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Abstract: An anonymous credential system allows a user to convince a service provider anonymously that he/she
owns certified attributes. Previously, a system to prove AND and OR relations simultaneously by CNF formulas was
proposed. To achieve a constant-size proof of the formula, this system adopts an accumulator that compresses multiple
attributes into a single value. However, this system has a problem: the proof generation requires a large amount of
computational time in the case of lots of OR literals in the formula. Therefore, we convert the attribute relation from the
CNF formula to a monotone formula to decrease the number of OR literals. The monotone formula is a logic formula
that contains any combination of AND and OR relations. In this paper, we propose an extended accumulator to prove
the monotone formula, and apply it to the anonymous credential system. Our approach to prove the monotone formula
is that the tag assignment in the accumulator is extended to be adapted to the tree expressing the monotone formula.
Using this type of formula, the number of public parameters multiplied in the accumulator is decreased, which greatly
impacts the reduction of authentication time.

Keywords: anonymity, anonymous credentials, accumulator, CNF formulas, monotone formulas

1. Introduction

1.1 Backgrounds
In Web services, user authentications are required to protect

malicious access. In conventional ID-based authentications, the
privacy problem may occur, since Service Provider (SP) can trace
the user’s ID, grasp the user’s service history, and might use it to
attempt malicious activities. On the other hand, from the SP’s
point of view, the authentication using the user’s attributes such
as a gender, an occupation, and an age is more advantageous for
commercial values. Thus, an attribute-based authentication with
a strong privacy protection is in demand, where users can selec-
tively disclose the minimal amount of attributes necessary for the
service while hiding the others completely.

For the demand, in Refs. [1], [4], [5], [12], anonymous creden-

tial systems were proposed, where a user can anonymously con-
vince the SP about the possession of specified attributes. There
exist three entities in the anonymous credential system: an issuer,
users, and SP. The user obtains a certificate from the issuer in
advance, where the certificate ensures his/her attributes. Then,
the user makes a proof of the certified attributes and proves it to
the SP. In the authentication, the SP requests the user to prove
his/her certified attributes and their relation. For example, when
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accessing an alcohol-related company’s website, most companies
would ask for both nationality and birthday attributes (to prove
the age) during the authentication, since different countries have
a different legal drinking age. Thus, the user needs to prove the
AND relation of his/her nationality and age. In general, complex
relations on attributes can be expressed by logic formulas. The
AND relation is used when proving the possession of all the mul-
tiple attributes. The OR relation represents the possession of one
of the multiple attributes. In the authentication, a zero-knowledge
type of proof allows the user to hide any other information beside
the satisfaction of the relations.

1.2 Previous Works
In Refs. [1], [5], anonymous credential systems were proposed,

where the proof of the formula has a constant size for the number
of all attributes of a user and the size of the proved formula. How-
ever, simple AND or OR relations on attributes are only avail-
able. In Ref. [12], a system with constant size proofs is proposed,
where the inner-product on attributes can be proved (Thus, CNF
and DNF formulas are also available). However, in this system,
the proof generation needs exponentiation depending on the num-
ber of literals in the OR relations, which causes a large delay in
the case of formulas with lots of OR literals.

In Ref. [14], an anonymous credential system with constant
size proofs was proposed, where a user can prove any CNF for-
mulas on attributes. In this system, the proof generation is more
efficient than Ref. [12], since it needs only multiplications de-
pending on the number of OR literals. However, this system
still suffers from inefficiency in the case of numerous OR liter-
als, due to the less expression capability of CNF formulas. A
typical example is to prove the age using birthday attributes.
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To achieve the constant-size proof, this system utilizes an ac-

cumulator that compresses multiple attributes of monotone for-
mula into a single value. In the compression, multiplications
are needed. Consider the above example in accessing an al-
cohol related website for countries that have a legal drinking
age of 18 years old or above. An example of CNF formula is
(Australia∨. . .)∧(1915, Jan.1st∨· · ·∨1997, S ept.5th), where each
birthday is encoded to one attribute value such as “1915, Jan.1st”.
The accumulator requires that all public parameters assigned
to the attribute values of OR literals in the formula are multi-
plied. For the above example, there are 101 attributes for na-
tionality, and the number of attributes for the birthdays from
1915, Jan.1st ∼ 1997, S ept.5th is 30, 198, which makes 30, 299
attributes in total. The multiplications cause a large delay in the
authentication.

1.3 Our Contributions
In this paper, we propose an extended accumulator to prove

monotone formulas on attributes and apply it to the anonymous
credential system in order to obtain more efficiency in the proof
generation. The monotone formula is a logic formula that con-
tains any combination of AND and OR relations without nega-
tions. That is, the CNF formula is a limited type of the mono-
tone formulas. In the monotone formula, the birthday attribute
is composed of the birth-year, the birth-month, and the birth-
day, and one birthday is expressed as (birth-year ∧ birth-month
∧ birth-day). For the above example, the monotone formula is
(Australia ∨ . . .) ∧ (1915 ∨ . . . ∨ (1997 ∧ (Jan. ∨ . . . ∨ (S ept. ∧
(1st ∨ . . . ∨ 5th))))). Using this type of formula, the number of
public parameters multiplied in the accumulator is decreased to
198 attributes in total of 101 nationalities, 83 birth-years, 9 birth-
months, and 5 birth-days, which greatly impacts the reduction of
authentication time.

However, the proposed scheme has a drawback against [14]:
The size of the user’s certificate becomes exponential in the num-
ber of the user’s attributes, compared to the constant size in
Ref. [14] (the exponential size can be shortened as shown later).
Since the scheme of Ref. [14] supports the CNF formula, by con-
verting a monotone formula to a CNF formula, we can employ
the scheme of Ref. [14] to prove the monotone formula without
the drawback of the long certificate. However, in general, the size
(the number of literals) of the converted CNF formula becomes
super-polynomial in the size of the original monotone formula,
which causes a huge authentication time (because the literals in
the proved formula are multiplied). On the other hand, by the
trade-off of the long certificate, our proposed scheme enables the
direct proof of monotone formula. As shown in the above exam-
ple, it leads the efficient proof generation in the original size of
the expressive monotone formula, which is our contribution.

Our approach to prove the monotone formula is that the tag as-
signment in the accumulator is extended to be adapted to the tree
expressing the monotone formula. In the tree, leaves indicate the
attributes and internal nodes are the AND or OR relations. For
instance, consider the following proved monotone formula:

((a1 ∧ a2) ∨ a3) ∧ (a4 ∨ a5) ∧ a6.

As the preparation of the accumulator, a tag assignment is exe-

cuted as follows. At the root, a series of tags c1, . . . , c4 are gener-
ated. Then, these tags are divided and assigned to the leaves. The
same tags are distributed to the children on an OR relation, while
different tags are distributed to the children on an AND relation.
The tag assignment result for the above formula is

((ac1
1 ∧ ac2

2 ) ∨ ac1 ,c2
3 ) ∧ (ac3

4 ∨ ac3

5 ) ∧ ac4

6 ,

where the superscript in each attribute means the assigned tags.
In this assignment, the attributes of the user satisfy the formula if
and only if the tags for the attributes are exactly the same as the
initial tags. For example, when a user with satisfying attributes
a3, a5, a6, the assigned tags are {{c1, c2}, c3, c4}, which compose
the initial tags. In the verification of the accumulator, it is checked
using a pairing relation, which is extended from that of Ref. [14].

The rest of this paper is organized as follows: The used cryp-
tographic tools are explained in Section 2. Then, the extended
accumulator is proposed in Section 3. The syntax and security
model of the anonymous credential system are defined in Section
4, and the anonymous credential system for monotone formulas is
proposed as the application of the extended accumulator in Sec-
tion 5. Our proposed system is compared with the previous sys-
tem [14] in Section 6, and the experimental results based on the
implementation are shown in Section 7. Finally, we conclude this
paper in Section 8.
Remark 1. As in the above example, the typical case that our

proposed scheme has advantage over Ref. [14] is the numerical

range proof. In Ref. [13], Attribute-Based Encryption (ABE) with

efficient range proofs was recently proposed, which is converted

from conventional ABE by a generic method. In the converted

ABE, the sublinear efficiency in the range size is achieved with

expressive boolean formulas. There is some possibility that this

method is applied to our setting of anonymous credentials, but

the detailed investigation is one of our future works.

2. Preliminaries

In this section, we show the cryptographic tools and proof sys-
tem used as building blocks of our anonymous credential system.

2.1 Bilinear Maps
Our scheme utilizes bilinear groups and bilinear map.

( 1 ) G1, G2 and GT are multiplicative cyclic groups of prime or-
der p.

( 2 ) g ∈ G1 and g̃ ∈ G2 are randomly chosen generators.
( 3 ) e is a computable bilinear map, e : G1 × G2 → GT with the

following properties:
• Bilinearity: for all u ∈ G1 and v ∈ G2, and a, b ∈
Z, e(ua, vb) = e(u, v)ab.

