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Abstract: The Dulmage-Mendelsohn decomposition is a classical canonical decomposition in matching the-
ory applicable for bipartite graphs and is famous not only for its application in the field of matrix computation,
but also for providing a prototypal structure in matroidal optimization theory. The Dulmage-Mendelsohn
decomposition is stated and proved using the two color classes of a bipartite graph, and therefore general-
izing this decomposition for nonbipartite graphs has been a difficult task. In this paper, we obtain a new
canonical decomposition that is a generalization of the Dulmage-Mendelsohn decomposition for arbitrary
graphs using a recently introduced tool in matching theory, the basilica decomposition. Our result enables
us to understand all known canonical decompositions in a unified way. Furthermore, we apply our result to
derive a new theorem regarding barriers. The duality theorem for the maximum matching problem is the
celebrated Berge formula, in which dual optimizers are known as barriers. Several results regarding maximal
barriers have been derived by known canonical decompositions; however, no characterization has been known
for general graphs. In this paper, we provide a characterization of the family of maximal barriers in general
graphs, in which the known results are developed and unified.
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1. Introduction

We establish the Dulmage-Mendelsohn decomposition

for general graphs. The Dulmage-Mendelsohn decomposi-

tion [2–4], or the DM decomposition in short, is a classical

canonical decomposition in matching theory [17] applicable

for bipartite graphs. This decomposition is famous for its

application for combinatorial matrix theory, especially for

providing an efficient solution for a system of linear equa-

tions [1, 4] and is also important in matroidal optimization

theory.

Canonical decompositions of a graph are fundamental

tools in matching theory [17]. A canonical decomposition

partitions a given graph in a way uniquely determined for

the graph and describes the structure of maximum match-

ings using this partition. The classical canonical decompo-

sitions are the Gallai-Edmonds [5,6] and Kotzig-Lovász de-

compositions [13–15] in addition to the DM decomposition.

The DM and Kotzig-Lovász decompositions are applicable

for bipartite graphs and factor-connected graphs, respec-

tively. The Gallai-Edmonds decomposition partitions an ar-

bitrary graph into three parts: that is, the so-called D(G),

A(G), and C(G) parts. Comparably recently, a new canon-

ical decomposition was proposed: the basilica decomposi-

tion [8–10]. This decomposition is applicable for arbitrary

graphs and contains a generalization of the Kotzig-Lovász
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decomposition and a refinement the Gallai-Edmonds decom-

position. (The C(G) part can be decomposed nontrivially.)

In this paper, we establish an analogue of the DM decom-

position for general graphs using the basilica decomposition.

Our results accordingly provide a paradigm that enables us

to handle any graph and understand the known canonical

decompositions in a unified way. In the original theory of

DM decomposition, the concept of the DM components of

a bipartite graph is first defined, and then it is proved that

these components form a poset with respect to a certain

binary relation.

This theory depends heavily on the two color classes of

a bipartite graph and cannot be easily generalized for non-

bipartite graphs. In our generalization, we first define a

generalization of the DM components using the basilica de-

composition. To capture the structure formed by these com-

ponents in nonbipartite graphs, we introduce a slightly more

complex concept: posets with a transitive forbidden rela-

tion. We then prove that the generalized DM components

form a poset with a transitive forbidden relation for certain

binary relations.

Furthermore, we apply our generalized DM decomposi-

tion to derive a characterization of the family of maximal

barriers in general graphs. The Berge formula is a com-

binatorial min-max theorem in which maximum matchings

are the optimizers of one hand, and the optimizers of the

other hand are known as barriers [17]. That is, barriers

are the dual optimizers of the maximum matchings prob-

lem. Barriers are heavily employed as a tool for studying
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matchings. However, not as much is known about barri-

ers themselves [17]. Aside from several observations that

are derived rather easily from the Berge formula, several

substantial results about (inclusion-wise) maximal barriers

have been provided by canonical decompositions.

Our result for maximal barriers proves that our general-

ization of the DM decomposition has a reasonable consis-

tency with the relationship between each known canonical

decomposition and maximal barriers. Each known canonical

decomposition can be used to state the structure of maximal

barriers. The original DM decomposition provides a char-

acterization of the family of maximal barriers in a bipartite

graph in terms of ideals in the poset; minimum vertex cov-

ers in bipartite graphs are equivalent to maximal barriers.

The Gallai-Edmonds decomposition derives a characteriza-

tion of the intersection of all maximal barriers (that is, the

A(G) part) [17]; this characterization is known as theGallai-

Edmonds description. The Kotzig-Lovász decomposition is

used for characterizing the family of maximal barriers in

factor-connected graphs [17]; this result is known as Lovász’s

canonical partition theorem [16,17]. The basilica decompo-

sition provides the structure of a given maximal barrier in

general graphs, which contains a common generalization of

the Gallai-Edmonds description and Lovász’s canonical par-

tition theorem. Hence, a generalization of the DM decompo-

sition would be reasonable if it can characterize the family

of maximal barriers, and our generalization attains this in a

way analogical to the classical DM decomposition, that is,

in terms of ideals in the poset with a transitive forbidden

relation.

