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Abstract: This paper formulates the qubit layout problem for ICM representation which is favorable for topological
quantum computation. Observing the properties of braiding operations in a logic circuit model of ICM, we study the
potential usefulness of two-dimensional qubit layouts based on this model. We compare and contrast the efficiency of
one- and two-dimensional qubit layouts in reducing the logical time steps for topological quantum circuits. This leads
us to an approach to find a good gate order for two-dimensional qubit layouts. Indeed, our preliminary experimental
results show the effectiveness of two-dimensional qubit layouts.
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1. Introduction

Topological quantum computation [1], [2], [3] has proven to
be one of the most promising ways to realize fault-tolerant quan-
tum computation. In this paper, we focus on the computation
model in Ref. [2] which is based on the 2-D nearest neighbor cou-
pled lattice of qubits with the so-called surface code. There is a
completely different computation model, anyonic quantum com-

putation, which is based on topological states of matter. The two
computation models are both routinely referred to as “topological
quantum computation” within the literature but are vastly differ-
ent. In the following, we refer to the first model as “topological
quantum computation.”

For topological quantum computation, there is a recently pro-
posed quantum circuit representation called ICM representa-

tion, which consists of qubit (I)nitialization, (C)ontrolled-NOT
gates and (M)easurements with respect to different bases [4].
Any quantum circuits consisting of any quantum gates (e.g.,
controlled-V, Toffoli gates) can be transformed into ICM repre-
sentation after decomposing all the non-deterministic gates with
an exact gate list that are robust against errors. After the decom-
position, all the qubit initializations are moved to the beginning
of the circuits, all of the single-qubit measurements are moved to
the end of the circuits, and the CNOT gates remain in the middle
of the circuits. The purpose of ICM is to create a deterministic
circuit from probabilistic components (e.g., measurements).

The middle part of the ICM representation consists of many
CNOT gates for a practical computation. Thus we need to con-
sider how to design a circuit that consists of only CNOT gates for
the realization of topological quantum computation. As we will
explain below, a CNOT gate is implemented by a special process
called a braiding operation that can be done in one logical time
step. A critical observation here is that multiple braiding opera-
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tions can be done at the same time (i.e., in one logical time step) if
they do not overlap physically. This condition will be further ex-
plained, but we can consider intuitively that two (or more) CNOT
gates can be done in one logical time step if their corresponding
drawings do not overlap in a quantum circuit diagram.

For example, the three gates, g1, g2 and g3, in Fig. 2 can be
done in one logical time step in our model because their dia-
grams do not overlap. Thus, the number of logical time steps
for the circuit in Fig. 2 is three. On the other hand, g1, g2 and g3

in Fig. 1 need three logical time steps because their diagrams do
overlap. Therefore, we need eight logical time steps for the cir-

Fig. 1 An initial circuit: 8 steps.

Fig. 2 Optimal one-dimensional qubit layout: 3 steps.
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cuit in Fig. 1. Note that the two circuits are logically equivalent,
but the order of the logical qubits (i.e., x1, x2, · · · , x8) is differ-
ent. Observing the above example, we must consider the order
of the logical qubits when we design a circuit that only consists
of CNOT gates for the ICM representation, unlike conventional
quantum circuits.

One single qubit order does not allow us to perform the cir-
cuit in Fig. 1 with two time steps if we use the one-dimensional
qubit layout. For example, at the one-dimensional qubit layout of
the qubit order in Fig. 2, the three gates, g4, g1 and g5 (and g7),
overlap so we need at least three time steps. In contrast, if we lay-
out the qubits two-dimensionally (Fig. 3), we can perform the cir-
cuit with only two logical time steps because the two-dimensional
qubit layout allows us to simultaneously perform g1, g2, g3 and
g4, as shown on the left-hand side of Fig. 3.

Considering the above motivational example, we propose to
use two-dimensional qubit layouts. In this paper, we show how
we can reduce the logical time steps by using two-dimensional
qubit layouts. Note that a two-dimensional logical qubit layout
should be realized as easy as one-dimensional one because phys-
ical qubits are placed in two-dimensionally [1], [2], [3] anyway
in both cases (as we will see in Fig. 4). For our purposes, we
formulate a design problem so as to find a good qubit layout and
a good gate order to reduce the logical time steps for topologi-
cal quantum circuits. It may be obvious that we can do better by
using two-dimensional logical qubit layouts, however we cannot
know how good the two-dimensional qubit layouts will actually
be. Thus, to compare the essential differences between one- and
two-dimensional qubit layouts, we try to find the best possible
layout and gate order for both layouts.

