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Abstract: Let G = (V, E) be a simple connected graph. A vertex u ∈ V is called a hinge vertex if there exist two
vertices x and y in G whose distance increases when u is removed. Finding all hinge vertices of a given graph is called
the hinge vertex problem. This problem can be applied to improve the stability and robustness of communication
network systems. In a number of graph problems, it is known that more efficient sequential or parallel algorithms can
be developed by restricting classes of graphs. Circular trapezoid graphs are proper super-classes of trapezoid graphs.
In this paper, we propose an O(n2) time algorithm for the hinge vertex problem of circular trapezoid graphs.
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1. Introduction

Let G = (V, E) be a simple undirected graph with a vertex set
V and an edge set E. For a vertex u ∈ V , we denote the subgraph
induced by the vertex set V − {u} as G− {u}. The distance δG(x, y)
is defined as the length (i.e., the number of edges) of the shortest
path between vertices x and y in G. Chang et al. defined u ∈ V as
a hinge vertex in G if two vertices x, y ∈ V − {u} exist, such that
δG−{u}(x, y) > δG(x, y) [2]. Hence, a vertex u ∈ V is a hinge vertex
if there exist two vertices x and y in G whose distance increases
when u is removed. Note that articulation vertices are a special
case of hinge vertices in that the removal of an articulation vertex
u changes the finite distance of some nonadjacent vertices x and y
to infinity. Finding all hinge vertices of a given graph is called the
hinge vertex problem. For a simple graph G with n vertices, the
hinge vertex problem can be solved in O(n3) time by the results
in Ref. [2], e.g., Lemma 1 in this study.

The computation of topological properties is a very important
research topic, which influences the design and analysis of dis-
tributed networks. For example, the overall cost of communica-
tion in a network will increase if a computer that corresponds to a
hinge vertex stalls. Therefore, identifying the set of hinge vertices
in a graph can help detect critical nodes, which can be useful for
constructing more stable communication network systems [6].

Numerous studies of hinge vertices on several intersection

graphs have been published. For example, Ho et al. [3] presented
an O(n) time algorithm for the hinge vertex problem on permuta-

tion graphs. Moreover, Hsu et al. [8] presented an O(n) time algo-
rithm on interval graphs. The class of trapezoid graphs properly
contains both interval graphs and permutation graphs. Honma
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and Masuyama [4] and Bera [1] presented O(n log n) time algo-
rithms for the hinge vertex problem on trapezoid graphs, respec-
tively. Recently, Honma et al. presented an algorithm that runs in
O(n2) time for identifying the maximum detour hinge vertex on
interval graphs [6] and permutation graphs [7].

Lin [9] introduced a circular trapezoid graph (CTG for short),
which is a proper superclass of trapezoid graphs and circular-arc
graphs. They presented that the maximum weighted independent
set can be found in O(n2 log log n) time on a circular trapezoid
graph [9]. In this study, we propose an O(n2) time algorithm for
solving the hinge vertex problem on a CTG.

2. Preliminaries

In this section, we propose some useful data structures and in-
teresting properties on CTGs. We show the circular trapezoid

model (CTM for short) before defining the CTG. The model con-
sists of inner and outer circles C1 and C2 with radius r1 < r2. Each
circle is assigned counterclockwise with consecutive integer val-
ues 1, 2, . . . , 2n, where n is the number of trapezoids. Consider
two arcs, A1 and A2, on C1 and C2, respectively. Points a and b

(resp., c and d) are the first points encountered when traversing
the arc A1 (resp., A2) counterclockwise and clockwise, respec-
tively. A trapezoid is the region in circles C1 and C2 that lies
between two non-crossing chords ac and bd. A trapezoid CTi is
defined by four corner points [ai, bi, ci, di]. Each trapezoid CTi is
numbered in the ascending order of their corner points bi’s, i.e.,
i < j if bi < b j. The geometric representation described above is
called the CTM. Figure 1 (a) illustrates an example of a CTM M

with 12 trapezoids. Table 1 shows the details of M in Fig. 1 (a).
An undirected graph G is a CTG if it can be represented by

the following CTM M: each vertex of the graph corresponds to
a trapezoid, and two vertices are adjacent in G if and only if
their corresponding trapezoids intersect. Figure 1 (b) illustrates
the CTG G corresponding to M shown in Fig. 1 (a). In this ex-
ample, δG(3, 7) = 2 and δG−{5}(3, 7) = 4, therefore, vertex 5 is a
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Fig. 1 Circular trapezoid model M and graph G.