Our results imply a new possibility in matroidal optimiza-

tion theory. The nonbipartite maximum matching problem

and the Berge formula are not captured by submodular func-

tion theory [18] today. Submodular function theory is a sys-

tematic field of study that captures many well-solved prob-

lems in terms of submodular functions and generalizations.

In this theory, the bipartite maximum matching problem is

an important exemplary problem. According to the Hall-

Ore theorem [18], which is the duality theorem for the bi-

partite maximum matching problem, its dual problem is a

special case of the submodular function minimization. The

DM decomposition therefore has a special meaning in this

theory as it describes the structure of the family of minimiz-

ers of a submodular function. The nonbipartite maximum

matching problem is also an important well-solved problem,

and is even referred to as the archetype of well-solved prob-

lems [17, 18]. In fact, the idea of polyhedral combinatorics

and some of its central concepts, such as the total dual in-

tegrality, have been discovered from the nonbipartite max-

imum matching problem. However, the nonbipartite maxi-

mum matching problem and its duality shown by the Berge

formula are not included in submodular function theory to-

day and nor in any of its generalizations. Our nonbipartite

DM decomposition may provide a clue to a new epoch of

submodular function theory that can be brought in by cap-

turing these concepts.

The remainder of this paper is organized as follows: In

Section 2, we provide the basic definitions. In Section 3, we

present the preliminary results from the basilica decompo-

sition theory. In Section 4, we introduce the new concept

of posets with a transitive forbidden relation. In Section 5,

we provide our main result, the nonbipartie DM decompo-

sition. In Section 6, we present preliminary definitions and

results regarding barriers. We then prove in Section 7 that

our generalization of the DM decomposition can be used to

characterize the family of maximal barriers. In Section 8, we

show how our results contain the original DM decomposition

for bipartite graphs. In Section 9, we prove computational

properties.

2. Basic Preliminaries

2.1 General Definitions

For basic notation for sets, graphs, and algorithms, we

mostly follow Schrijver [18]. In this section, we explain ex-

ceptions or nonstandard definitions. In Section 2, unless

otherwise stated, let G be a graph. The vertex set and the

edge set of G are denoted by V (G) and E(G), respectively.

We treat paths and circuits as graphs. For a path P and

vertices x and y from P , xPy denotes the subpath of P be-

tween x and y. The singleton set {x} is often denoted by

just x. We often treat a graph as the set of its vertices.

In the remainder of this section, let X ⊆ V (G). The sub-

graph of G induced by X is denoted by G[X]. The graph

G[V (G) \X] is denoted by G−X. The contraction of G by

X is denoted by G/X. Let F ⊆ E(G). The graph obtained

by deleting F from G without removing vertices is denoted

by G− F . Let H be a subgraph of G. The graph obtained

by adding F to H is denoted by H+F . Regarding these op-

erations, we identify vertices, edges, subgraphs of the newly

created graph with the naturally corresponding items of old

graphs.

A neighbor ofX is a vertex from V (G)\X that is adjacent

to some vertex from X. The neighbor set of X is denoted

by NG(X). Let Y ⊆ V (G). The set of edges joining X

and Y is denoted by EG[X,Y ]. The set EG[X,V (G) \ X]

is denoted by δG(X).

A set M ⊆ E(G) is a matching if |δG(v) ∩M | ≤ 1 holds

for each v ∈ V (G). For a matching M , we say that M cov-

ers a vertex v if |δG(v) ∩ M | = 1; otherwise, we say that

M exposes v. A matching is maximum if it consists of the

maximum number of edges. A graph can possess an expo-

nentially large number of matchings. A matching is perfect

if it covers every vertex. A graph is factorizable if it has

a perfect matchings. A graph is factor-critical if, for each

vertex v, G− v is factorizable. A graph with only one ver-

tex is defined to be factor-critical. The number of edges

in a maximum matching is denoted by ν(G). The number

of vertices exposed by a maximum matching is denoted by

def(G); that is, def(G) := |V (G)| − 2ν(G).

Let M ⊆ E(G). A circuit or path is said to be M-

alternating if edges in M and not in M appear alternately.

The precise definition is the following: A circuit C of G is
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Fig. 1 The factor-components of a graph G: Bold lines indicate
allowed edges. This graph has four factor-components
G1,. . . , G4.

M -alternating if E(C) ∩M is a perfect matching of C. We

define the three types of M -alternating paths. Let P be a

path with ends s and t. We say that P is M-forwarding

from s to t if M ∩ E(P ) is a matching of P that covers

every vertex except for t. We say that P is M-saturated

between s and t if M ∩ E(P ) is a perfect matching of P .