• Non-degeneracy: e(g, g̃) � 1GT where 1GT is an identity
element of GT .

2.2 Complexity Assumptions
The security of our proposed system is based on SXDH as-

sumption, the n-DHE (DH Exponent) assumption [6] and the q-
SFP (Simultaneous Flexible Pairing) assumption [10].
Definition 1. (SXDH assumption) The decisional Diffie-

Hellman assumption holds in both G1 and G2.

Definition 2. (n-DHE assumption) For all PPT algorithm A,
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the probability

Pr

⎡⎢⎢⎢⎢⎣A
⎛⎜⎜⎜⎜⎝
g, ga, . . . , gan

, gan+2
, . . . , ga2n

,

g̃, g̃a, . . . , g̃an
, g̃an+2

, . . . , g̃a2n

⎞⎟⎟⎟⎟⎠ = g̃an+1

⎤⎥⎥⎥⎥⎦

is negligible, where g ∈R G1, g̃ ∈R G2 and a ∈R Zp.

Definition 3. (q-SFP assumption) For all PPT algorithmA, the

probability

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
⎛⎜⎜⎜⎜⎜⎝
gz, hz, gr, hr, a, ã, b, b̃,

{(z j, r j, s j, t j, u j, v j, w j)}qj=1

⎞⎟⎟⎟⎟⎟⎠
= (z∗, r∗, s∗, t∗, u∗, v∗, w∗) ∧
e(a, ã) = e(gz, z∗)e(gr, r∗)e(s∗, t∗) ∧
e(b, b̃) = e(hz, z∗)e(hr, u∗)e(v∗, w∗) ∧
z∗ � 1 ∧ z∗ � z j for all 1 ≤ j ≤ q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is negligible, where (gz, hz, gr, hr) ∈ G4
1, (a, ã) and (b, b̃) be pairs

inG1×G2, and all tuples {s j, v j}qj=1 ∈ G
2
1 and {z j, r j, u j, t j, w j}qj=1 ∈

G
5
2 satisfy the above relations.

2.3 AHO Structure-Preserving Signatures
A digital signature scheme consists of algorithms KeyGen,

Sign, and Verify. KeyGen generates the public and secret keys.
Sign computes a signature on a given message using a given se-
cret key. Verify, given a message and a signature together with
a public key, accepts them if the signature is a valid one for the
message. For a digital signature scheme, consider the following
game between a challenger and the adversary:
GameCMA:
( 1 ) The challenger runs KeyGen to generate the public key and

secret key. It gives the public key to the adversary.
( 2 ) The adversary can adaptively choose a message, and re-

quests the signature, and the challenger responds to the sig-
nature using Sign.

( 3 ) The adversary outputs a forged signature on a message
which was not requested by the adversary to the challenger.

Then, the digital signature scheme is existentially unforge-

able against chosen-message attacks, if any PPT adversary in
GameCMA can output the forged signature that is accepted by
Verify, with negligible probability.

In previous system [14], AHO signature [9], [10] is utilized for
the structure-preserving signatures, since the knowledge of the
signature can be proved by Groth-Sahai proofs. Using the AHO
scheme, multiple group elements are signed to obtain a constant-
size signature. As in the previous construction, a single group
element is signed, and thus we described in the case of single
message to be signed.
AHOKeyGen: Select bilinear groups G1, G2, GT with a prime
order p and a bilinear map e. Select Gr,Hr ∈ G1 and
μz, νz, μ, ν, αa, αb ∈R Zp. Compute Gz = Gμz

r ,Hz = Hνzr ,G =

Gμr ,H = Hνr , A = e(Gr, g̃
αa ), B = e(Hr, g̃

αb ). Output the public
key as pk = (G1,G2,GT , p, e, g, g̃,Gr,Hr,Gz,Hz,G,H, A, B), and
the secret key as sk = (αa, αb, μz, νz, μ, ν).
AHOSign: Given message M ∈ G2 together with sk, choose
β, ε, η, ι, κ ∈R Zp, and compute θ1 = g̃β, and

θ2 = g̃
ε−μzβM−μ, θ3 = Gηr , θ4 = g̃

(αa−ε)/η,

θ5 = g̃
ι−νzβM−ν, θ6 = Hκr , θ7 = g̃

(αb−ι)/κ.

Output the signature σ = (θ1, . . . , θ7).
AHOVerify: Given the message M and the signature σ =
(θ1, . . . , θ7), accept these if the following equations are hold:

A = e(Gz, θ1) · e(Gr, θ2) · e(θ3, θ4) · e(G,M),

B = e(Hz, θ1) · e(Hr, θ5) · e(θ6, θ7) · e(H,M).

Under the q-SFP assumption, this signature is existentially un-
forgeable against chosen-message attacks [10].

Using the re-randomization algorithm, this signature can be
publicly randomized to obtain another signature (θ′1, . . . , θ

′
7) on

the same message. As a result, in the following Groth-Sahai
proof, (θ′i )i=3,4,6,7 can be safely revealed, while (θ′i )i=1,2,5 have to
be committed as mentioned in Ref. [2].

2.4 Groth-Sahai (GS) Proof
To prove the secret knowledge in relations of the bilinear maps,

we utilize Groth-Sahai (GS) proofs [7]. We adopt the instanti-
ation based on SXDH assumption. For the bilinear groups, the
proof system needs a common reference string (u1, u2, u1, u2) for
u1 = (u11, u12), u2 = (u21, u22), u1 = (v11, v12), u2 = (v21, v22) for
some u11, u12, u21, u22 ∈ G1 and some v11, v12, v21, v22 ∈ G2. The
commitment to an element X ∈ G1 (resp., Y ∈ G2) is computed as
C = (1, X)·ur

1·u
s
2 (resp, C = (1,Y)·ur1·u

s
2) for r, s ∈R Z

∗
p. In the case

of the CRS setting for perfectly sound proofs, u2 = uξ11 , u2 = u
ξ2
1

for ξ1, ξ2 ∈R Z
∗
p. Then, the commitment C = (ur+ξ1 s

11 , X · ur+ξ1 s
12 )

(resp., C = (vr+ξ2 s
11 ,Y · vr+ξ2 s

12 )) is the ElGamal encryption for X

(resp., Y). On the other hand, in the setting of the witness indis-
tinguishability, u2 = uξ11 /(1, g), u2 = u

ξ2
1 /(1, g̃) for ξ1, ξ2 ∈R Z

∗
p,

and thus C is perfectly hidden. The SXDH assumption implies
the indistinguishability of the CRS. To prove that the committed
variables in the pairing relations, the prover prepares the commit-
ments, and replaces the variables in the pairing relations by the
commitments. The GS proof allows us to prove the set of pairing
product equations:

n∏

j=1

e(Aj,Yj) ·
m∏

i=1

e(Xi, Bi) ·
m∏

i=1

n∏

j=1

e(Xi, Yj)
ai j = t

for variables X1, . . . , Xm ∈ G1, Y1, . . . ,Yn ∈ G2 and constants
A1, . . . , An ∈ G1, B1, . . . , Bm ∈ G2, ai j ∈ Zp, t ∈ GT .

The GS proof system consists of the following algorithms:
SoundSetup outputs a CRS crs for perfectly sound proofs to-
gether with the extraction trapdoor et. ProofGen, on input of crs,
a statement of pairing relations S , and a witness W that is a set of
committed variables satisfying the pairing relations, outputs the
proof π including the commitments of W. Verify, on input of crs,
and π, outputs the acceptance if the proof is valid, or rejection
otherwise.

Furthermore, there are special algorithms: Extract, on inputs
of crs, et, and π, outputs the witness W. WISetup outputs a CRS
for the witness indistinguishability, crs′. WIProofGen on input
of crs′, a statement of pairing relations S , and a witness W for S ,
outputs the witness indistinguishable proof π′.

The GS proof system satisfies the following security proper-
ties.
CRS indistinguishability: crs output by SoundSetup and crs′
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output by WISetup are computationally indistinguishable.
Extractability (Perfect soundness): For crs and et output by

SoundSetup and a proof π, if Verify outputs the acceptance
on π, Extract can output the witness W from π.

Perfect witness indistinguishability (WI): Consider the fol-
lowing game:
GameWI:
( 1 ) The challenger runs WISetup to generate crs′. It gives

crs′ to the adversary.
( 2 ) The adversary outputs a statement S and the witnesses

W1,W2. The challenger randomly selects b ∈R {0, 1},
and responds the proof using Wb on crs′, S using
WIProofGen to the adversary.

( 3 ) The adversary outputs the guess b′.
Then, for any PPT adversary in GameWI, Pr[b′ = b] = 1/2.