Table 1 Details of CTM M.

i 1 2 3 4 5 6 7 8 9 10 11 12

ai 22 21 23 4 24 6 8 10 11 13 15 17
bi 1 2 3 5 7 9 12 14 16 18 19 20
ci 19 20 2 1 23 7 5 10 11 13 16 14
di 21 22 3 4 6 9 8 12 15 17 18 24

hinge vertex for 3 and 7. All hinge vertices in G are 5, 7, 9 and 12.
In the following, we introduce an extended circular trapezoid

model (ECTM for short) constructed from a CTM. Let n be the
number of trapezoids in CTM M. Consider a fictitious line p that
connects the points placed between 1 and 2n of C1 and C2. An
ECTM EM is obtained by opening a CTM M along a fictitious
line p. The ECTM EM consists of two horizontal parallel lines
called top and bottom channel, respectively. To avoid confusion,
we denote a trapezoid in CTM and ECTM by CTi and Ti, respec-
tively. For each Ti, 1 � i � n, copies Ti+n are created by shifting
2n to the right. A procedure for constructing ECTM EM from
CTM M in O(n) time is presented in Ref. [5]. Figure 2 illustrates
an ECTM EM constructed from the CTM M shown in Fig. 1 (a).

The following properties can be derived in a straightforward
manner from the processes of constructing an ECTM [5].
(1) Ti and Ti+n in ECTM EM correspond to the vertex i in

CTG G.
(2) A vertex i is adjacent to j in G if and only if Ti and T j, or T j

and Ti+n intersect in EM. �

3. Useful Lemmas for Hinge Vertex Problem

We introduce some notations that will be used in our algorithm.
Let EM be an ECTM constructed from CTM M. We define mt(i),
smt(i), mb(i), and smb(i) as follows. Here, the set (including i) of
all trapezoids that intersect Ti in EM is denoted by NT [i].
• mt(i) = k such that bk = max{ b j | j ∈ N[i]},
• smt(i) = k such that bk = max{ b j | j ∈ (N[i] − mt(i) ∪ {i})},
• mb(i) = k such that dk = max{ d j | j ∈ N[i]},
• smb(i) = k such that dk = max{ d j | j ∈ (N[i] − mb(i) ∪ {i})}.
In the following, we define Yt(i) and Yb(i) as follows.

Yt(i) =

⎧
⎪⎪⎨
⎪⎪⎩

{ j | bsmt(i) < a j < bmt(i), dsmb(i) < c j} : mt(i) = mb(i),
{ j | bsmt(i) < a j < bmt(i), dmb(i) < c j} : otherwise.

Yb(i) =

⎧
⎪⎪⎨
⎪⎪⎩

{ j | dsmb(i) < c j < dmb(i), bsmt(i) < a j} : mt(i) = mb(i),
{ j | dsmb(i) < c j < dmb(i), bmt(i) < a j} : otherwise.

For the example shown in Fig. 2, for the vertex 5, we have
mt(5) = 7, smt(5) = 6, mb(5) = 6, smb(5) = 7, Yt(5) = {8, 9}, and
Yb(5) = ∅. Table 2 shows details of mt(i), smt(i), mb(i), smb(i),
Yt(i), and Yb(i) for EM shown in Fig. 2.

We present some lemmas of hinge vertices on CTGs, which are
useful for efficiently identifying the hinge vertices. Lemma 1 is
proposed by Chang et al. [2] characterizes the hinge vertices of a
simple graph.