To find the best possible layout and gate order efficiently, we
formulate the design problem so as to find the best set of one-
dimensional qubit layouts by solving a minimum clique partition

problem and then to find the best two-dimensional layouts that
can embed as many such one-dimensional layouts as possible.
(This will be discussed in more detail in Section 3). As far as
we know, this is the first systematic approach for finding a good
two-dimensional qubit layout.

In general, our approach can find the optimal solutions for up
to 4x4 qubit layouts, and we show our experimental result to com-
pare the best possible logical time steps by using one- and two-
dimensional qubit layouts. To compare larger cases, we also re-
port the experimental results by using a simple SA-based search
method. Moreover, we report that our proposed method can in-
deed decrease the number of computational time steps for a cir-
cuit from the ICM representation of a controlled-V gate compared

Fig. 3 Optimal two-dimensional qubit layout: 2 steps.

to the case when we use one-dimensional qubit layout [4].
This paper is organized as follows. The next section explains

the logic circuit model for topological quantum circuits and its de-
sign flow. Section 3 proposes our method for finding a good two-
dimensional qubit layout after defining some terminology used
in our method. Section 4 shows some experimental results, and
Section 5 concludes our paper with future work.

2. Design Framework for Topological Quan-
tum Computer based on ICM Representa-
tion

In this section, we first introduce a topologically error-
corrected logic circuit model for topological computation. Op-
erations to logical qubits can be visualized in a geometric de-
scription, and logical qubits can be defined as defects. A braiding

operation is an interaction between two types of defects in the
geometric structure.

Next we overview our whole design framework to design topo-
logical quantum circuits based on ICM representation; We ex-
plain ICM representation with an example, and then we mention
what is our target in this paper.

2.1 Logic Circuit Model for Topological Quantum Compu-
tation

Surface code is a way to encode logical qubits for topological
quantum computation. A logical qubit is encoded as two defects
on a lattice of physical qubits. Figure 4 shows a lattice of physi-
cal qubits in which each white circle represents a physical qubit.
In general, we need a pair of defects to support each logical qubit.
There are two types of defects: primal and dual. We introduce the
concept of primal and dual defects to explain the structure of the
logical CNOT gate in the following.

Figure 4 shows how logical qubits are placed on a lattice. The
dark blue squares correspond to a defect, and a pair of defects
connected with red lines represents logical qubits. Green and
purple lines show braiding operations conceptually. A braiding
operation is a movement of the status of a defect by measuring
the physical qubits, and we can assume that multiple braiding op-
erations can be done at the same time if their corresponding lines
do not overlap in the physical space [2], [5]. In the figure, the
two braiding operations corresponding to two purple lines can be
done in one logical time step. In Fig. 4, all the defects are of the
same type (say, primal) and the other type defects (not shown)
are offset by a 1/2 defect size in both the vertical and horizontal
directions. A logical CNOT gate can be achieved if we braid a
primal defect around a dual defect as we will see in the following.

Fig. 4 Logical qubits with braiding operations.
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Fig. 5 Braiding for a CNOT gate.

Fig. 6 Overlapped braiding operations (2 time steps).

Fig. 7 Non-overlapped braiding operations (1 time step).

In a higher abstract model, the change of a defect status can be
described as a strand, and a braiding can be expressed as a cross
of two strands. Figure 5 shows a CNOT gate between two primal
qubits. To perform a CNOT gate between them, we need to intro-
duce one dual qubit and perform braiding, as the figure shows, a
braiding of a dual strand (blue cuboid) is applied to the two pri-
mal strands (red cuboids) to perform a logic CNOT between the
two primal qubits. The upper region of the geometry corresponds
to the control qubit and the lower region corresponds to the target
qubit.

In respect to our ICM representation, the inputs are mapped on
the left-hand side of the cuboids, and the outputs are mapped on
the right-hand side. The time runs horizontally (from left to right)
in the direction of the two primal strands.

In Fig. 6, a braiding operation between the logical qubits is de-
noted by a blue loop. For example, the left loop indicates a CNOT
gate between x1 and x3. In Fig. 6, we can easily confirm that the
two braiding operations for the two logical CNOT gates overlap.
Thus, the two gates must be performed in two logical time steps.