We say that P is M-exposed between s and t if M ∩E(P )

is a matching of P that covers every vertex except for s and

t. Any path with exactly one vertex x is defined to be an

M -forwarding path from x to x, and is never treated as an

M -exposed path. Any M -forwarding path has an even num-

ber of edges, which can be zero, whereas any M -saturated

or -exposed path has an odd number of edges.

A path P is an ear relative to X if the internal vertices of

P are disjoint from X, whereas the ends are in X. A circuit

C is an ear relative to X if exactly one vertex of C is in X;

for simplicity, we call the vertex in X∩V (C) the end of the

ear C. We call an ear P relative to X an M-ear if P −X

is empty or an M -saturated path, and δP (X) ∩M = ∅.

2.2 Barriers, Gallai-Edmonds Family, and Factor-

Components

We now explain the Berge Formula and the definition of

barriers. An odd component (resp. even component) of a

graph is a connected component with an odd (resp. even)

number of vertices. The number of odd components ofG−X

is denoted by qG(X). The set of vertices from odd compo-

nents (resp. even components) of G−X is denoted by DX

(resp. CX).

Theorem 2.1 (Berge Formula [17]). For a graph G, def(G)

is equal to the maximum value of qG(X) − |X|, where X

is taken over all subsets of V (G).

The set of vertices that attains the maximum value in this

relation is called a barrier. That is, a set of vertices X is a

barrier if def(G) = qG(X)− |X|.
The set of vertices that can be exposed by maximum

matchings is denoted by D(G). The neighbor set of D(G)

is denoted by A(G), and the set V (G) \ D(G) \ A(G) is

denoted by C(G). The following statement about D(G),

A(G), and C(G) is the celebrated Gallai-Edmonds struc-

ture theorem [5, 6, 17].

Fig. 2 The Hasse diagram of the poset (G(G), ▹).

Fig. 3 The general Kotzig-Lovász decomposition of G: P(G) has
12 members S1,. . . , S12.

Theorem 2.2 (Gallai-Edmonds Structure Theorem). For

any graph G,

(i) A(G) is a barrier for which DA(G) = D(G) and

CA(G) = C(G);

(ii) each odd component of G−A(G) is factor-critical; and,

(iii) any edge in EG[A(G), D(G)] is allowed.

An edge is allowed if it is contained in some maximum

matching. Two vertices are factor-connected if they are con-

nected by a path whose edges are allowed. A subgraph is

factor-connected if any two vertices are factor-connected.

A maximal factor-connected subgraph is called a factor-

connected component or factor-component. A graph con-

sists of its factor-components and edges joining them that

are not allowed. The set of factor-components of G is de-

noted by G(G).

A factor-component C is inconsistent if V (C)∩D(G) ̸= ∅.
Otherwise, C is said to be consistent. We denote the sets

of consistent and inconsistent factor-components of G by

G+(G) and G−(G), respectively. The next property is eas-

ily confirmed from the Gallai-Edmonds structure theorem.

Fact 2.3. A subgraph C of G is an inconsistent factor-

component if and only if C is a connected component of

G[D(G)∪A(G)]. Any consistent factor-component has the

vertex set contained in C(G).

That is, the structure of inconsistent factor-components

are rather trivial under the Gallai-Edmonds structure theo-

rem.

3. Basilica Decomposition of Graphs

3.1 Central Concepts

We now introduce the basilica decomposition of graphs [9,

10]. The theory of basilica decomposition is made up of the
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three central concepts:

(i) a canonical partial order between factor-components

(Theorem 3.1),

(ii) the general Kotzig-Lovász decomposition (Theo-

rem 3.2), and

(iii) an interrelationship between the two (Theorem 3.3).

In Section 3.1, we explain these three concepts and give the

definition of the basilica decomposition. Every statement in

the following is from Kita [9, 10]. *1 In the following, let G

be a graph unless otherwise stated.

Definition 3.1. A set X ⊆ V (G) is said to be separat-

ing if there exist H1, . . . , Hk ∈ G(G), where k ≥ 1, such

that X = V (H1) ∪ · · · ∪ V (Hk). For G1, G2 ∈ G(G), we

say G1 ▹G2 if there exists a separating set X ⊆ V (G) with

V (G1)∪V (G2) ⊆ X such that G[X]/G1 is a factor-critical

graph.

Theorem 3.1. For a graph G, the binary relation ▹ is a

partial order over G(G).

Definition 3.2. For u, v ∈ V (G) \D(G), we say u ∼G v

if u and v are identical or if u and v are factor-connected

and satisfy def(G− u− v) > def(G).

