
Vol. 45 No. SIG 6(ACS 6) IPSJ Transactions on Advanced Computing Systems May 2004

Regular Paper

A Multilevel Parallelized Hybrid Branch and Bound

Algorithm for Quadratic Optimization

Cong Vo,
†
Akiko Takeda

† and Masakazu Kojima
†

General QOPs (quadratic optimization problems) have a linear objective function �
T
�

to be maximized over a nonconvex compact feasible region F described by a finite number
of quadratic inequalities. Difficulties in solving a QOP arise from the nonconvexity in its
quadratic terms. We propose a branch and bound algorithm for QOPs where branching op-
erations have been designed to effectively reduce the nonconvexity of a given QOP so that
the sub-QOPs generated during branching operations become easier to solve. The bounding
procedure employed in our branch and bound algorithm is a successive convex relaxation algo-
rithm based on semidefinite programming. A significant number of semidefinite programming
problems involved in the algorithm are solved in parallel using the message passing interface
library for message passing. This parallel implementation enables us to solve some highly non-
convex QOPs. Message passing and multithreading are mixed to improve the performance
and parallel efficiency.

1. Introduction

In the 30 years long history of global opti-
mization the QOP has been playing a signifi-
cant role because of its importance both from
mathematical and application aspects. QOPs
cover a lot of important nonconvex mathemati-
cal programs including 0–1 linear and quadratic
integer programs, linear complementarity prob-
lems, bilevel linear and quadratic programs,
and linear fractional programs. General QOPs
considered in this paper can be stated in the
following way:

max{cT x : x ∈ F}, (1)

where c �= 0 is the constant and x is the vari-
able in an Euclidean space R

n. We call cT x the
objective function and c the objective direction.
The feasible region F is a nonconvex compact
set defined by a finite number of quadratic con-
straints:

F ={x ∈ C0 : qf (x)≤ 0 ∀qf ∈ P}, (2)

where C0 defined by linear inequalities is a
given compact convex set including F , and P is
a finite quadratic representation of F :

P ⊂ {qf (·; γ, q, Q) :
x �→γ + 2qT x+xT Qx}. (3)

A simpler instance of the general QOP which
interested many researchers is a linearly con-

† Department of Mathematical and Computing Sci-
ences, Tokyo Institute of Technology

strained QOP. It consists of a quadratic objec-
tive function and a linear inequality constraint:

min{γ + 2qT x + xT Qx : Ax ≤ b}. (4)

One can easily transform Eq. (4) into Eq. (1) by
moving the quadratic objective function to the
constraint part. It is well-known that even this
linearly constrained QOP is NP-hard.

This paper continues the investigation of
SCR (successive convex relaxation) algorithms
which are outer-approximation procedures for
general QOPs. Those algorithms were proposed
by Ref. 6) and later studied in Refs. 5), 7). They
are powerful algorithms to bound optimal val-
ues of QOPs. In practice, however, there are
some computational limitations of SCR algo-
rithms as mentioned in Refs. 6), 10). Numer-
ical results of Refs. 9), 10) exhibit that their
SCR algorithms consume a lot of computational
time in order to achieve tighter bounding val-
ues for some QOPs. In particular, SCR al-
gorithms generally provide neither an accurate
optimal value nor an optimal solution. To over-
come these limitations we incorporate an SCR
algorithm into a BB (branch and bound) al-
gorithm for computing an optimal solution, as
suggested in Refs. 6), 7), 9), 10). Our BB al-
gorithm combines effective partition-selection
techniques with an improved version of the
SCR algorithm 9),10) as a bounding procedure.
Heuristics are used to improve incumbents to-
gether with upper bounds in order to reduce
the number of branches that would not lead to
optimal solutions and to keep the program stay

186

Vol. 45 No. SIG 6(ACS 6) A Multilevel Parallelized Branch and Bound Algorithm 187

within the memory capacity.
Reference 10) used a client-server based par-

allel computing system called Ninf 8) to imple-
ment their parallel SCR algorithm. They con-
cluded that a powerful parallel computing facil-
ity and a parallel algorithm are necessary when
solving large-scale QOPs in general and highly
nonconvex ones in particular.