In contrast to the above, if we change the qubit order (qubit lay-
out) for this circuit, we can perform both gates in parallel and we
can obtain a better implementation (Fig. 7). Here the two circuits
(Figs. 6 and 7) are logically equivalent but with different qubit
orders.

Note that reducing the logical time steps in the above geomet-

Fig. 8 Example of a quantum circuit.

ric visualized model of topological quantum computation would
eventually reduce the cost to realize the corresponding topologi-
cal quantum computation [2], [5]. In other words, the time axis of
the 3D physical resources to realize the corresponding topologi-
cal quantum computation of the circuit in Fig. 7 would be half
compared to the case when we realize the circuit in Fig. 6. Thus
it is very important to find a qubit layout to reduce the logical time
steps in the geometric visualized model of topological quantum
computation.

Two logical CNOT gates can clearly be done at the same time
(in one logical time step) if their corresponding drawings in a
quantum circuit do not overlap. (We will define overlapped and
non-overlapped for CNOT gates in Section 3.1.)

Another key to note is that we can perform multi-target CNOT
gate braiding operations in a single braid. In other words, if we
can exploit gates with multiple target lines, this helps us reduce
the time step computation. These reasons motivate us to find a
good qubit layout and gate order for a given circuit to reduce the
computational time.

2.2 Design Flow for Topological Quantum Computation
We assume that our design flow to design topological quan-

tum circuits starts from an arbitrary circuit (as shown in Fig. 8).
First, we transform a given arbitrary circuit into a so-called ICM
representation. An ICM representation [1] is obtained after re-
placing all of the non-deterministic gates from a quantum circuit
with an exact gates list that only consists of qubit (I)nitialisations,
(C)NOT gates, and (M)easurements. These quantum operations
are relatively robust. A reader may refer to the paper Ref. [1] for
how to obtain ICM representation.

Figure 9 shows the ICM representation of a controlled-V gate
taken from a previous work [1]. The ICM representation for a
controlled-V gate has inputs states cin (control) and tin and out-
puts cout and tout. The size of the circuit expands significantly due
to the increased ancillas. All the ancillas initializations are moved
to the beginning of the circuit and single qubit measurement are
moved to the end of the circuit. The middle of the circuit is now
left with CNOT gates only, proving that ICM representation re-
places the non-deterministic gates with an exact gate list.

After getting the ICM representation, each single logical qubit
operation can be visualized into a geometrical description, where
each property of the circuit description elements has a single cor-
responding structure to the geometric description (see an example
in Fig. 5). As previously explained, the logical qubits are defined
as strands/defects here.

This paper focuses on the optimization of the middle part of
ICM representation consisting of only CNOT gates. As we ex-
plain in the following, by placing the logical qubits in a good lay-
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Fig. 9 ICM representation of a controlled-V gate.

out, the logical time steps for CNOT gates would be decreased.
This would eventually contribute to decrease the physical re-
sources to realize the topological quantum computation as dis-
cussed in Ref. [5].

3. Optimization of Logical Qubit Layouts for
ICM

As we saw in Section 2 (e.g., the difference between two cir-
cuits (Figs. 6 and 7)), the qubit order/layout is crucial for the
CNOT gates in ICM representation. Motivated by this, we present
how to find a good qubit order/layout in this section. In this pa-
per, we mainly consider two-dimensional qubit layouts. Note
that a one-dimensional layout can be considered as a special case
for two-dimensional layout, and it is easy to find a good one-
dimensional layout if we have a method to find a two-dimensional
layout. To explain our proposed method, we define some termi-
nologies for one-dimensional and two-dimensional qubit layouts
below.

3.1 Terminology Used for One-Dimensional Qubit Layout
First we review the model of a one-dimensional qubit layout

that is often used in conventional logical quantum circuits. In
the following, we assume that logical qubits are placed in a line,
x1, x2, · · · , xn for a circuit with n logical qubits. Because we focus
on the part that only consists of CNOT gates in the ICM repre-
sentation, our target circuits only consist of CNOT gates in the
following. The target and control qubits of gate gi are denoted by
T (gi) and C(gi).

First we introduce the term overlapped for one-dimensional
qubit layouts.