3. Extended Accumulator

In this section, we show an accumulator to verify monotone
formulas as the key primitive. It is an accumulator extended from
the previous accumulator [14]. The extended accumulator com-
presses the more general formula, the monotone formula, than
CNF of the previous [14]. The construction of the accumulator is
based on Ref. [14], and it employs our new tag assignment algo-
rithm, where tags are assigned in leaf attributes in the binary tree
of the given monotone formula.

The difference of constructions between the proposed scheme
and Ref. [14] is described in intuition behind construction in Sec-
tion 3.5.

3.1 Notations and Assumptions
In the accumulator, each attribute is indexed by an integer in

{1, . . . , n}. The set of all attributes has to be fixed in advance,
i.e., the small universe (The comparison of this restriction to the
previous scheme [14] is shown in Section 6.2). Each user owns
attributes, and user’s attribute set U denotes the set of the indices
of the attributes that the user owns.

A monotone formulaM is represented by a binary tree, where
any internal node is either AND or OR, and the leaf nodes are
attributes. For monotone formula M, let MA be the set of at-
tribute indices inM. In a monotone formula, the same attribute
may be included twice or more, such as (Japanese ∧ student) ∨
(Japanese ∧ pro f essor). In this paper, for simplicity, the same
attributes in the formula are indexed by different indices (e.g., the
first Japanese is indexed by 1 and the second one is indexed by
2), while the user’s attribute set includes all indices for the at-
tribute. This means that the number of the indices used as the
same attribute is fixed in advance (The comparison of this restric-
tion to the previous scheme [14] is also shown in Section 6.2).
Therefore, we can assume that the attribute indices inM are all
different.

From the tree of a given monotone formulaM, consider a min-

imal satisfaction tree, as follows. In any intermediate OR node,
one child node remains (because it is needed in minimal for sat-
isfying the OR node), but another redundant child node (and the
descendant subtree) is removed. Note that, in any internal AND
node, both child nodes remain because the child nodes are needed

Fig. 1 Tag assignment in the tree of a monotone formula.

for the satisfaction ofM. Consider user’s attribute set U, and Ũ

that is a subset of U ∩ MA. We define a predicateMS(Ũ,M),
where MS(Ũ,M) = 1 if Ũ consists of attributes in a minimal
satisfaction tree of M, and otherwise MS(Ũ,M) = 0. We call
set Ũ s.t. MS(Ũ,M) = 1 a minimal attribute set of M and we
denote such Ũ as Û. In the example of Fig. 1, the sub-tree con-
nected by the double lines is a minimal satisfaction tree with the
minimal attribute set Û = {a3, a5, a6}. Here, note that minimal
satisfaction tree is not unique. In the example of Fig. 1, we can
consider another minimal satisfaction tree for another minimum
attribute set Û = {a3, a4, a6}.

We assume that |U | for every user is bounded by the upper
bound η. The value η is fixed by depending on |U | of all users,
but does not depend on proved formulas. The value of η must
be fixed before the setup. Thus, in the application such as the
proposed anonymous credential system, some authority needs to
estimate the value of η from the number of attributes that every
user can use. This is a restriction, which we compare to the pre-
vious system [14] in Section 6.2.

3.2 Syntax and Security of Extended Accumulator
We show the definition of algorithms in the extended accumu-

lator as follows:
AccSetup: This is the algorithm to output the public parameters
pkacc and only be executed once.
AccGen: This is the algorithm to compute an accumulator, i.e.,
the compressed value of a given formula. Given pkacc and a
monotone formula M, this algorithm outputs the accumulator,
accM, together with the auxiliary values auxM.
AccWitGen: This is the algorithm to compute the witness W

of the minimal satisfaction of M by Û (i.e., MS(Û,M) = 1).
Given pkacc, Û,M, auxM, this algorithm outputs W.
AccVerify: This is the algorithm to verify the minimal satisfac-
tion ofM by Û. Given pkacc, accM, Û,W, auxM, this algorithm
accepts them ifMS(Û,M) = 1 and reject them if otherwise.

We define the correctness and the security of the extended ac-
cumulator by the folowing requirements.
Correctness: The extended accumulator is correct if AccSetup

algorithm correctly computes pkacc and AccGen and Ac-
cWitGen correctly output accM, auxM, and W for Û and
M, then AccVerify accepts accM, Û,W that are output by
the algorithms, ifMS(Û,M) = 1.

Security: Consider the following game between a challenger
and the adversary:
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GameAcc:
( 1 ) The challenger runs the AccSetup algorithm to gener-

ate the public parameters pkacc. It gives pkacc to the
adversary.

( 2 ) The adversary outputs Ũ,M and W.
Then, the adversary wins if
• For accM, auxM which are the outputs of AccGen given

pkacc andM, AccVerify accepts pkacc, accM, Ũ, W, auxM,
but

• MS(Ũ,M) = 0.
Then, the extended accumulator is secure if any PPT adversary
can win GameAcc only with negligible probability.

3.3 Tag Assignment Algorithm
In this tag assignment algorithm, the input is a monotone for-

mula M on attributes. The output of the algorithm is a non-
negative integer T showing the number of tag indices, and the
sequence of tag indices, Si = [a..b] to each attribute i in M,
where [a..b] denotes the set of consecutive integers between a
and b, i.e., {a, a + 1, . . . , b}.

The goal of this algorithm is to output a partition {Si}i∈Û of the
initial set Sε=[1..T ], for the minimal attribute set Û ofM, which
is used for verifying the monotone formula in the accumulator.
Intuition behind construction: In the algorithm, each node is tra-
versed from the root node as follows. At an AND node, the se-
quences of tag’s indices is separated and given to each child node.
This is because the combination of the sequences from both sub-
trees rooted by the two child nodes can be equal to the AND
node’s sequence. At an OR node, the sequence of tag’s indices
is exactly given to both child nodes. This is why the sequence
of the subtree rooted by either of the child nodes can become the
sequence of the OR node. To ensure the separation at descen-
dant’s AND nodes, an auxiliary sequenceA is introduced. A is a
sequence of separable positions in the sequence of tag’s indices.
When traversing the tree, A is separated and assigned to each
child node such that the number of separable positions is equal to
the number of AND nodes in the subtree rooted at the child node.
Note that, at an AND node, one separable position is consumed
for the separation of tag’s indices.
Preparation: For every node N, traverse the tree to find TN that

is the number of AND nodes in the subtree rooted by N. At
the root node N=ε, the number of AND nodes is set as Tε .
Then, set T = Tε + 1, the root’s sequence Sε=[1..T ], and
the auxiliary sequence Aε=[1..Tε] that includes the separa-
ble positions of Sε .

Assignment: Using the following function ASSIGN(N,S,A)
where N is a node, S=[a..b], and A=[c..d], assign S and A
to each node recursively starting with ASSIGN(ε,Sε,Aε).
Then, output the sequenceSi of every leaf node for attributes
i ∈ MA. The function ASSIGN(N,S,A) is defined as fol-
lows. Here, LeftChild(N) (resp., RightChild(N)) denotes as
the left (resp., right) child node of N.

ASSIGN(N,S,A)
if N is an OR node:
( 1 ) Split A into A′=[c..c+TLeftChild(N)-1] and A′′=[c+

TLeftChild(N)..d], where A′ (resp., A′′) is set as empty, if

TLeftChild(N)=0 (resp., TRightChild(N)=0).
( 2 ) Run ASSIGN(LeftChild(N),S,A′).
( 3 ) Run ASSIGN(RightChild(N),S,A′′).
( 4 ) Return.
if N is an AND node:
( 1 ) Split A into A′=[c..c+TLeftChild(N)-1] and A′′=[c+

TLeftChild(N)+1..d], where A′ (resp., A′′) is set as empty,
if TLeftChild(N)=0 (resp., TRightChild(N)=0). In this case, one
separable position a + TLeftChild(N) is consumed inA.

( 2 ) Using the separate position a + TLeftChild(N), split S′ into
S′=[a..c+TLeftChild(N)] and S′′ = [c+TLeftChild(N)+1..b].

( 3 ) Run ASSIGN(LeftChild(N),S′,A′).
( 4 ) Run ASSIGN(RightChild(N),S′′,A′′).
( 5 ) Return.
if N is a leaf node for attribute i:
( 1 ) Output Si = S as the sequence of the attribute i.
( 2 ) Return.

We explain the algorithm using an example of a monotone for-
mula.
Example. Suppose we are given a monotone formula ((a1 ∧ a2)∨
a3) ∧ (a4 ∨ a5) ∧ a6 whose tree is shown in Fig. 1.

In Fig. 1, Sε = {1, 2, 3, 4} and Aε={1, 2, 3}. The separable
position t in A means that S= {a, . . . , t, . . . , b} is separable to
S′ = [a..t] and S′′= [t+1..b]. When traversing the AND node,
one separable position in A is consumed, and S is divided into
the left and right child nodes. The remaining separable positions
are also distributed to the child nodes such that the descendant
AND nodes can consume the separable positions. In Fig. 1, the
root node is an AND node and it consumes separable positions

2©, thus S′ = {1, 2} and S′′ = {3, 4} are assigned to left child and
right child, respectively. The separable positionsA = { 1©, 2©, 3©}
are distributed toA′ = { 1©} andA′′ = { 3©}, where 2© is consumed
in the root.