Theorem 3.2. For a graph G, the binary relation ∼G is

an equivalence relation.

We denote as P(G) the family of equivalence classes deter-

mined by ∼G. This family is known as the general Kotzig-

Lovász decomposition or just the Kotzig-Lovász decomposi-

tion of G. From the definition of ∼G, for each H ∈ G(G),

the family {S ∈ P(G) : S ⊆ V (H)} forms a partition of

V (H) \D(G). We denote this family by PG(H).

Let H ∈ G(G). The sets of strict and nonstrict upper

bounds of H are denoted by UG(H) and U∗
G(H), respec-

tively. The sets of vertices
∪
{V (I) : I ∈ UG(H)} and∪

{V (I) : I ∈ U∗
G(H)} are denoted by UG(H) and U∗

G(H),

respectively.

Theorem 3.3. Let G be a graph, and let H ∈ G(G). Then,

for each connected component K of G[UG(H)], there exists

S ∈ PG(H) such that NG(K) ∩ V (H) ⊆ S.

Under Theorem 3.3, for S ∈ PG(H), we denote by UG(S)

the set of factor-components that are contained in a con-

nected componentK ofG[UG(H)] withNG(K)∩V (H) ⊆ S.

The set
∪
{V (I) : I ∈ UG(H)} is denoted by UG(S). We

denote UG(H) \ S \ UG(S) by ⊤UG(S).

Theorem 3.3 integrates the two structures given by The-

orems 3.1 and 3.2 into a structure of graphs that is remi-

niscent of an architectural building. We call this integrated

structure the basilica decomposition of a graph.

See Figures 1, 2, and 3 for an example of the basilica

decomposition.

3.2 Remark on Inconsistent Factor-Components

Inconsistent factor-components in a graph have a trivial

*1 The essential part of the structure described by the basilica
decomposition lies in the factorizable graph G[C(G)]. There-
fore, statements for factorizable graphs [9, 10] can be straight-
forwardly generalized for arbitrary graphs under the Gallai-
Edmonds structure theorem.

structure regarding the basilica decomposition. The next

statement is easily confirmed from Fact 2.3 and the Gallai-

Edmonds structure theorem.

Fact 3.4. Let G be a graph. Any inconsistent component

is minimal in the poset (G(G), ▹). For any H ∈ G−(G), if

V (H) ∩ A(G) ≠ ∅, then PG(H) = {V (H) ∩ A(G)}; other-
wise, PG(H) = ∅.
For simplicity, even for H ∈ G−(G) with V (H)∩A(G) =

∅, we treat as if V (H)∩A(G) is a member of P(G). That is,

we let PG(H) = {V (H)∩A(G)} and ⊤UG(V (H)∩A(G)) =
⊤UG(∅) = V (H) ∩D(G) = V (H).

Under Fact 3.4, the substantial information provided by

the basilica decomposition lies in the consistent factor-

components.

3.3 Additional Properties

In this section, we present some properties of the basil-

ica decomposition that are used in later sections. The next

lemma can be found in Kita [11].

Lemma 3.5. Let G be a graph, and let M be a maximum

matching of G. Let H ∈ G+(G), S ∈ PG(H), and s ∈ S.

(i) For any t ∈ S, there is an M-forwarding path from

s to t, whose vertices are contained in S ∪ ⊤UG(S);

however, there is no M-saturated path between s and

t.

(ii) For any t ∈ ⊤UG(S), there exists an M-saturated

path between s and t whose vertices are contained in

S ∪ ⊤UG(S).

(iii) For any t ∈ UG(S), there is an M-forwarding path

from t to s, whereas there is no M-forwarding path

from s to t or M-saturated path between s and t.

The first part of the next lemma is provided in Kita [12],

and the second part can be easily proved from Lemma 3.5.

Lemma 3.6. Let G be a graph, and let M be a maximum

matching of G. Let S ∈ P(G). If there is an M-ear rela-

tive to S∪⊤UG(S) that has internal vertices, then the ends

of this ear are contained in S.

4. Poset with Transitive Forbidden Re-

lation

We now introduce the new concept of posets with a tran-

sitive forbidden relation, which serves as a language to de-

scribe the nonbipartite DM decomposition.

Definition 4.1. Let X be a set, and let ≼ be a partial

order over X. Let ⌣ be a binary relation over X such

that,

(i) for each x, y, z ∈ X, if x ≼ y and y ⌣ z hold, then

x ⌣ z holds (transitivity);

(ii) for each x ∈ X, x ⌣ x does not hold (nonreflexivity);

and,

(iii) for each x, y ∈ X, if x ⌣ y holds, then y ⌣ x also

holds (symmetry).