Definition 1 Pair of gates gi and g j is said to be overlapped
with a given qubit order if the groups of qubits between T (gi)
and C(gi) and T (g j) and C(g j) share at least one qubit with the
given qubit order. If gi and g j do not overlap, they are said to be
non-overlapped. If two or more gates share the same control bit,
we have a special rule that also defines them as non-overlapped
regardless of the qubit layout.

This special rule is due to the fact that we can perform a multi-
target CNOT (that can be considered multiple simple CNOT gates
with the same control bit) in a single braid.

For example, g1 and g2 in Fig. 1 are overlap with this qubit or-
der. Since T (g1) = 7,C(g1) = 9 and T (g2) = 2,C(g2) = 8, the
group of qubits placed between the control and the target qubits
of g1 are x7, x8, and x9, and the group qubits placed between the
control and the target qubits of g2 are x2, x3, x4, x5, x6, x7, and x8.
Thus, the two groups of qubits share common qubits, and g1 and
g2 are overlapped. However, if we just change the qubit order to
get the circuit in Fig. 2, g1 and g2 become non-overlapped, as we
can see from the figure.

If the two logical CNOT gates are non-overlapped, the braiding
operations for the two CNOT gates can be performed in one logi-
cal time step, as we discussed above. Thus, our task is to increase
the number of CNOT gates that are non-overlapped.

We can swap two CNOT gates, gi and g j, if C(gi) � T (g j)
and T (gi) � C(g j). This is the swapping rule. For example, g3

and g4 in Fig. 1 can be swapped. Also g4 and g5 in Fig. 1 can be
swapped, and thus we can change the order of g3, g4, g5 in any
order. However, g4 and g7 in Fig. 1 cannot be swapped because
the target qubit of g4 and the control qubit of g7 have the same
qubit: x4.

Based on the circuit model discussed in Section 2.1, the cost
of circuit Q, denoted by Cost(Q), is defined as follows. Let the
maximum number of non-overlapped gates at the first part of Q

be k. With the swapping rule, we can move k (the maximum pos-
sible number) gates to the beginning of the circuit so that k gates
are non-overlapped. Note that two non-overlapped gates can be
swapped by the swapping rule. Then Cost(Q) = Cost(Q′) + 1,
where Q′ is a circuit obtained from Q by removing the first k

gates. This cost is due to the fact that the first k non-overlapped
gates can be done in one logical time step in our circuit model.

Our essential task is to find a good qubit order among all the
permutations, and thus it seems very difficult.

To explain our method, we also need to define the following
terminology.

Definition 2 If gi can only be moved next to g j by the swap-
ping rule, gi and g j are said to be adjacentable
For example, g4 and g6 in Fig. 1 are adjacentable because g4 and
g5 (or g5 and g6) can be swapped.

Note that we consider the above definition of “adjacentable”
is only for the logical relationship between two gates. In other
words, the definition of “adjacentable” can be applied to both
one-dimensional and two-dimensional qubit layouts.

For a given qubit order, if two gates are adjacentable and non-
overlapped, their corresponding braiding operations can be per-
formed in parallell, thus reducing the computational steps for the
circuit. Therefore, the existing method [6] tries to find a “good”
one-dimension qubit order such that as many adjacentable gates
as possible become non-overlapped.

3.2 Terminology for Two-Dimensional Qubit Layout
In this paper, we propose to use two-dimensional qubit layouts

and show an efficient method for finding a good two-dimensional
layout. In this paper, for simplicity we assume that each qubit is
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placed on one grid point in the two-dimensional layouts. Note
again the motivational example (Figs. 2 and 3), where the logical
time steps are three and two when the qubits are placed in one-
dimension and two-dimension, respectively. The example, sug-
gests that a two-dimensional qubit layout is always better than a
one-dimensional qubit layout. This is indeed true, as stated for-
mally in the following; our design approach is based on this fact.

Theorem 1 If a group of gates can be performed at the same
time in a one-dimensional qubit layout, a two-dimensional qubit
layout must exist by which we can simultaneously perform the
same group of gates.