When the current node is an OR node, none of the separable
position is consumed and thus both child nodes receive the same
S. The separable positions are distributed to the child nodes such
that the descendant AND nodes can consume the separable posi-
tion. In the OR node of level 1 (Fig. 1), the separable position 1©
is distributed to the left child with the AND descendant.

In Fig. 1, the subtree connected with double lines branch is the
minimal satisfaction tree where Û = {a3, a5, a6}. The set of Si for
all i ∈ Û, i.e., {{1, 2}, {3}, {4}} is a partition of Sε = {1, 2, 3, 4}.

3.4 Correctness of Tag Assignment Algorithm
We have the following theorem of the correctness of the tag

assignment algorithm.
Theorem 1. For Si and Sε output in the tag assignment algo-

rithm on input M, for any set of attributes Ũ, if and only if

MS(Ũ,M) = 1, {Si|i ∈ Ũ} is a partition of Sε , i.e.,
⋃

i∈Ũ Si = Sε
and Si’s are mutually disjoint.

Proof. First, let us consider the proof that, ifMS(Ũ,M) = 1,
{Si|i ∈ Ũ} is a partition of Sε . In the algorithm, since each TN
is correctly computed, each AND node can always consume a
separable position in A. Note that, at each level in the minimal
satisfaction tree, the set of all S of nodes at the level remains a
partition of Sε . This is because S in an AND node is partitioned
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to two child nodes and S in an OR node is inherited to the child
in the minimal satisfaction. As in Fig. 1, a leaf node at a level is
replaced by a virtual intermediate node connected to the virtual
leaf node at the bottom level via the virtual intermediate nodes.
Then, at the bottom level, the set of all Si remains a partition of
Sε .

Next, consider the reverse proof that, if MS(Ũ,M) � 1,
{Si|i ∈ Ũ} is not a partition of Sε . Consider the subtree of M
with only the paths from the root to all leaves in Ũ. We as-
sume that Ũ is not empty, because it also means that {Si|i ∈ Ũ} is
also empty. In this case, since the subtree is not the satisfaction
tree, there is an AND node N∗ with LeftChild(N∗) connected
to a leaf in Ũ and RightChild(N∗) that is not connected to the
leaves in Ũ (or RightChild(N∗) is connected to the leaves and
LeftChild(N∗) is not connected, but this case is omitted since
it is similarly discussed.). In this AND node N∗, tag indices are
divided to S′=[a..t] and S′′=[t+1..b] at a separable position t©.
Then, tag indices [t+1..b] are not assigned to leaf attributes in
Ũ that are descendants of node N∗. On the other hand, from an-
cestors of node N∗, using other paths that do not include node
N∗, the tag indices [t+1..b] may be distributed to leaf attributes
in Ũ. However, this is not true. This is because tag indices are
not divided at t© in other AND nodes, which means that any leaf
except the descendants of N∗ cannot obtain [t+1..b′] for any b′.
Therefore, {Si|i ∈ Ũ} is not a partition of Sε . �

3.5 Accumulator to Verify Monotone Formulas
The following accumulator is used to verify a monotone for-

mula where the formula is compressed into one single value to
obtain a constant-size proof for the number of all attributes of a
user and the size of the proved formula.
AccSetup: This is the algorithm to output the public parame-
ters. Select bilinear group G1 and G2 with a prime order p and
a bilinear map e. Select γ ∈R Zp, and compute and publish
p,G1,G2, e, g, g1 = g

γ1
, . . . , gn = g

γn
, gn+2 = g

γn+2
, . . . , g2n =

gγ
2n
, g̃, g̃1=g̃

γ1
, . . . , g̃n = g̃

γn
, g̃n+2 = g̃

γn+2
, . . . , g̃2n = g̃

γ2n
and

z = e(g, g̃)γ
n+1

as the public parameters.
AccGen: This is the algorithm to compute the accumulator
given the public parameters and a monotone formula M. For
inputM, run the tag assignment algorithm. The tag assignment
algorithm outputs T and Si for i ∈ MA, where T is the total num-
ber of tag indices and Si is the set of tag indices assigned to each
attribute i. Set a tag value as ct = (η + 1)t−1 for all 1 ≤ t ≤ T .
We assume that (η + 1)cT < p. The accumulator of M outputs
accM =

∏
i∈MA g

∑
t∈Si

ct

n+1−i , together with S1, . . . ,S|MA|, c1, . . . , cT .
AccWitGen: This is the algorithm to compute the witness of
the minimal satisfaction ofM by Û (i.e.,Û s.t. MS(Û,M) = 1),
given the public parameters and Û,M, S1, . . . ,S|MA|, c1, . . . , cT .

The witness is computed as W =
∏

j∈Û
∏

i∈MA ,i� j g̃
∑

t∈Si
ct

n+1−i+ j.
AccVerify: This is the algorithm to verify the minimal satisfac-
tion of M by Û, given the public parameters and accM, Û,W,
c1, . . . , cT . Set u = c1 + . . . + cT , accept if,

e(accM,
∏

i∈Û g̃i)

e(g,W)
= zu.

Intuition behind construction: Each algorithm in the extended ac-

cumulator is basically the same as the underlying scheme [14] for
CNF formulas. The only difference is how to utilize tags. In
Ref. [14], each attribute is assigned to index i, and a tag ck is as-
signed to the k-th OR clause in the CNF formula. The calculation
of acc is the multiplications of gck

n+1−i for all attributes i in the CNF
formula. In this case, in this accumulator’s verification equation,
the left-hand side produces zck for a matched attribute from the
user’s attribute set U. Therefore, if U includes an attribute in ev-
ery clause of CNF formula, zc1+···+cT is produced in the left-hand
and the verification equation holds.

In the extended scheme, a tree expression of the monotone
formula is constructed, and a sequence of tags is assigned to
each attribute. Then, as an output of the tag assignment algo-
rithm, if Û is a minimal attribute set, the tags of attributes in Û

are exactly c1, . . . , cT . The computation of acc in the extended
scheme is similar to Ref. [14], which is the multiplications of
g
∑

t∈Si
ct

n+1−i for every attribute i inM, where Si is the set of tags as-
signed to attribute i. The verification equation is the same as in
Ref. [14]. Thus, due to the same principle, the left-hand side pro-
duces z

∑
t∈Si

ct for a matched attribute i from Û. Therefore, if Û is
a minimal attribute set, z

∑
i∈Û
∑

t∈Si
ct = zc1+···+cT is produced in the

left-hand, and the verification equation holds.

3.6 Correctness and Security of Accumulator
Based on Section 3.2, we prove that the proposed accumulator

is correct and secure, as follows.
Theorem 2. The proposed accumulator is correct.

Proof. By substituting accM and W to the verification equation,
the left hand is equal to

e(
∏

i∈MA g
∑

t∈Si ct

n+1−i ,
∏

j∈Û g̃ j)

e(g,
∏

j∈Û
∏

i∈MA ,i� j g̃
∑

t∈Si ct

n+1−i+ j)

=
e(g,
∏

j∈Û
∏

i∈MA g̃
∑

t∈Si ct

n+1−i+ j)

e(g,
∏

j∈Û
∏

i∈MA ,i� j g̃
∑

t∈Si ct

n+1−i+ j)

= e(g,
∏

i∈Û

g̃
∑

t∈Si ct

n+1 ) = e(g, g̃
∑

i∈Û
∑

t∈Si ct

n+1 ).

This is equal to zu = e(g, g̃n+1)c1+···+cT , since {Si|i ∈ Û} is a parti-
tion of Sε due to Theorem 1. �

For proving the security of the accumulator, we prepare the
following lemma.
Lemma 1. For any t̄ (2 ≤ t̄ ≤ T), ct̄ >

∑
1≤t≤t̄−1 η · ct.

Proof. In the case of t̄ = 2, c2 = (η+1) ·c1 > η ·c1. For t̄ ≥ 3, we
assume the case of t̄ − 1, that is ct̄−1 >

∑
1≤t≤t̄−2 η · ct, and we will

prove the case of t̄. Using the assumption and ct̄ = (η + 1) · ct̄−1,
we have
∑

1≤t≤t̄−1

η · ct

= η · ct̄−1 +
∑

1≤t≤t̄−2

η · ct

< η · ct̄−1 + ct̄−1

= (η + 1) · ct̄−1

= ct̄

Thus, for any t̄ (2 ≤ t̄ ≤ L), we obtain ct̄ >
∑

1≤t≤t̄−1 η · ct. �
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Theorem 3. Under the n-DHE assumption, the proposed accu-

mulator is secure.