We modified the parallel codes 10) using the
MPI (message passing interface) instead of
Ninf. The MPI includes a rich set of features al-
lowing flexible and effective parallel implemen-
tations. To fit the bounding procedure into a
BB framework some other modifications were
also required. As a result we developed a new
SCR program for QOPs which inherits the good
characteristics of Ref. 10) while enjoying less
communication time, higher parallel efficiency
and a complete interface with the BB algo-
rithm.

The number of SDP (semidefinite program-
ming) problems involved in an SCR iteration on
a sub-QOP born in the BB tree is usually not a
divisor nor a multiple of the number of proces-
sors used. Accordingly a sequential execution of
SCR iterations will let some processors be tem-
porarily idle. Therefore we propose 2 levels of
parallelism; in the lower level we prepare a pro-
cedure to execute an SCR iteration in parallel
using the MPI; in the upper level we run sev-
eral instances of that procedure using Pthread
(POSIX thread) to concurrently execute several
SCR iterations on different sub-QOPs.

A major purpose of SCR algorithms is to con-
vexify the feasible region F or to get rid of its
nonconvexity in order to get a good approx-
imation. Reference 5) showed that the com-
plexity bounds of SCR algorithms depend on
the diameters of C0 and F , and on the noncon-
vexity of F . The diameters are automatically
reduced through branching operations but the
nonconvexity needs a special treatment. Sec-
tion 2 will introduce the concept of the non-
convexity which is also the key of the BB al-
gorithm. We recall previous SCR algorithms
and propose an improved SCR algorithm in Sec-
tion 3. We present in detail sequential BB algo-
rithms in Section 4 and parallel BB algorithms
in Section 5. Numerical experiments in Sec-
tion 6 show the effectiveness of our current im-
plementation and parallel efficiency. Some fu-
ture work are presented in the last section.

2. The Nonconvexity of QOPs

The nonconvexity of a constraint in (3) re-
sults from its quadratic term xT Qx. With the
symmetric assumption of Q ∈ R

n×n, we sepa-
rate Q = Q+ + Q− using semidefinite matri-
ces Q+ � 0 and Q− � 0. Let Λ− be the set
of the negative eigenvalues λ of Q. We have
Q− =

∑
λ∈Λ− λppT where p is a unit eigen-

vector corresponding to a negative eigenvalue λ
in Λ−. We call p a nonconvex direction of this
QOP. The nonconvexity in the quadratic term
xT Qx is

xT Q−x = xT
∑

λ∈Λ−

λppT x =
∑

λ∈Λ−

λ(pT x)2.

The value range of pT x (x ∈ F) is exactly the
diameter of the feasible region F in the direc-
tion p. We call the diameter of F on its non-
convex direction p, a nonconvex diameter of it:

diam(F, λ, p) =
√−λ sup

x,y∈F
pT (x−y). (5)

We define the maximum nonconvex diameter
diamnc(P) and the sum of nonconvex diame-
ters diam(P) of QOP (1):

diamnc(P) = max
(λ,p)∈Π−(P)

diam(F, λ, p), (6)

diam(P) =
∑

(λ,p)∈Π−(P)

diam(F, λ, p), (7)

Π−(P) =
⋃

qf (·;γ,q,Q)∈P
Π−(Q), (8)

where Π−(Q) is the set of pairs of an eigen-
value and the corresponding unit eigenvector
of the negative semidefinite part of the matrix
Q. Both diamnc(P) and diam(P) represent the
nonconvexity of the QOP. We use diamnc(P)
when deciding where to split the feasible region
of a QOP and use diam(P) when comparing
the nonconvexity of two QOPs in the BB tree.
Note that since F is not available during an
SCR algorithm we use a convex relaxation C
instead of F when estimating the nonconvexity
[Eqs. (6) and (7)].

Our BB algorithm evaluates diamnc(F) of
the sub-QOPs and tries to narrow it in order
to reduce the nonconvexity of their feasible re-
gions and to make the computation easier.

