, and dis-
tributed computation. He is a member of IPSJ, ACM, and JSSST.

c© 2018 Information Processing Society of Japan