The proof is obvious recognizing that a one-dimensional qubit
order can always be embedded into a two-dimensional qubit
layout. For example, the qubit layout in Fig. 3 contains one-
dimensional qubit orders, such as x3, x9, x7, x4, x2, x6, x8, x5, x1

and x7, x9, x3, x4, x1, x5, x8, x2, x6. By choosing a qubit order
of x3, x9, x7, x4, x2, x6, x8, x5, x1, we can perform g5, g6, g7 and
g8 in Fig. 1 at the same time. In Fig. 1, g1, g2, g3 and g4

can also be performed at the same time with this qubit order:
x3, x9, x7, x4, x2, x6, x8, x5, x1. In other words, the qubit layout
Fig. 3 provides the above two one-dimensional qubit layouts, and
two time steps are sufficient if we use the two-dimensional layout.

For two-dimensional layouts, we need to modify the term
“overlapped” as follows, which should be straightforward.

Definition 3 Pair of gates gi and g j is said to be overlapped
with a given two-dimensional qubit layout if the line between
T (gi) and C(gi) and the line between T (g j) and C(g j) cross in
the given two-dimensional qubit layout. If gi and g j are not over-
lapped, they are said to be non-overlapped. In addition, if two
or more gates share the same control bit, we have a special rule
that also defines them as non-overlapped, regardless of the qubit
layout.

For example, in the qubit layout in Fig. 3, gi, whose target and
control bits are x3 and x4, and g j, whose target and control bits
are x2 and x8, are non-overlapped but gi and gk whose target and
control bits are x2 and x7, respectively, are overlapped. This is be-
cause the line between x3 and x4 and the line between x2 and x8

do not cross, but the line between x3 and x4 and the line between
x2 and x7 cross in the layout, as shown in Fig. 3.

3.3 A Method to Find a Good Qubit Layout
Our essential task is to find a “good” two-dimensional qubit

layout such that as many adjacentable gates as possible become
non-overlapped. The difficulty is that a two-dimensional qubit
layout allows many pairs of gates to be non-overlapped and un-
like one-dimensional layouts there are many possibilities for a
“good” layout.

Therefore, to do the search efficiently, we divide the whole
problem into the following two sub-problems, each of which can
be solved optimally:
• First, we divide all the gates into the smallest number of gate

groups such that all the gates in each group are possibly non-

overlapped, which is defined below.
• Second, we enumerate the possible two-dimensional qubit

layouts for each gate group so that all the gates in the
gate group can be non-overlapped. Let such a set of two-

Fig. 10 Graph at Step 1 for circuit in Fig. 1.

dimensional qubit layouts for gate group Gi be Pi. After
that, we can find a good layout that is included in as many Pi

as possible.
The following is the definition of possibly non-overlapped:
Definition 4 Two gates are said to be possibly non-

overlapped if T (gi) and C(gi) are different from neither T (g j) nor
C(g j), and the two gates are adjacentable. In addition, if gates gi

and g j have the same set of control lines, both gates are also said
to be non-overlapped.

Equivalently, if two gates are possibly non-overlapped, at least
one qubit layout allows the two gates to be non-overlapped.

Unlike the one-dimensional case, a two-dimensional qubit
layout allows many pairs of gates to be non-overlapped. So
we expect that possibly non-overlapped gates become non-
overlapped with one specific qubit layout more often than the
one-dimensional case. If that happens, we can perform all the
gates in one group of possibly non-overlapped gates at one time
step; this means that the number of entire necessary time steps
is expected to be equivalent to the number of groups of possibly
non-overlapped gates. Thus, in the first sub-problem, we must
find the smallest number of gate groups.

Finding a group of possibly non-overlapped gates can be as
easily formulated as finding a clique in a graph. We can find a
good solution by casting the problem to a clique cover problem
as follows. There are many state-of-the-art methods for it, and
we just use an exact method to solve the minimum clique parti-
tion problem [7] in our experiment.

A method to solve the first sub-problem.
Step 1. Construct a graph where each node corresponds to each

gate in C. We have an edge between two nodes if the cor-
responding two gates in the given circuit are possibly non-
overlapped.

Step 2. Partition the graph obtained at Step 1 into a minimal
number of cliques, C1,C2, · · · ,Cm, using a solver for clique
cover problems. From each clique, we get each group, Gi, of
possibly non-overlapped gates.

For an initial circuit shown in Fig. 1, the graph constructed
at Step 1 can be shown as in Fig. 10. This graph can be
clearly covered with two cliques: C1 = (g1, g2, g3, g4) and C2 =

(g5, g6, g7, g8). Thus, the group of possibly non-overlapped gates
are selected as G1 = {g1, g2, g3, g4} and G2 = {g5, g6, g7, g8} in
this example. This means that in the best case we can perform
the circuit in Fig. 1 in two time steps. Thus, we try to find a good
two-dimensional qubit layout in the second problem to perform
the circuit in two time steps.