3. Successive Convex Relaxation

3.1 Notation
Successive convex relaxation is a technique to

188 IPSJ Transactions on Advanced Computing Systems May 2004

successively transform a QOP into SDPs that
provide bounds for the optimal objective value.
We define:

α(C, d) ≡ sup{dT x : x ∈ C},
lsf (x; C, d) ≡ dT x− α(C, d),

r2sf (x; C, d0, d) ≡ −lsf (x; C, d0)×
lsf (x; C, d),

here lsf (x; C, d) is a linear supporting function
for C in a direction d and r2sf (x; C, d0, d) is a
rank-2 (quadratic) supporting function for C in
a pair of directions d0 and d. Let D, D0 and
Dk be sub-sets of R

n, we define:
α(C, D) = {α(C, d) : d ∈ D} ,

lsf (C, D) = {lsf (·; C, d) : d ∈ D} ,

r2sf (C, D0, Dk) = {r2sf (·; C, d0, d) :
d0 ∈ D0, d ∈ Dk}.

We define convex relaxations of F :

Ck+1 =

{
x ∈ C0 such that ∃X ∈ Sn :

(
1 xT

x X

)
∈ Sn+1

+ and

γ + 2qT x + Q •X ≤ 0 ∀qf (·; γ, q, Q) ∈

P ∪ lsf (Ck, D0) ∪ r2sf (Ck, D0, Dk)

}
, (9)

for k = 0, 1, . . . where Sn is the set of n×n sym-
metric matrices, Sn

+ is the set of n× n positive
semidefinite symmetric matrices and

Q •X =
∑n

i=1

∑n
j=1 QijXij .

3.2 Previous SCR Algorithms
Reference 6) established a theoretical frame-

work of SCR algorithms that lead to the con-
vex hull of the feasible region F of a given
QOP. They proposed discretizations of these
algorithms which require solutions of a finite
number of SDPs in each major iteration in
Ref. 7). In the same paper the localization tech-
nique was developed for generating convex sets
that approximate F accurately only for direc-
tions that lie in a neighborhood of the objec-
tive direction c. Conceptual SCR algorithms 6)

and localization SCR algorithms 7) adopt D0 =
{±e1,±e2, . . . ± en} and various kinds of unit
direction sets Dk to guarantee that solving con-
vex optimization problems α(Ck, c) gives a non-
increasing sequence of real numbers ζk converg-
ing to the optimum value of QOP (1).

Nevertheless, these SCR algorithms 6),7) are
impractical as they require solutions of in-
finitely many or potentially a very large number
of SDPs. Reference 9) presented implementable
SCR algorithms which dramatically reduces the
number of SDPs involved in the relaxation pro-
cedures by employing finite direction sets:

D0 = {±p : ∃λ ∈ R, (λ, p) ∈ Π−(P)} ,

Dk(θ) =
{

c cos θ + p sin θ

‖c cos θ + p sin θ‖ : p ∈ D0

}
(10)

Ek = D0 ∪Dk ∪ {c}. (11)
Some numerical results of these algorithms were
reported in Refs. 9), 10). Note that accurate
bounds are no longer guaranteed in these algo-
rithms.

We show parallel SCR algorithms proposed
in 10) in the following. First for the mas-
ter (called client in Ref. 10)):

Algorithm 1 On the master processor:
(1) Compute D0. Set k = 1 and Ck = C0.
(2) Compute Dk with some value θ = θk.

Assign each d ∈ Ek (11) to an idle worker
among n cpu worker processors. Send d
and α(Ck−1, Ek−1) to the worker.

(3) Receive results α(Ck, d) ∈ α(Ck, Ek)
from workers.

(4) Find an upper bound ζk for the
maximum objective function value of
QOP (1): ζk = α(Ck, c) among
α(Ck, Ek) received. If ζk satisfies some
termination criteria then stop.