Proof. Assume the existence of such an adversary that out-
puts the described elements with non negligible probability. Let
g̃n+1 = g̃

γn+1
. By substituting accM to the calculation in the veri-

fication equation, we can obtain

e(
∏

i∈MA g
∑

t∈Si ct

n+1−i ,
∏

j∈Û g̃ j)

e(g,W)
= zu = e(g, g̃n+1)u,

e

⎛⎜⎜⎜⎜⎜⎜⎜⎝g,
∏

j∈Ũ

∏

i∈MA

g̃
∑

t∈Si
ct

n+1−i+ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = e(g,W · g̃u
n+1),

where S1,. . .,SMA are the output of AccGen for M. Thus, we
have
∏

j∈Ũ

∏

i∈MA

g̃
∑

t∈Si
ct

n+1−i+ j = W · g̃u
n+1.

Here, for all 1 ≤ t ≤ T , let λt be the number of Si s.t. t ∈ Si

for i ∈ Ũ. In this case, note that λt ≤ η, since λt ≤ |Ũ | and η is the
upper bound of |Ũ |. Then, we have
∏

j∈Ũ

∏

i∈MA ,i� j

g̃
∑

t∈Si
ct

n+1−i+ j ·
∏

1≤t≤T

g̃λtct

n+1 = W · g̃u
n+1

∏

j∈Ũ

∏

i∈MA ,i� j

g̃
∑

t∈Si
ct

n+1−i+ j = W · g̃u−∑1≤t≤T λtct

n+1 (1)

Set Δ = u−∑1≤t≤T λtct =
∑

1≤t≤T (1−λt)ct, due to u = c1+. . .+cT .
Equation (1) means that, if Δ � 0 (mod p), we can compute

g̃n+1 from the other g̃1, . . . , g̃n, g̃n+2, . . . , g̃2n. In the following, we
prove Δ � 0 (mod p).

Separate Sroot = {1, . . . ,T } to T >, T < and T =, where T > con-
sists of t s.t. (1 − λt) > 0, T < consists of t s.t. (1 − λt) < 0, and
T = consists of t s.t. (1 − λt) = 0. We can obtain

Δ =
∑

t∈T >
(1 − λt)ct +

∑

t∈T <
(1 − λt)ct +

∑

t∈T =
(1 − λt)ct

=
∑

t∈T >
(1 − λt)ct +

∑

t∈T <
(1 − λt)ct,

due to 1 − λt = 0 for all t ∈ T =.
Let t̃ be the maximum of t s.t. t � T = (i.e., t̃ ∈ T > or t̃ ∈ T <).

From the assumption ofMS(Ũ,M) = 0, {Si|i ∈ Ũ} is not a parti-
tion of Sε and thus λt � 1 for some t, which ensures the existence
of such t̃. Consider two cases.
(i) The first case is that t̃ ∈ T < (i.e., 1 < λt̃). Then, (1 − λt̃)ct̃ ≤
−ct̃. This is why

Δ ≤ −ct̃ +
∑

t∈T >
(1 − λt)ct +

∑

t∈T <,t�t̃

(1 − λt)ct.

For t ∈ T >, 1 − λt > 0. However, due to λt ≥ 0, we have
λt = 0, i.e., 1−λt = 1. For t ∈ T <, we have 1−λt < 0. Thus,

Δ < −ct̃ +
∑

t∈T >
ct.

From Lemma 1, we have ct̃ >
∑

t∈T > ct, due to t̃ > t for any
t ∈ T >. Thus, −ct̃ +

∑
t∈T > ct < 0. Therefore, we can obtain

Δ < 0. On the other hand, we obtain

Δ =
∑

1≤t≤T

(1 − λt)ct > −
∑

1≤t≤T

ηct,

due to 1 − λt > −η which is derived from λt ≤ η. From
Lemma 1, we have

∑
1≤t≤T−1, ηct < cT , and thus

∑

1≤t≤T

ηct < cT + ηcT = (η + 1)cT < p.

Thus, Δ > −p. Therefore, we have Δ � 0 (mod p).
(ii) The other case is that t̃ ∈ T > (i.e., 1 > λt̃). Then, due to

(1 − λt̃)ct̃ ≥ ct̃, we obtain

Δ ≥ ct̃ +
∑

t∈T >,t�t̃

(1 − λt)ct +
∑

t∈T <
(1 − λt)ct.

For any t ∈ T >, (i.e., 1 − λt > 0), (1 − λt)ct > 0 and thus

Δ > ct̃ +
∑

t∈T <
(1 − λt)ct.

Due to t̃ > t for any t ∈ T <, from Lemma 1 and λt − 1 < η,

ct̃ >
∑

t∈T <
ηct >

∑

t∈T <
(λt − 1)ct,

and thus

ct̃ +
∑

t∈T <
(1 − λt)ct > 0.

This is why we obtain Δ > 0. On the other hand, from
1 − λt < 1 and Lemma 1,

Δ ≤
∑

1≤t≤T

ct =
∑

1≤t≤T−1

ct + cT ≤ cT + cT .

Thus, Δ ≤ 2cT < p. Therefore, in this case, also Δ � 0
(mod p).

From Eq. (1),

g̃n+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝W
−1
∏

j∈Ũ

∏

i∈MA ,i� j

g̃
∑

t∈Si
ct

n+1−i+ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1/(u−∑1≤t≤T λtct)

For any j ∈ Ũ and any i ∈ MA satisfying i � j, we
have g̃n+1−i+ j � g̃n+1, and Δ = u − ∑1≤t≤T λtct � 0.
Thus, we can compute g̃n+1 with non-negligible probability
given g̃1, . . . , g̃n, g̃n+2, . . . , g̃2n, which contradicts n-DHE assump-
tion. �

4. Syntax and Security Model of Anonymous
Credential System

The syntax and security model of an anonymous credential sys-
tem for monotone formulas can be defined similarly to the previ-
ous work [14]. Here, we show the syntax and the security model.

4.1 Syntax
The attribute value is indexed by an integer from {1, . . . , n},

where n is the total number of attribute values. All attribute val-
ues in all attribute types are indexed by using the universal set
{1, . . . , n}.

The anonymous credential system consists of the following al-
gorithms:
IssuerKeyGen: The inputs of this algorithm are n, η, where η
is the maximum number of users’ attributes. The outputs are is-
suer’s public key ipk and issuer’s secret key isk.
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CertObtain: This is an interactive protocol between a proba-
bilistic algorithm CertObtain-U for the user and a probabilistic
algorithm CertObtain-I for an issuer, where the issuer issues the
certificate including the attributes to the user. CertObtain-U, on
input ipk and U ⊂ {1, . . . , n} that is indices corresponding to the
attributes of the user, outputs the certificate cert ensuring the at-
tributes of the user. On the other hand, CertObtain-I is given
ipk, isk as inputs.
ProofGen: This probabilistic algorithm, on inputs ipk, U, cert,
M that is the monotone formula on attributes to be proved, out-
puts the proof σ.
Verify: This is a deterministic algorithm for verification. The
input is ipk, a proof σ, and the formula M. Then the output is
‘valid’ if the attributes in U satisfyM, or ‘invalid’ otherwise.

4.2 Security Model
The security model consists of misauthentication resistance

and anonymity. The misauthentication resistance requirement
captures the soundness of the attribute proof. This means that an
adversary A cannot try to forge a proof for a monotone formula,
where the attributes of any user corrupted byA do not satisfy the
formula. The anonymity requirement captures the anonymity and
unlinkability of proofs, as in the group signatures.
4.2.1 Misauthentication Resistance

Consider the following misauthentication resistance game.
Misauthentication Resistance Game: The challenger runs Is-
suerKeyGen, and obtains ipk and isk. He provides A with ipk,
and run A. He sets CU with empty, where CU denotes the set
of IDs of users corrupted by A. In the run, A can query the
challenger about the following issuing query:
C-Issuing: A can request the certificates on attribute set U(i) of
user i. Then, A as the user executes CertObtain protocol with
the challenger as the issuer.

Finally,A outputs a monotone formulaM∗, and a proof σ∗.
Then,A wins if
( 1 ) Verify(ipk, σ∗,M∗) = valid, and
( 2 ) for all i ∈ CU, U(i) does not satisfyM∗.

Misauthentication resistance requires that for all PPT A, the
probability that A wins the misauthentication resistance game is
negligible.
4.2.2 Anonymity

Consider the following anonymity game.
Anonymity Game: The challenger runs IssuerKeyGen, and ob-
tains ipk, isk. He provides A with ipk, isk, and run A. He sets
HU with empty. In the run, A can query the challenger, as fol-
lows.
H-Issuing: A can request the certificates on attribute set U(i) of
user i. Then,A as the issuer executes CertObtain protocol with
the challenger as the user. The challenger adds this user to HU.

Proving: A can request the user i’s proof on formulaM. Then,
the challenger responds the proof onM of the user i, if the user
is in HU.