Lemma 1 For a simple graph Gs, a vertex u is a hinge vertex
of Gs if and only if there exist two nonadjacent vertices x, y such
that u is the only vertex adjacent to both x and y in Gs. �

We can easily obtain the following Lemma 2 from Lemma 1.
Lemma 2 For a CTG G, a vertex u is a hinge vertex of G if

and only if there exist two trapezoids CTx and CTy such that CTx

and CTy do not intersect, and CTu is the only trapezoid intersect-
ing both CTx and CTy in a CTM M. �

For the example shown in Fig. 1, CT5 and CT8 do not inter-
sect and CT7 is the only trapezoid intersecting both CT5 and CT8

in M. Therefore, vertex 7 is a hinge vertex for 5 and 8 in the
corresponding CTG G.

The following Lemma 3 provides the necessary and sufficient
condition for hinge vertices in a trapezoid graph presented by
Honma and Masuyama [4].

Lemma 3 A vertex u is a hinge vertex of a trapezoid graph
if and only if there exist two vertices x, y satisfying either of the
following conditions.
(1) u = mt(x) and y ∈ Yt(x),
(2) u = mb(x) and y ∈ Yb(x). �

The following Lemma 4 provides the necessary and sufficient
condition for hinge vertices in a CTG.

Lemma 4 Let EM be an ECTM constructed from CTM M.
A vertex u is a hinge vertex of a CTG G if and only if there exist
two vertices x, y satisfying either of the following conditions.
(1) u = mt(x), y ∈ Yt(x), bmt(y) < ax+n, and dmb(y) < cx+n in

ETCM EM,
(2) u = mb(x), y ∈ Yb(x), bmt(y) < ax+n, and dmb(y) < cx+n in

ETCM EM.
(Proof) We only prove this lemma for Condition (1). Condi-
tion (2) can be handled in a similar manner.
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Fig. 2 Extended circular trapezoid model EM.

Table 2 Details of ECTM EM shown in Fig. 2.

i 1 2 3 4 5 6 7 8 9 10 11 12

a −2 −3 −1 4 0 6 8 10 11 13 15 17
b 1 2 3 5 7 9 12 14 16 18 19 20
c −5 −4 2 1 −1 7 5 10 11 13 16 14
d −3 −2 3 4 6 9 8 12 15 17 18 24

mt 5 5 5 5 7 7 9 10 12 12 12 17
smt 3 3 4 4 6 6 8 9 11 11 11 14
mb 5 5 5 5 6 6 9 10 12 12 12 17
smb 3 3 4 4 7 6 8 9 11 11 11 12

Yt {6} {6} {6} {6} {8, 9} {8, 9} {11} ∅ ∅ ∅ ∅ {16, 18}
Yb {7} {7} {7} {7} ∅ ∅ {12} ∅ {13, 14, 17} {13, 14, 17} {13, 14, 17} {16, 19}

i 13 14 15 16 17 18 19 20 21 22 23 24

a 22 21 23 28 24 30 32 34 35 37 39 41
b 25 26 27 29 31 33 36 38 40 42 43 44
c 19 20 26 25 23 31 29 34 35 37 40 38
d 21 22 27 28 30 33 32 36 39 41 42 48

mt 17 17 17 17 19 19 21 22 24 24 24 29
mb 17 17 17 17 18 18 21 22 24 24 24 29

We first prove the necessity. By Lemma 2, if a vertex u is
a hinge vertex of a CTG G, there exist two trapezoids CTx and
CTy such that CTx and CTy do not intersect and, CTu is the only
trapezoid intersecting both CTx and CTy in CTM M. From the
properties of ECTM, Ti and Ti+n correspond to the vertex i in G,
and a vertex i is adjacent to j in G if and only if Ti and T j, or T j

and Ti+n intersect in EM. Therefore, if a vertex u is a hinge vertex
of a CTG G, there exist two trapezoids Tx and Ty such that Tx and
Ty do not intersect, and Tu is the only trapezoid intersecting both
Tx and Ty, and neither Tmt(y) nor Tmb(y) intersect Tx+n in ECTM
EM.