We call this poset endowed with this additional binary re-

lation a poset with a transitive forbidden relation or TFR

poset in short, and denote this by (X,≼,⌣). We call a

pair of two elements x and y with x ⌣ y forbidden.
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Fig. 4 The nonbipartite Dulmage-Mendelsohn decomposition of
G: For each immediate compatible pair, an arrow points
from the lower element to the upper element. The two el-
ements from each immediate forbidden pair are connected
by a gray broken line.

Let (X,≼,⌣) be a TFR poset. For two elements x, y ∈ X

with x ⌣ y, we say that x
⋆
⌣ y if, there is no z ∈ X \{x, y}

with x ≼ z and z ⌣ y. We call such a forbidden pair of x

and y immediate. A TFR poset can be visualized in a sim-

ilar way to an ordinary posets. We represent ≼ just in the

same way as the Hasse diagrams and depict ⌣ by indicating

every immediate forbidden pairs.

Definition 4.2. Let P be a TFR poset (X,≼,⌣). A lower

or upper ideal Y of P is legitimate if no elements x, y ∈ Y

satisfy x ⌣ y. Otherwise, we say that Y is illegitimate.

Let Y be a consistent lower or upper ideal, and let Z be

the subset of X \ Y such that, for each x ∈ Z, there ex-

ists y ∈ Y with x ⌣ y. We say that Y is spanning if

Y ∪ Z = X.

5. DM Decomposition for General

Graphs

We now provide our new results of the DM decomposition

for general graphs. In this section, unless otherwise stated,

let G be a graph.

Definition 5.1. A Dulmage-Mendelsohn component, or

a DM component in short, is a subgraph of the form

G[S ∪ ⊤UG(S)], where S ∈ P(G), endowed with S as an

attribute known as the base. For a DM component C, the

base of C is denoted by π(C). Conversely, for S ∈ P(G),

K(S) denotes the DM components whose base is S. We

denote by D(G) the set of DM components of G.

Hence, distinct DM components can be equivalent as a

subgraph of G. Each member from P(G) serves as an iden-

tifier of a DM component.

Definition 5.2. A DM component C is said to be inconsis-

tent if π(C) ∈ PG(H) for some H ∈ G−(G); otherwise, C

is said to be consistent. The sets of consistent and incon-

sistent DM components are denoted by D+(G) and D−(G),

respectively.

Under Fact 3.4, any H ∈ D−(G) is equal to an incon-

sistent factor-component as a subgraph of G, and π(H) =

V (H) ∩A(G) and V (H) \ π(H) = V (H) ∩D(G).

Definition 5.3. We define binary relations ≼◦ and ≼ over

D(G) as follows: for D1, D2 ∈ D(G), we let D1 ≼◦ D2 if

D1 = D2 or if NG(⊤UG(S1)) ∩ S2 ≠ ∅; we let D1 ≼ D2

if there exist C1, . . . , Ck ∈ D(G), where k ≥ 1, such that

π(C1) = π(D1), π(Ck) = π(D2), and Ci ≼◦ Ci+1 for each

i ∈ {1, . . . , k} \ {k}.
Definition 5.4. We define binary relations ⌣◦ and ⌣

over D(G) as follows: for D1, D2 ∈ D(G), we let D1 ⌣◦

D2 if π(D2) ⊆ V (D1) \ π(D1) holds; we let D1 ⌣ D2 if

there exists D′ ∈ D(G) with D1 ≼ D′ and D′ ⌣◦ D2.

In the following, we prove that (D(G),≼,⌣) is a TFR

poset, which gives a generalization of the DM decomposi-

tion. The next lemma is easily observed from Facts 2.3 and

3.4.

Lemma 5.1. If C is an inconsistent DM component of a

graph G, then there is no C′ ∈ D(G) \ {C} with C ≼ C′

or C ⌣ C′.

We first prove that ≼ is a partial order over D(G). We

provide Lemmas 5.2 and 5.3 and thus prove Theorem 5.5.

Lemma 5.2. Let G be a graph, let M be a maximum

matching of G, and let D1, . . . , Dk ∈ D(G), where k ≥ 1,

be DM components with D1 ≼◦ · · · ≼◦ Dk no two of

which share vertices and for which Dk ∈ D+(G) holds.

Then, for any s ∈ π(D1) and any t ∈ π(Dk) (resp.

t ∈ V (Dk) \ π(Dk)), there is an M-forwarding path from

s to t (resp. M-saturated path between s and t) whose

vertices are contained in V (D1)∪̇ · · · ∪̇V (Dk).

Proof. For each i ∈ {1, . . . , k} \ {k}, let ti ∈ ⊤UG(π(Di))

and si+1 ∈ π(Di+1) be vertices with tisi+1 ∈ E(G). Let

s1 := s and tk := t. According to Lemma 3.5, for each

i ∈ {1, . . . , k} \ {k}, there is an M -saturated path Pi be-

tween si and ti with V (Pi) ⊆ V (Di); additionally, there

is an M -forwarding path Pk from sk to t with V (Pk) ⊆
V (Dk). Thus, P1 + · · · + Pk + {tisi+1 : i = 1, . . . , k − 1}
is a desired M -forwarding path from s to t. The claim for

t ∈ V (Dk)\π(Dk) can also be proved in a similar way using

Lemma 3.5.