During the run, as the challenge,A outputs a formulaM, and two
users i0 and i1, such that both Ui0 and Ui1 satisfyM∗. If i0 ∈ HU

and i1 ∈ HU, the challenger chooses φ ∈R {0, 1}, and responds
the proof onM∗ of user iφ. After that, similarly,A can make the

queries.
Finally,A outputs a bit φ′ indicating its guess of φ.
If φ′ = φ, A wins. We define the advantage of A as |Pr[φ′ =
φ] − 1/2|. Anonymity requires that for all PPT A, the advantage
ofA on the anonymity game is negligible.

5. Proposed Anonymous Credential System

5.1 Construction Overview
Basically, the construction of the proposed system is similar to

the previous system [14], as follows. The certificate of attributes
is an AHO signature, where the user’s attributes in set U are uni-
fied to PU =

∏
i∈U g̃i and embedded for the accumulator verifica-

tion. Together with the accumulated value accM, PU are applied
in the verification equation of the accumulator to authenticate the
user. In the authentication, the user proves that the attributes in
U satisfy the given monotone formulaM, using the verification
equation of the accumulator in Section 3.5. To conceal any infor-
mation beyond the satisfaction, we utilize the GS proofs for the
pairing equations in the verification of the AHO signature and the
accumulator verification.

However, U might not be a minimal attribute set which causes
a failure in the verification. Thus, the user must derive Û from
U such that Û is a minimal attribute set and use Û in the veri-
fication equation. However, it is not easy for the user to gener-
ate a certificate of PÛ from the issued certificate of PU . Hence,
we have the following approach: Consider all possible candi-
dates Uk(1 ≤ k ≤ K) of subsets of U such that a Uk satisfying
MS(Uk,M) = 1 exists for any monotone formulaM. Then, the
user is issued certificates for all Uk. In the authentication, for a
given monotone formula M, the user selects a certificate for a
Uk = Û such that Û is the minimal attribute set, and can prove
the correctness of the certified attributes of the user using the ver-
ification of AHO signatures.

Compared to Ref. [14], there are two differences in construc-
tion: The first one is that the accumulator for CNF formulas in
Ref. [14] is replaced by our extended accumulator for monotone
formulas in Section 3.5. The second one is that the certificate on
PU for user’s attribute set U is replaced by the certificates on PUk

for all subsets Uk ⊂ U, as shown above.

5.2 Construction
IssuerKeyGen. It is given n that is the total number of attributes
and η that is the maximum number of user’s attributes. Here, η is
fixed by the authority in advance.
( 1 ) Select bilinear groups G1,G2,GT with the same order p and

the bilinear map e, and generators g ∈R G1, g̃ ∈R G2.
( 2 ) Generate public parameters of the accumulator: Select γ ∈R

Zp, and compute pkacc = (g1=g
γ1
, . . . , gn = g

γn
, gn+2 =

gγ
n+2
, . . . , g2n = g

γ2n
, g̃1 = g̃

γ1
, . . . , g̃n = g̃

γn
, g̃n+2 =

g̃γ
n+2
, . . . , g̃2n = g̃

γ2n
, z = e(g, g̃)γ

n+1
).

( 3 ) Generate a key pair for the AHO signatures:

pkAHO = (Gr,Hr,Gz,Hz,G,H, A, B)

skAHO = (αa, αb, μz, νz, μ, ν)

( 4 ) Generate a CRS for the perfect sound setting of the GS proof:
Select (u1,u2, u1, u2) for u1 = (u11, u12), u2 = (u21, u22), u1 =
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(v11, v12), u2 = (v21, v22), where u11, u12 ∈R G1, v11, v12 ∈R G2

and u2 = uξ11 , u2 = u
ξ2
1 for ξ1, ξ2 ∈R Z

∗
p.

( 5 ) Output the issuer public key ipk=(p,G1,G2,GT ,e,g,g̃,pkacc,
pkAHO, (u1, u2, u1, u2)), and the issuer secret key isk=skAHO.

CertObtain. In this protocol, the common inputs are ipk and
the user’s attribute set U, and the issuer’s input is isk. Note that
user’s attribute set is fixed to a subset of {1, . . . , n}, i.e., the small
universe.
( 1 ) As all possible subsets of set U, the issuer prepares Uk for

all 1 ≤ k ≤ K where K is the total number of the subsets.
( 2 ) Using skAHO, the issuer generates each AHO signatures on

Pk =
∏

i∈Uk
g̃i as σk for all 1 ≤ k ≤ K and then send them to

the user.
( 3 ) The user outputs the obtained signatures cert = {(σk)1≤k≤K},

as the certificates.
ProofGen. The inputs are ipk, U, cert and the monotone formula
M. Define Û ⊆ U is the minimal attribute set selected by the user
to satisfy the formulaM.
( 1 ) Using AccGen, run the tag assignment algorithm. For each

attribute i in M, a series of tags Si is assigned, where the
tags are c1, . . . , cT . Then, compute the accumulator:

accM =
∏

i∈MA

g
∑

t∈Si
ct

n+1−i .

( 2 ) User calculates PÛ =
∏

i∈Û g̃i.
( 3 ) User selects certificate σk w.r.t. PÛ s.t. Û = Uk for some Uk

from cert.
( 4 ) Compute the witness that Û satisfiesM for accM:

W =
∏

j∈Û

∏

i∈MA ,i� j

g̃
∑

t∈S(i) ct

n+1−i+ j

and sets a public data u = c1 + . . . + cT .
( 5 ) Compute GS commitments comPÛ

, comW to PÛ ,W. Then re-
randomize the AHO signature σk to obtain σ′k = {θ

′
1, . . . , θ

′
7},

and compute GS commitments {comθ′i }i∈{1,2,5}.
( 6 ) Generate the GS proofs {πi}3i=1 s.t.

zu = e(accM, PÛ ) · e(g,W)−1, (2)

A · e(θ′3, θ
′
4)−1 = e(Gz, θ

′
1) · e(Gr, θ

′
2) · e(G, PÛ ), (3)

B · e(θ′6, θ
′
7)−1 = e(Hz, θ

′
1) · e(Hr, θ

′
5) · e(H, PÛ ), (4)

where zu,accM,g,A,B,θ′3,θ′4,θ′6,θ′7,Gz,Gr,G,Hz,Hr,H are pub-
lic data, while PÛ ,W,θ′1,θ′2,θ′5 are secret data, which are com-
mitted.

( 7 ) Output σ = ({θ′i }i=3,4,6,7, comPÛ
, comW , {comθ′i }i=1,2,5, {πi}3i=1).

The Eq. (2) shows the verification relation of accumulator:

e(accM, PÛ )

e(g,W)
= zu, (5)

where PÛ =
∏

i∈Û g̃i. Equations (3), (4) show the knowledge of
the AHO signature of PÛ .
Verify. The inputs are ipk, the proof σ, and the proved formula
M.
( 1 ) Using AccGen, run the tag assignment algorithm. For each

attribute i in M, a series of tags Si is assigned, where the
tags are c1, . . . , cT . Then, compute the accumulator:

accM =
∏

i∈MA

g
∑

t∈Si
ct

n+1−i .

( 2 ) Accept σ, if the verification of all GS proofs are successful.

5.3 Security
We can prove the following security of our construction.

Theorem 4. The proposed system satisfies the misauthentication

resistance under the security of the AHO signatures and the ex-

tended accumulators.

Proof. To win the misauthentication resistance game, the adver-
saryAmust output a valid proof, when the attributes of corrupted
users do not satisfy the predicate M∗. Let σ = ({θ′∗i }i=3,4,6,7,
com∗P∗

Ũ∗
, com∗W∗ , {com∗

θ′∗i
}i=1,2,5, {π∗i }3i=1) be the forged proof. In

this proof of theorem, we use notation Ũ∗ instead of Û because
MS(Ũ∗,M∗) = 0. Since the CRS for the perfect soundness set-
ting is prepared, due to the extractability, the GS commitments
are extractable. Thus, we can extract P∗

Ũ∗
,W∗ satisfying the equa-

tion (2) for accumulator verification with acc∗M∗ that is correctly
computed fromM∗ by the verifier, and the re-randomized AHO
signature σ′∗Ũ∗ = {θ

′∗
1, . . . , θ

′∗
7} for P∗

Ũ∗
satisfying Eqs. (3), (4). We

distinguish the following cases.
• Type 1 forgery. This is the case that the AHO signature on

P∗
Ũ∗

was never issued to any corrupted user i (i.e., i ∈ CU).
• Type 2 forgery. This is the case that the AHO signature on

P∗
Ũ∗

was issued to a corrupted user i.
Using Type 1 forgery, we can obtain a forger against the AHO

signatures, as follows.
Type 1 forgery. The public key pkAHO of AHO signatures is
given. Then, choose and compute other parameters in ipk, as the
real algorithm, and runA on ipk. For the C-Issuing query, to the
signing oracle, request the AHO signatures on Pk =

∏
i∈Uk
g̃i, for

all subsets Uk of U(i) requested by A. Respond the AHO signa-
tures as certi. Finally,A outputs a predicateM∗, and a proof σ∗.
In this case, since the AHO signature σ′∗Ũ∗ was never issued for
P∗

Ũ∗
, this implies the forgery against the AHO signature.