By Lemma 3 (1), if Tx and Ty do not intersect, and Tu is the
only trapezoid intersecting both Tx and Ty, we have u = mt(x)
and y ∈ Yt(x). Moreover, if neither Tmt(y) nor Tmb(y) intersect
Tx+n, then bmt(y) < ax+n and dmb(y) < cx+n. Thus, Condition (1)
holds (Fig. 3 (a)).

We prove the sufficiency. By Lemma 3 (1), if u = mt(x) and
y ∈ Yt(x) in EM, then Tx and Ty do not intersect, and Tu is
the only trapezoid intersecting both Tx and Ty. Assume that
bmt(y) < ax+n and dmb(y) < cx+n, and there exist some trapezoid
Tz intersecting both Ty and Tx+n. It means that bmt(y) < bz or
dmb(y) < dz, contradicting the definitions of mt(y) and mb(y).
Thus, if bmt(y) < ax+n and dmb(y) < cx+n, then neither Tmt(y) nor
Tmb(y) intersect Tx+n (Fig. 3 (a)). �

We show how to identify a hinge vertex by applying Condi-
tion (1) of Lemma 4. For x and y ∈ Yt(x), we check whether
bmt(y) < ax+n and dmb(y) < cx+n. For example, for x = 5 and y = 8

Fig. 3 Illustration of Lemma 4.

(Yt(5) = {8, 9}), we have bmt(8) = b10 = 18 < a5+n = a17 = 24 and
dmb(8) = d10 = 17 < c5+n = c17 = 23. Hence, vertex mt(5) = 7 is
a hinge vertex for 5 and 8.

4. Algorithm IHV and its Analysis

In this section, we present Algorithm IHV for identifying all
hinge vertices of a CTG G. Algorithm IHV takes a CTM M as
an input. We formally describe Algorithm IHV and analyze its
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Algorithm 1: Identify Hinge Vertices (IHV)

Input: Each trapezoid’s corner points ai, bi, ci, di for n circular trapezoids in

a CTM M.

Output: A set of all hinge vertices HV in the CTG G.

(Step 1)

Construct an ECTM EM from M ;

(Step 2)

Compute mt(i) and mb(i) for 1 � i � 2n;

Compute smt(i) and smb(i) for 1 � i � n;

(Step 3)

Compute Yt(i) and Yb(i) for 1 � i � n;

(Step 4)

Set HV := ∅;
/* Condition (1) of Lemma 6 */

for 1 � i � n do
for j ∈ Yt(i) do

if bmt( j) < ai+n and dmb( j) < cx+n then
HV := HV ∪ {Normalize(mt(i))};

/* Condition (2) of Lemma 6 */

for 1 � i � n do
for j ∈ Yb(i) do

if bmt( j) < ai+n and dmb( j) < cx+n then
HV := HV ∪ {Normalize(mb(i))};

Function Normalize(v){
if v > n then return v − n;

else return v;

}

inherent complexity as follows.
Steps 1 to 3 are preparatory steps for identifying all hinge ver-

tices of G. In Step 1, we construct an ECTM EM that can be
executed in O(n) time [5]. In Step 2, mt(i), mb(i), smt(i), and
smb(i) are computed. This step can be done in O(n) time using
prefix computation [1], [4]. Step 3 computes Yt(i) and Yb(i) for
1 � i � n. This step runs in O(n2) time because the size of
∑n

i=1 |Yt(i)| is proportional to n2. In Step 4, we find all hinge ver-
tices by applying Lemma 4 that can be executed in O(n2) time.
Thus, we obtain the following theorem.

Theorem 1 Algorithm IHV identifies all hinge vertices of a
CTG G in O(n2) time by taking its CTM M as an input. �

5. Conclusion

In this study, we proposed Algorithm IHV, which operates in
O(n2) time to identify all hinge vertices on a CTG. Identifying all
hinge vertices requires an O(n3) time by a simple method. There-
fore, our algorithm outperforms the simple method. Algorithm
IHV partly uses the algorithms of Honma et al. [4]. Reducing
the complexity of the algorithm and extending the results to other
graphs will be addressed in future research.
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