Lemma 5.2 yields Lemma 5.3:

Lemma 5.3. Let G be a graph, let M be a maximum

matching of G, and let D1, . . . , Dk, where k ≥ 2, be DM

components with D1 ≼◦ · · · ≼◦ Dk such that π(Di) ̸=
π(Di+1) for any i ∈ {1, . . . , k − 1}. Then, for any

i, j ∈ {1, . . . , k} with i ≠ j, V (Di) ∩ V (Dj) = ∅.

Proof. Suppose that the claim fails. Then, there exist

p, q ∈ {1, . . . , k− 1} with p ≤ q such that Dp, . . . , Dq+1 are

mutually disjoint except that V (Dp)∩V (Dq+1) ̸= ∅. Then,
Lemma 5.1 implies Dp, . . . , Dq+1 ∈ D+(G). If π(Dq+1) ⊆
V (Dp) holds, then let tq+1 ∈ ⊤UG(π(Dq+1)); otherwise, let

tq+1 ∈ ⊤UG(π(Dq+1))∩V (Dp). Let tp ∈ ⊤UG(π(Dp)) and

sp+1 ∈ π(Dp+1) be vertices with tpsp+1 ∈ E(G), and let

Q be an M -saturated path Q between sp+1 and tq taken

under Lemma 5.2. Then, tpsp+1 +Q+ tqsq+1 + sq+1Ptq+1

contains an M -ear relative to Dp one of whose ends is tp.

This contradicts Lemma 3.6.

Combining Lemmas 5.2 and 5.3, the next lemma can be

stated, which we will use for proving Lemma 5.8.
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Lemma 5.4. Let G be a graph. Let C1, C2 ∈ D(G) with

C1 ≼ C2, and let D1, . . . , Dk ∈ D(G), where k ≥ 1, be

DM components with C1 = D1, C2 = Dk, and D1 ≼◦

· · · ≼◦ Dk. Then, for any s ∈ π(D1) and any t ∈ π(Dk)

(resp. t ∈ V (Dk) \ π(Dk)), there is an M-forwarding path

from s to t (resp. M-saturated path between s and t) whose

vertices are contained in V (D1)∪̇ · · · ∪̇V (Dk).

Reflexivity and transitivity of ≼ are obvious from the def-

inition, and antisymmetry is now proved by Lemma 5.3:

Theorem 5.5. Let G be a graph. Then, ≼ is a partial

order over D(G).

In the following, we prove the properties required for ⌣ to

form a TFR poset (D(G),≼,⌣). We provide Lemmas 5.6,

5.7, and 5.8, and thus prove Theorem 5.9.

Lemma 5.6. Let G be a graph, and let M be a maximum

matching of G. Let s, t ∈ V (G), and let S be the mem-

ber of P(G) with s ∈ S. Let P be an M-forwarding path

P from s to t or an M-saturated path between s and t.

If t ∈ S ∪ ⊤UG(S) holds, then P − E(G[S ∪ ⊤UG(S)]) is

empty; otherwise, P − E(G[S ∪ ⊤UG(S)]) is a path.

Proof. Suppose that the claim fails. The connected com-

ponents of P − E(G[S ∪ ⊤UG(S)]) except for the one that

contains s are M -ears relative to S ∪ ⊤UG(S) with internal

vertices. Let S′ be the set of the ends of these M -ears. From

Lemma 3.6, we have S′ ⊆ S. Trace P from s, and let s′ be

the first vertex in S′. Then, sPr is an M -saturated path

between s and s′, which contradicts s ∼G s′. This proves

the claim.

Lemma 5.6 derives the next lemma with Lemmas 3.5 and

3.6.

Lemma 5.7. Let G be a graph, and let M be a maximum

matching of G. Let s, t ∈ V (G), and let S and T be the

members from P(G) with s ∈ S and t ∈ T , respectively.

(i) If there is no M-saturated path between s and t,

whereas there is an M-forwarding path from s to t,

then K(S) ≼ K(T ) holds.

(ii) If there is an M-saturated path between s and t, then

K(S) ⌣ K(T ) holds.

Proof. Let P be an M -saturated between s and t. We

proceed by induction on the number of edges in P . By

Lemma 5.6, P − E(K(S)) is an M -exposed path; let x be

the end of P − E(K(S)) other than t. Let y ∈ V (P ) be

the vertex with xy ∈ E(P ), and let R ∈ P(G) with y ∈ R.