In the following, we represent a two-dimensional qubit lay-
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Fig. 11 Example of two-dimensional layouts.

out by a qubit order, which is essentially a permutation. More
specifically, we order the qubits from the lower left to the upper
right to represent a two-dimensional qubit layout. For example,
the qubit layout for Layout 1 (Fig. 11) is represented by the qubit
permutation, (x8, x5, x6, x1, x2, x3, x4, x9, x7), which is essentially
a permutation.

To represent and manipulate a set of permutations, an efficient
graph structure has been proposed, πDD [8], which we use in our
method. πDD can compactly represent a set of permutations, and
provide many efficient set operations, such as intersection and
union for the sets of permutations represented by πDDs. Instead
of explicitly enumerating all the possible qubit layouts, we im-
plicitly represent a set of permutations using πDD to enumerate
the qubit layouts.

For the second problem, our method is as follows.

A method to solve the second sub-problem.
Step 1. We choose Gi from the set of groups obtained in the first

problem one by one from the beginning of the circuit and do
the following Steps 2 and 3 until Gi remains.

Step 2. We initialize πDD Pi as representing all the possible
permutations and go to Step 3.

Step 3. For each pair of two gates in Gi, construct a πDD, p,

that represents a set of permutations where two gates are
non-overlapped. Then Pi is updated as Pi ∩ p. This update
is repeated for all pairs of two gates. The final Pi represents
a set of permutations that correspond to the qubit layouts by
which all the gates in Gi can be done at one time step.

Step 4. Our final task is to determine the two-dimensional qubit
layouts that are included in as many Pi as possible. We find
such a layout by intersecting Pi one by one. If the intersec-
tion of all Pi is not empty, we can find the best qubit layout
that provides the smallest computational steps for the given
circuit. If the intersection becomes empty at some point, we
may choose a layout in the intermediate intersection before
it becomes empty.

Note that Pi might become empty during the repetition in
Step 3. In such a case, there is no qubit layout which allows
all the gates in Gi to be non-overlapped; we should spend more
than one time step to perform the gates in Gi and divide Gi into
multiple groups so that the final πDD obtained at Step 3 for each
group is not empty.

If the intermediate intersection becomes empty during Step 4,
we may not get the best layout. However, we do not expect such a
case to happen very often. Indeed in our experiments described in
the next section, the intersection does not become empty, which
means that our method can find the best layout. Thus, we can use
our method to find the optimal solution efficiently in many cases.

Next we explain how to construct P1 for G1 = {g1, g2, g3, g4},
which is the first group of possibly non-overlapped gates for the
example from Fig. 1. See the various two-dimensional qubit lay-
out examples as shown in Fig. 11. For example, Layout 1 is rep-
resented as a qubit permutation, (x8, x5, x6, x1, x2, x3, x4, x9, x7),
and allows g2 and g3 to be non-overlapped. Layout 2 also allows
g2 and g3 to be non-overlapped. Thus, for a pair of gates: g2 and
g3, a set of permutation p, created at Step 3, includes Layouts 1
and 2, but it does not include Layout 3 where a line between x2

and x8 and a line between x1 and x5 cross. For pair of gates g1 and
g4, we also create a set of permutations that includes Layouts 1
and 3, but not Layout 2. By using primitive operations on πDDs,
we can create a set of permutations to represent the set of layouts
where two lines do not cross.

If we want to find a layout that allows both pairs of gates,
(g2, g3) and (g1, g4) to be non-overlapped, we just perform an
intersection operation between the two πDDs that represent the
two sets of permutations obtained as p at Step 3 for (g2, g3) and
(g1, g4). By the intersection, Layouts 2 and 3 are automatically
excluded from the intermediate candidate set. In this way, we
update intermediate layout candidate set Pi by excluding “bad”
layouts for the current pair of two gates. Note that the intersec-
tion operation can be done very efficiently with πDDs.

In summary, for each pair of gates, we make πDDs that repre-
sent the layouts that allow the two gates to be non-overlapped and
update intermediate Pi as Pi ∩ p. This means we exclude layouts
that do not allow the current pair of gates to be non-overlapped
from the intermediate layout candidate set. Thus, the final P1 af-
ter Step 3 represents a set of layouts that allows all pairs of gates
in G1 = {g1, g2, g3, g4} to be non-overlapped.
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Table 1 Comparison of three methods for small randomly generated CNOT-based circuits.