Using Type 2 forgery, we can obtain an adversary against the
extended accumulator, as follows.
Type 2 forgery. The public parameters of the extended accu-
mulator are given. Then, choose and compute other parameters
in ipk, as the real algorithm, and run A on ipk. In the run, each
C-Issuing query is responded as in the real algorithm. Finally,A
outputs a predicate M∗, and a proof σ∗. In this case, the AHO
signature on Ũ∗ was correctly issued to some corrupted user i.
Thus P∗

Ũ∗
=
∏

i∈Ũ∗ g̃i for a subset Ũ∗ of U(i), and Ũ∗ does not sat-

isfyM∗. Note that acc∗M∗ =
∏

i∈M∗A g
∑

t∈Si
ct

n+1−i is correctly computed
by the verifier. Therefore, we can forge Ũ∗,M∗, and W∗, where
P∗

Ũ∗
and acc∗M∗ are correct, AccVerify accepts Ũ∗,W∗, acc∗M, but

MS(Ũ∗,M∗) = 0. �
Theorem 5. The proposed system satisfies the anonymity under

the SXDH assumption.

Proof. Consider the sequence of games, as follows.
Game 1. This is the anonymity game for the proposed sys-
tem. The challenger generates ipk, isk using IssuerKeyGen al-
gorithm, where the CRS is prepared for the perfect soundness set-
ting. The challenger runs the adversary A with ipk, isk. For the
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Table 1 Asymptotic Efficiency Comparisons.

ProofGen Cost Verify Cost Proof Certificate
EXP MUL PAIRING EXP MUL PAIRING size size

Previous System [14] O(T ) O(A · |U |) O(1) O(T ) O(A) O(1) O(1) O(1)

Proposed System O(T ′) O(A′ · |Û |) O(1) O(T ′) O(A′) O(1) O(1) O(2|U |)

T : number of ANDs in CNF formula, T ′: number of ANDs in monotone formula, A: number of attributes in
CNF formula, A′: number of attributes in monotone formula, |U |: number of user’s attributes, |Û |: number
of attributes in minimum attribute set.

Proving query and the challenge query, the challenger responds
using ipk and certi in the response of the H-Issuing query.
Game 2. In IssuerKeyGen algorithm, the challenger gener-
ates the CRS for the perfect WI setting. Namely, choose
(u1,u2, u1, u2) for u1 = (u11, u12), u2 = (u21, u22), u1 = (v11, v12),
u2 = (v21, v22), where u11, u12 ∈R G1, v11, v12 ∈R G2 and u2 =

uξ11 /(1, g̃), u2 = u
ξ2
1 /(1, g̃) for ξ1, ξ2 ∈R Z

∗
p. The others are the

same as Game 1.
Let S 1, S 2 denote the events that φ′ = φ in Game 1, 2, re-

spectively. In Game 2, the proof of responded in the challenge
consists of the GS commitments that are perfectly hiding in the
WI setting, the GS proofs that reveal no information about the un-
derlying witness due to the perfect WI, and the randomized AHO
signatures {θ′i }i=3,4,6,7 that are information-theoretically indepen-
dent of the signed messages and the remaining AHO signatures.
Thus, we have Pr[S 2] = 1/2. On the other hand, |Pr[S 1]−Pr[S 2]|
is negligible due to the CRS indistinguishability under the SXDH
assumption. Therefore, the advantage of A, i.e., |Pr[S 1] − 1/2|,
is negligible, which means that the proposed system is anony-
mous. �

6. Comparisons and Efficiency Improvement

As mentioned in Introduction, since there are the previous
systems of Refs. [1], [5], [12], [14] with constant-size attribute
proofs, we briefly discuss about the comparisons. The previous
systems [1], [5] support only simple AND or OR relations on at-
tributes, and thus the proved formulas are less expressive. The
previous system [12] supports the AND/OR relation as an inner
product on two vectors. The proof generation requires O(1) pair-
ing but O(n2) exponentiations, where n is the size of vectors (The
verifying costs are O(1) pairing and O(n) exponentiations). As
shown in Ref. [8], using the inner product, CNF and DNF for-
mulas on attributes are verified via polynomial evaluations. In
the attribute proof, the vector size depends on the number of OR
relations in the proved formula. This is why the proof genera-
tion suffers from the heavy exponentiation costs in cases of for-
mulas with lots of OR relations, which this paper targets, such
as the example of the alcohol related website. Therefore, in the
folowing detailed comparisons, we concentrate on the remaining
system [14].

6.1 Efficiency Comparisons
We compare the efficiency of our proposed system to the pre-

vious system [14].
Firstly, we compare the asymptotic efficiency of the proof

(ProofGen’s output σ) size, certificate size, and the computation
costs of the more frequently executed authentication protocol that

consists of ProofGen and Verify algorithms. In both systems,
ProofGen mainly consists of computations of accM and W and
GS proof generation. Verify consists of the computation of accM
and GS proof verification.

Here, we review the computations of W from the previous sys-
tem and the proposed system. In the previous system,

W =
∏

j∈U

∏

1≤t≤T

⎛⎜⎜⎜⎜⎜⎜⎝
i� j∏

j∈Vt

g̃n+1−i+ j

⎞⎟⎟⎟⎟⎟⎟⎠
ct

,

where ct are similar tags, and Vt includes the attribute literals of
the t-th clause in the CNF formula. In this computation, by ar-
ranging the calculation order, the cost of the exponentiations of ct

can be reduced to T , which is the number of ANDs. On the other
hand, the number of multiplications is A · |U |, where A is the num-
ber of attribute literals in CNF formula, i.e., A =

∑
1≤t≤T |Vt |. Sim-

ilarly, we can observe that the exponentiation and multiplication
costs to compute the accumulator are about T and A, respectively.

In the proposed system,

W =
∏

j∈Û

∏

i∈MA ,i� j

g̃
∑

t∈Si
ct

n+1−i+ j.

Also, we can arrange the calculation order to

W =
∏

1≤t≤T ′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∏

j∈Û

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∏

i∈SMA
−1(t),i� j

g̃n+1−i+ j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ct

,

where T ′ is the number of AND in the monotone formula, and
SMA

−1(t) is the set of i such that attribute i is assigned to tag ct.
The number of exponentiations of ct is approximately T ′. The
number of multiplications is A′ · |Û |, where A′ denotes the num-
ber of attribute literals in M, i.e., A′ = |MA|, and it is at most
A′ · |U |, due to |Û | ≤ |U |. Similarly, we can observe that the ex-
ponentiation and multiplication costs to compute the accumulator
are about T ′ and A′, respectively.

Table 1 summarizes the asymptotic efficiency comparisons,
where EXP, MUL, and PAIRING mean the costs of exponenti-
ations, multiplications, and pairings, respectively. Note that the
computation and size of GS proofs used in ProofGen and Ver-
ify does not depend on the parameters T,T ′, A, A′, |U |, |Û |. This
is similar to Ref. [14] where the number of GS proofs is reduced
and thus the computational cost is reduced from the previous sys-
tem to the proposed system. Thus, the pairing cost is O(1) in both
systems, and the size of proof σ outputted in ProofGen is also
O(1) in the both systems. On the other hand, although the cer-
tificate size is O(1) in Ref. [14], that of the proposed system is
O(2|U |), since 2|U | AHO signatures are issued.

As shown in Table 1, the computation costs in both systems
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are comparable, if the parameters A and T for the CNF formula
in the previous system are the same as A′ and T ′ for the mono-
tone formula in the proposed system. However, note that, since
the monotone formula is more expressive, the representaion of the
monotone formula for a proved formula may be shorter than the
CNF formula, i.e., A′ and T ′ may be smaller than A and T . Any
monotone formula can be converted to a CNF formula. However,
the conversion may cause A and T for the converted CNF for-
mula to grow larger than A′ and T ′ for the original monotone for-
mula. For example, a monotone formula (a11∧a12)∨ (a21∧a22)∨
· · · (ak1∧ak2) with O(k) literals can be converted to a CNF formula
(a11∨a21∨· · ·∨ak1)∧(a11∨a22∨· · ·∨ak1)∧· · · (a12∨a22∨· · ·∨ak2)
with O(2k) literals by using the distribution property. Thus, in the
cases that proved formulas require longer sizes in the represen-
tation of the CNF formula than the monotone formula, such as
this example, the proposed system has more efficient computa-
tion costs, since O(T ) exponentiations (resp., O(A · |U |) multi-
plications) need more computations than O(T ′) exponentiations
(resp., O(A′ · |Û |) multiplications) due to A′ < A and T ′ < T . This
is the main advantage of our system.