By Lemma 3.5, we have K(S) ≼◦ K(R). The subpath yPt

is M -saturated between y and t. Therefore, the induction

hypothesis implies K(R) ⌣ K(T ). Thus, K(S) ⌣ K(T )

is proved. Statement (i) can also be proved in a similar

way.

The symmetry of ⌣ can now be proved from Lemmas 5.4

and 5.7.

Lemma 5.8. For a graph G, the binary relation ⌣ is sym-

metric, that is, if D1 ⌣ D2 holds for D1, D2 ∈ D(G), then

D2 ⌣ D1 holds.

Theorem 5.5 and Lemma 5.8 now prove Theorem 5.9:

Theorem 5.9. For a graph G, the triple (D(G),≼,⌣) is

a TFR poset.

Proof. Under Theorem 5.5, it now suffices to prove the con-

ditions for ⌣. Nonreflexivity and transitivity are obvious

from the definition. Symmetry is proved by Lemma 5.8.

For a graph G, the TFR poset (D(G),≼,⌣) is uniquely

determined. We denote this TFR poset by O(G). We call

this canonical structure that O(G) describes the nonbipar-

tite Dulmage-Mendelsohn (DM ) decomposition of G. We

show in Section 8 that this is a generalization of the classical

DM decomposition for bipartite graphs.

Remark 5.1. As mentioned previously, a DM component

is identified by its base. Therefore, the nonbipartite DM

decomposition is essentially the relations between the mem-

bers of P(G). In Figure 4, we provide an example of the

nonbipartite DM decomposition for the graph G from Fig-

ures 1, 2, and 3.

Remark 5.2. Our result is distinct from the result by

Iwata [7]. This can also be confirmed from the example

graph G in Figure 1.

Immediate forbidded pairs in O(G) can be characterized

as follows:

Theorem 5.10. Let G be a graph. Let S, T ∈ P(G).

Then, K(S) and K(T ) are immediate forbidden pairs if

and only if S and T are contained in the same factor-

component.

Proof. The necessity is obvious. For proving sufficiency, let

H1 and H2 be the factor-components that contain S and T ,

respectively. Obviously, T ⊆ ⊤UG(S) holds. Hence, if the

claim fails, then T ⊆ UG(S′) holds for some S′ ∈ PG(H1).

From Lemmas 3.5 and 5.7, this implies K(T ) ≼ K(S′). As

S′ ⌣◦ S holds, K(T ) and K(S) are not immediate, which

is a contradiction.

6. Preliminaries on Maximal Barriers

6.1 Classical Properties of Maximal Barriers

We now present some preliminary properties of maximal

barriers to be used in Section 7. A barrier is maximal if it

is inclusion-wise maximal. A barrier X is odd-maximal if it

is maximal with respect to DX ; that is, for no Y ⊆ DX ,

X ∪ Y is a barrier. A maximal barrier is an odd-maximal

barrier.

The next two propositions are classical facts. See Lovász

and Plummer [17].

Proposition 6.1. Let G be a graph, and let X ⊆ V (G) be

a barrier. Then, X is an odd-maximal barrier if and only

if every odd component of G−X are factor-critical.

Proposition 6.2. Let G be a graph. An odd-maximal bar-

rier X is a maximal barrier if and only if CX = ∅.

6.2 Generalization of Lovász’s Canonical Parti-

tion Theorem

In this section, we explain a known theorem about the
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structure of a given odd-maximal barrier [11]. This theo-

rem is a generalization of Lovász’s canonical partition the-

orem [11, 16, 17] for general graphs, which is originally for

factor-connected graphs. This theorem contains the classical

result about the relationship between maximal barriers and

the Gallai-Edmonds decomposition, which states that A(G)

of a graph G is the intersection of all maximal barriers [17].

Theorem 6.3 (Kita [11]). Let G be a graph and X ⊆
V (G) be an odd-maximal barrier of G. Then, there ex-

ist S1, . . . , Sk ∈ P(G), where k ≥ 1, such that X =

S1∪̇ · · · ∪̇Sk and DX = ⊤UG(S1)∪̇ · · · ∪̇⊤UG(Sk). The odd

components of G − X are the connected components of

G[⊤UG(Si)], where i is taken over all {1, . . . , k}.
The next statement can be derived from Theorem 6.3 as

a corollary.

Corollary 6.4. Let G be a graph. For each S ∈ P(G),

G[⊤UG(S)] consists of |S|+def(G[S∪⊤UG(S)]) connected

components, which are factor-critical. If S ∈ PG(H) holds

for some H ∈ G+(G), then def(G[S ∪ ⊤UG(S)]) = 0;

otherwise, def(G[S ∪ ⊤UG(S)]) > 0. Let S :=
∪
{S ∈

PG(H) : H ∈ G−(G) and V (H) ∩ X ̸= ∅}. Then,

ΣS∈Sdef(G[S ∪ ⊤UG(S)]) = def(G).