1D 2D Optimal 2D SA
Circuit Steps Time (sec.) Steps Time (sec.) Steps

9 bits 50 gates 32 34.44 23 (0.72) 0.00005 (1.4 × 10−6) 23 (0.72)

9 bits 100 gates (1) 63 133.44 46 (0.73) 0.00022 (1.6 × 10−6) 46 (0.73)

9 bits 100 gates (2) 63 133.02 43 (0.68) 0.00022 (1.7 × 10−6) 43 (0.68)

16 bits 100 gates (1) 57 2985.48 30 (0.53) 0.00030 (1.0 × 10−7) 30 (0.53)

16 bits 100 gates (2) 58 2644.35 32 (0.55) 0.00029 (1.1 × 10−7) 32 (0.55)

16 bits 200 gates 119 2546.01 65 (0.54) 0.00102 (4.0 × 10−7) 67 (0.56)

25 bits 200 gates – – – 0.00125 48

25 bits 300 gates – – – 0.00244 83

4. Experimental Result

4.1 An SA-based Heuristic Method
As described in the previous section, our method can find the

best layout if the intermediate candidate set does not become
empty. There are many efficient solvers for the first sub-problem,
i.e., clique cover problems. However, for the second problem,
our enumeration-based method obviously cannot deal with so
many qubits, even though we utilize an efficient graph structure,
πDD [8], to manipulate sets of permutations.

Therefore, we implemented a simple simulated annealing
(SA)-based heuristic to compare one- and two-dimensional qubit
layouts even for larger problems. (Readers who are unfamiliar
with simulated annealing might refer to previous work [9].) In
each iteration in our implementation, we swap the location of two
qubits and evaluate the depth of the circuit with the new qubit lay-
out. As in a conventional SA-based search, the swap is accepted
even though the depth increases when the temperature in the SA
is high.

The only specific technique used in our implementation is that
we do not just select a pair of qubits to be swapped randomly, but
we select qubits that are used many times for gates with a higher
probability. This is because swapping such qubits tends to more
greatly impact the result.

4.2 Comparison between One- and Two-Dimensional Qubit
Layouts

We implemented two algorithms: our proposed method men-
tioned in Section 3.2 and the SA-based method described in Sec-
tion 4.1 by C++. Then we compared them with the existing
one-dimensional optimization method [6] to show how effectively
two-dimensional qubit layouts can decrease the computational
steps.

It is expected that two-dimensional qubit layout can reduce the
computational time steps more efficiently than one-dimensional
qubit layout; we confirm this expectation by our experimental
results of small cases with optimal optimization methods in Ta-
ble 1.

Table 1 shows the optimized computational steps of the ran-
domly generated CNOT-based circuits by the three optimization
methods. Columns 1D, 2D Optimal, and 2D SA show the re-
sults for the existing one-dimensional optimization method [6],
our proposed method, and the simple SA-based method, respec-
tively. The numbers in parentheses mean the ratio of the number

Table 2 Comparison of four methods for large randomly generated CNOT-
based circuits.

1D 2D 1D SA 2D SA
Circuit Steps Steps Time (sec.) Steps Time (sec.) Steps

16 bits 100 gates 54 32 5.73 42 4.04 27

16 bits 500 gates 271 175 42.54 250 24.65 155

25 bits 100 gates 57 35 7.61 44 4.37 24

25 bits 500 gates 255 148 54.52 240 30.41 128

36 bits 100 gates 52 26 10.76 39 6.45 17

36 bits 500 gates 257 121 73.12 232 34.97 106

100 bits 100 gates 51 19 29.01 39 17.68 13

100 bits 500 gates 239 95 193.31 224 68.71 67

of steps to the one by 1D.
The table also reports the computational time (CPU time) for

the two methods on a Linux version 2.6.27 67v15 system on
AMD PhenomT M II x6 1055T CPU with 4-GB memory. The
numbers in parentheses mean the ratio of the CPU time by 2D
SA to 2D Optimal.

The SA parameters are set as follows. The initial temperature
is 100◦C, which is multiplied by 0.9 at each iteration until it be-
comes less than 20◦C. At each iteration, we tried 500 different
swaps of two qubits.