Next, we show the concrete efficiency using an example of au-
thentication for accessing alcohol related websites using national-
ity and birth date, which is the situation of lots of OR relations in
the proved formula, as targeted in Section 1. In the formula, four
categories of attributes are used; the nationality, the birth-year,
the birth-month and the birth-day. The example of the monotone
formula is as follows:
F1 = (Australia∨ . . .)∧ (1915∨ . . .∨ (1997∧ (Jan∨ . . .∨ (Sept∧
(1st ∨ . . . ∨ 5th))))).
The CNF type of formula is as follows:
F2 = (Australia ∨ . . .) ∧ (1915, Jan.1st ∨ · · · ∨ 1997, Sept.5th),
where each birthday is encoded to one attribute value such as
“1915, Jan.1st”.

In the previous system [14] for CNF formulas, as described in
Section 1, F2 has A = 30,299 attribute literals, and thus the mul-
tiplication costs with O(A · |U |) complexity becomes very large.
On the other hand, in the proposed system, F1 needs A = 198
attribute literals, and the multiplication cost with O(A′ · |Û |) com-
plexity is greatly reduced. In F1, the number of ANDs is small
(concretely, 3), and thus the exponentiation cost is small. The
concrete experiment of implementation is shown in Section 7.3.

As indicated by the above example, the proposed system for
monotone formulas is more advantageous over Ref. [14] in cases
of numerical range proofs. Another application example of range
proofs is to verify the expiry date in a privacy-enhancing way. For
example, in an online video streaming service, a user can show
his access privilege to the service by showing his subscription
and the expiry-date. To conceal the expiry-date for anonymity,
the formula of expiration check can be expressed as the range
from today to the maximum of subscription time, where the user
proves that his expiry-date is in the range. The monotone formula
is expressed efficiently as well as the above F1, and thus the range
proof is efficiently executed, compared to Ref. [14].

6.2 Comparison of Restrictions
A formula that can be used in the proposed system is in mono-

tone formulas, while that in the previous system [14] is in CNF
which is more restricted class. However, due to the underlying
accumulators, restrictions on the usable formulas and user’s at-
tributes exist in both systems, as follows. Firstly, the accumu-
lator works well, only when T < log2 p/ log2(η + 1). This is
because we assume (η + 1)cT < p in AccGen, which implies
p > (η + 1)cT = (η + 1)T , and thus log2 p > log2(η + 1)T . Since
log2 p > log2(η + 1)T = T log2(η + 1), we have the restriction
T < log2 p/ log2(η + 1), i.e., the number T of ANDs in the for-
mula must be less than log2 p/ log2(η + 1), where η is th upper
bound of |U |. For example, in the 128 bit security with 254-bit
group order and η = 50, we can set T ≈ 40 in maximum. Since
one person in general owns at most 40 attributes for user’s at-
tribute authentications, we consider that this restriction is not too
strong. This restriction also exists in the previous scheme [14],
due to the similar construction of the accumulator and similar as-
sumption for cT .

Secondly, the proposed system is of the small universe, i.e.,
the set of all attributes is fixed in advance by some authority and
users have to select their attributes from the fixed set, since the
proposed system needs that the attribute set is correspondent to
{1, . . . , n}. The large universe, i.e., the attribute set is not fixed, is
general, and thus the small universe is a restriction. This restric-
tion also exists in the previous scheme [14], since the construction
of the accumulator is similar.

Thirdly, the proposed system has a restriction that the upper
bound of |U | of every user, η, is fixed in advance by some author-
ity. On the other hand, the previous system has other restrictions:
For the t-th OR clause in every proved CNF formula and every
user’s attribute set U, the maximum number of |Vt ∩ U | has to be
fixed in advance. Also, the maximum number of OR clauses in a
CNF formula has to be fixed.

Fourthly, in the proposed system, we assume that the attribute
indices in M are all different, due to the underlying accumula-
tor, even when M inlcudes the same attributes twice or more.
The previous system [14] does not need the assumption. As men-
tioned in Section 3.5, we can cope with this by assigning the same
attributes inM to different attribute indices, but the number of in-
dices for the same attribute has to be fixed in advance.

6.3 Reducing Certificate Size
As mentioned in Section 5.1, we consider that the user is is-

sued signatures cert = (σk)1≤k≤K for all subsets Uk(1 ≤ k ≤ K)
for the set of user’s attributes, U. Thus, the certificate size be-
comes large, since K is increased exponentially to the number
of user’s attributes |U |. To reduce the number of the certifi-
cates, we can show a simple improvement idea. The idea is
to separate set U into two subsets of U1 and U2. We consider
|U1| � |U2| � |U |/2. The issuer generates signatures of all subsets
of U1 and signatures of all subsets of U2 independently. The user
obtains cert1 = (σk)1≤k≤K1 and cert2 = (σk)1≤k≤K2 , where K1 and
K2 are the numbers of subsets in set U1 and U2, respectively. In
the attribute proof protocol, the user proves the knowledge of the
signatures of both Û1 and Û2 using GS Proof for PÛ1

=
∏

i∈Û1
g̃i

and PÛ2
=
∏

i∈Û2
g̃i respectively, where Û1 ⊆ U1 and Û2 ⊆ U2.

Hence, the accumulator verification equation is modified as fol-
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lows:

e(accM, PÛ1
)e(accM, PÛ2

)

e(g,W)
= zu.

By this equation, the user proves that his/her attributes from sub-
set Û1 and Û2 satisfy the monotone formulaM. Compared to the
proposed system in Section 5.2, this modification idea reduces
the certificate size from K = 2|U | into approximately

√
K.

7. Implementation and Experiment

To show the practicality of our system, we implemented the
system and measured the processing time. In this section, we
show the experimental results.

7.1 Utilized Pairing Library
At the coming of 128-bit security, the asymmetric pairing e s.t.
G1 ×G2 → GT is faster than the symmetric one [15]. Thus, in the
implementation, we adopt the asymmetric type, and we utilize the
fast pairing library called “Cross-twisted χ-based Ate (Xt-Xate)
pairing” [11] with 254-bit group order and the embedding degree
is 12. The security level is equivalent to the 128-bit AES. The
library is based on the GMP library and implemented by C lan-
guage due to the pursuit of the fastness.

7.2 Instantiation of GS Proof
For the implementation, we need to instantiate the GS proof [7]

concretely. Based on the utilized pairing and cryptographic as-
sumption, there are three types of instantiations. Since we utilize
asymmetric pairing from the viewpoint of efficiency, we adopt
the GS proof based on the SXDH assumption for the asymmetric
pairing.

7.3 Experiment and Evaluation
To confirm the efficiency consideration of the comparison be-

tween the proposed system for monotone formulas and the pre-
vious system [14] for CNF formulas in Section 6, we measured
the processing times of the authentication protocol for the prover

Table 2 Environments of implementation and experiments.

CPU Intel Core i5-4460 (3.20 GHz)

Main memory 7.8 GB

OS Ubuntu 14.04 LTS

Multiple Precision GMP-6.0.0
Arithmetic Library

Pairing Library ELiPS [11]

C compiler GCC-4.8.4

Table 3 Comparison of computation times.

Proposed System Previous System [14]
(monotone formula) (CNF formula)

Prover
63.04 969.11

Time [ms]

Verifier
132.57 376.97

Time [ms]

Table 4 Comparison of accM and W times.

Proposed system Previous system

accM Time [ms] 3.24 159.19

W Time [ms] 13.89 748.18

(ProofGen) and verifier (Verify). The environments of the im-
plementation and experiments are shown in Table 2.

Table 3 shows the processing times. The used formulas are F1

and F2 in Section 6, where the monotone formula F1 includes 198
literals, and the CNF formula F2 includes 30,299 literals. From
this table, we can confirm that both prover and verifier times are
reduced, but the prover time is greatly reduced. To explore the
reason, we measured the computations of accM and W that de-
pend on the formula size, as in Table 4. From this table, we can
confirm that the reduction of these computation times (especially
W time) influences the reduction of prover and verifier times.

8. Conclusions

In this paper, we propose an extended accumulator to prove
monotone formulas on attributes, and apply it to the anonymous
credential system in order to obtain more efficiency in the proofs
generation. The monotone formula is more expressive and com-
pact than the CNF formulas, and thus the proposed system can re-
duce the proof generation time, compared to the previous system
for CNF formulas. The size of the user’s certificates is O(2|U |) due
to the restriction of the newly proposed accumulator for mono-
tone formulas. A simple modification idea enables the reduction
of the size from O(2|U |) to O(

√
2|U |).

Our future work includes the applications on mobile devices,
the addition of user revocation mechanism, and the application of
the method of efficient range proof in ABE [13] to the anonymous
credential system.
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