7. Canonical Characterization of Maxi-

mal Barriers

We now derive the characterization of the family of max-

imal barriers in general graphs, using the nonbipartite DM

decomposition. In this section, unless otherwise stated, let

G be a graph. It is a known fact that a graph has an

exponentially many number of maximal barriers, however

the family of maximal barriers can be fully characterized in

terms of ideals of O(G).

Definition 7.1. For I ⊆ D(G), the normalization of I is

the set I ∪ D−(G). A set I′ ⊆ D(G) is said to be normal-

ized if I′ = I ∪ D−(G) for some I ⊆ D(G).

From Lemma 5.1, note that the normalization of an up-

per ideal is an upper ideal; the normalization of a legitimate

upper ideal is legitimate.

From Theorem 6.3, the next lemma characterizes the fam-

ily of odd-maximal barriers, which can be proved rather eas-

ily from Theorem 3.2.

Lemma 7.1. Let G be a graph. A set of vertices X ⊆
V (G) is an odd-maximal barrier if and only if there exists

a legitimate normalized upper ideal I of the TFR poset

O(G) such that X =
∪
{π(C) : C ∈ I}.

From Lemma 7.1 and Proposition 6.2, the family of max-

imal barriers is now characterized:

Theorem 7.2. Let G be a graph. A set of vertices

X ⊆ V (G) is a maximal barrier if and only if there ex-

ists a spanning legitimate normalized upper ideal I of the

TFR poset O(G) such that X =
∪
{π(C) : C ∈ I}.

8. Original DM Decomposition for Bi-

partite Graphs

In this section, we explain the original DM decomposi-

tion for bipartite graphs, and prove this from our result in

Section 5. In the remainder of this section, unless stated

otherwise, let G be a bipartite graph with color classes A

and B, and let W ∈ {A,B}.
Definition 8.1. The binary relations ≤◦

W and ≤W over

G(G) are defined as follows: for G1, G2 ∈ G(G), let G1 ≤◦
W

G2 if G1 = G2 or if EG[W ∩ V (G2), V (G1) \W ] ̸= ∅; let
G1 ≤W G2 if there exist H1, . . . , Hk ∈ G(G), where k ≥ 1,

such that H1 = G1, Hk = G2, and H1 ≤◦
W · · · ≤◦

W Hk.

Note that G1 ≤A G2 holds if and only if G2 ≤B G1 holds.

Theorem 8.1 (Dulmage and Mendelsohn [2–4,17]). Let G

be a bipartite graph with color classes A and B, and let

W ∈ {A,B}. Then, the binary relation ≤W is a partial

order over G(G).

We call the poset (G(G),≤W ) proved by Theorem 8.1 the

Dulmage-Mendelsohn decomposition of a bipartite graph

G. It is easily confirmed, e.g., from the Gallai-Edmonds

structure theorem that G−
A (G) ∩ G−

B (G) = ∅ and that any

C ∈ G−
B (G) is minimal with respect to ≤A.

Additionally, bipartite graphs have a trivial structure re-

garding the basilica decomposition:

(i) For eachH ∈ G+(G), PG(H) = {V (H)∩A, V (H)∩B}.
For each H ∈ G−

W (G), PG(H) = {V (H) ∩W}.
(ii) For any H1, H2 ∈ G(G) with H1 ≠ H2, H1 ▹ H2 does

not hold.

Under these properties, we define DW (G) as the set {C ∈
D(G) : π(C) ⊆ W}.
Define a mapping fW : G+(G) ∪ G−

W (G) → DW (G) as

fW (C) := K(V (C) ∩ W ) for C ∈ G+(G). The next state-

ment is now obvious.

Observation 8.2. The mapping fW is a bijection; and,

for any C1, C2 ∈ G(G), C1 ≤W C2 holds if and only if

f(C1) ≼ f(C2) holds.

According to Theorem 5.9 and Observation 8.2, the sys-

tem (G+(G) ∪ G−
W (G),≤W ) is a poset. Thus, this proves

Theorem 8.1.

9. Algorithmic Properties

Given a graph G, its basilica decomposition can be com-

puted in O(|V (G)| · |E(G)|) time [9, 10]. Assume that

the basilica decomposition of G is given. From the def-

inition of ≼◦, the poset (D(G),≼) can be computed in

O(|P(G)| · |E(G)|) time, and accordingly, in O(|V (G)| ·
|E(G)|) time. According to the definition of ⌣◦, given the

poset (D(G),≼), the TFR poset O(G) can be obtained in

O(|V (G)|) time. Therefore, the next thereom can be stated.

Theorem 9.1. Given a graph G, the TFR poset O(G) can

be computed in O(|V (G)| · |E(G)|) time.
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