2D Optimal essentially enumerates all the possible qubit lay-
outs, and thus its computational time should increase exponen-
tially even if we use efficient data structures for manipulating the
permutations [8]. Indeed, we cannot complete the computation
within ten minutes for 25 qubits as expected, whose results are
shown as “−” in the table.

On the contrary, the SA-based heuristic is very fast and may be
applicable to larger circuits. We also found that the optimization
ability of the heuristic is very good and achieves almost the same
reduction of steps as 2D Optimal. Thus, for a larger circuit, such
a heuristic will be useful.

In order to better see the usefulness of the two-dimensional
qubit layouts even for larger circuits, we also conducted an exper-
iment for larger cases. In our experiment, we compare the time
steps between one-dimensional and two-dimensional layouts for
several randomly generated larger practical circuits. Note that
for larger cases we cannot use 2D Optimal, so we compare the
results obtained by only SA-based methods. Note also that SA-
based methods would be good enough by judging from Table 1
although there is no guarantee that the results are optimal.

The results are shown in Table 2. Column 1D and 2D show
the time steps of randomly generated initial CNOT-based circuits;
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Fig. 12 The original order of CNOT gates in Fig. 9.

while Column 1D SA and 2D SA show the time steps for the op-
timized one-dimensional and two-dimensional layouts obtained
by simple SA-based methods, respectively. The 2D results are
reported to have much smaller computational time steps com-
pared to the 1D results. Thus, these results clearly show that we
can indeed decrease computational time steps by applying two-
dimensional qubit layouts.

Note that the number of best two-dimensional qubit layouts is
huge by the verification of our exact enumeration. This means
that the problems are easy for a heuristic to find the best solution,
so there was only a small difference between the two methods.
However, we consider that the SA-based heuristic cannot find the
best solution (like our exact method) when the number of best
layouts is relatively small, which might happen in practical de-
signs.

4.3 Case Study: Qubit Layout Problem for a Practical ICM
Circuit

The previous section showed how the two-dimensional qubit
layout problem is important for decreasing the computational
time steps for random circuits. Here, we show a case study where
we evaluate how two-dimensional qubit layouts are important for
practical ICM circuits.

For our case study, we used a circuit from the ICM represen-
tation (see the original circuit in Fig. 9) taken from Ref. [4]. Fig-
ure 12 shows the derived CNOT gates from the original ICM
representation of a controlled-V gate. There were originally 17
computation steps at first (horizontallly in the graph).

Because we have more than 20 qubits, we used the SA-based
method to find a good two-dimensional qubit layout. We consider
a 5x5 qubit layout, as shown in Figs. 14 and 13. In this example,
we applied the special rule introduced in Section 3.2 to generate a
multi-target CNOT in a single braid to exploit their benefits. This
rule allows us to find more gates to be defined as non-overlapped,
regardless of the qubit layout. For example, we can perform g12

and g14 at the same time, as illustrated in Fig. 13. g11 and g13 can
also be performed at the same time, as illustrated in Fig. 14.

The optimized two-dimensional qubit layouts obtained by our

Fig. 13 With an optimized qubit layout (6 time steps).

method are shown in Fig. 13. With this optimized qubit layout,
we can perform the circuit in six time steps.

To evaluate the importance of qubit layouts, we also found the
best gate ordering with the initial qubit layout. By the best gate
ordering, the number of computational time steps decreased from
17 to 7 (Fig. 14).

Although only gate reordering is very useful for reducing the
computational steps, our case study shows that the qubit layout is
also important. This circuit is a small example, but we believe the
qubit layout would be much more important for a larger case.

5. Conclusions and Future Work

In this paper, we show a clear difference between one-
dimensional and two-dimensional qubit layouts to reduce logical
time steps for topological quantum computation. We observe the
properties of braiding operations in a logic circuit model for ICM;
we formulate our problem to find a good qubit layout and a good
gate order. In addition, we then propose two sub-problems to find
an optimal solution for the problem. Indeed we can show a clear
advantage of two-dimensional qubit layouts in our experiment by
our optimal solutions.

Although our proposed method can find a good two-
dimensional qubit layout systematically, the method to solve the
second sub-problem may not treat a large problem. Thus, we
should develop an efficient heuristic to solve the second sub-
problem in our future work.
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Fig. 14 With an initial qubit layout (7 time steps).
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