(5) Let k ← k + 1 and go to (2).
and for workers (called server in 10)):

Algorithm 2 On a worker processor among
n cpu worker processors:
(1) Compute D0. Let k = 1 and Ck = C0.
(2) Receive data of a vector d ∈ Ek and

α(Ck−1, Ek−1).
(3) Generate Ck using the data received.
(4) Compute α(Ck, d) by solving an SDP.

Return the value to the master.
(5) Let k ← k + 1 and go to (2).
The value of θk is modified when the decreas-
ing speed of ζk is smaller than a specific pa-
rameter in the algorithms above. Reference 10)
use

θk =
4π

9× 2k′ (k > k
′
) (12)

and increase k
′

= 0, 1, 2, . . . , K to decrease θk

through the algorithm. Some parameters are
used to decide how to increase k′. They set

Vol. 45 No. SIG 6(ACS 6) A Multilevel Parallelized Branch and Bound Algorithm 189

K = 3 because larger K does not induce clearly
better bounds ζk.

Definition 1 We call the data set θk, Ek−1

and α(Ck−1, Ek−1) the boundary data of the
QOP in iteration k of Algorithm 1.

3.3 An improved SCR algorithm
Here we describe modifications for an im-

proved parallel SCR algorithm which is used
in our BB framework. We set

θk =
4π

9× 2k′%7
(k > k

′
) (13)

to turn around the value of θk (k
′
%7 means

k
′
mod 7). It has been verified in practice that

Eq. (13) is better than Eq. (12): the program is
more stable and gradually reduces ζk even when
k is about some hundreds.

We introduce a rule to automatically assign
directions d in Ek to worker processors. For
details see Section 5. This rule eliminates send-
ing data of directions d between the master and
workers as done in Ref. 10). The boundary data
is sent from the master to all workers using a
tree-based algorithm MPI Bcast with a commu-
nication cost O(log nw) where nw is the number
of workers. The previous algorithm 10) takes
O(nw) for this operation.

We do not change θk when executing SCR it-
erations on a node but change θk when moving
from a node in the BB tree to its sub-QOPs.
SCR iterations on a sub-QOP start with an
α(Ck, Ek) inherited from its father. In each
SCR iteration the feasibility of an sub-QOP is
checked and the upper bound value ζk obtained
is compared with the incumbent optimum of the
BB tree to avoid the computation of sub-QOPs
that would not induce good bounds.

4. A Branch-and-bound Algorithm

Definition 2 Data of a node in the BB tree
consist of
• its id and the id of its father mid in the

tree; this is to analyze the structure of the
BB tree;

• diam: an estimation of its nonconvexity;
• feas: the feasibility of its father;
• up: an local upper bound value (an upper

bound value of its father);
• its boundary data.

The common data for all nodes include the in-
put file name and parameters for the SCR al-
gorithm. A node’s private data is computed
from the data of its father through the split-
ting operation. When a node gets its turn to

be computed, the data will be used to prepare
a QOP to be passed to the SCR algorithm.

Note 1 From now on we use just “QOP” to
indicate a sub-QOP in a BB tree.

4.1 Splitting a QOP
If we can not discard a QOP, we find its

largest nonconvex diameter (6) and then insert
a cutting plane through the middle point of the
diameter. The two new QOPs inherit the fea-
sibility feas and the upper bound up from their
father. Their nonconvexity diam are estimated
by subtracting a half of the father’s largest non-
convex diameter (6) from the sum of the non-
convex diameters (7) on the father.

As a classical BB algorithm what we want to
do is:
(1) Find feasible solutions as they help to im-

prove the incumbent and to delete nodes
that would not provide optimal solutions.

(2) Reduce the (maximum) upper-bound of
nodes in order to reduce the upper-bound
of the BB tree.

(3) Reduce the (maximum) nonconvex diam-
eter of nodes as it makes the QOPs eas-
ier.

(4) Delete unnecessary nodes as soon as pos-
sible to save memory storage.

Items (1) and (2) have to be done together
in order to reduce the number of branches that
would not lead to optimal solutions. Item (4)
is critical due to memory limitation.

4.2 Selecting the Next QOP
The QOPs are kept in two priority queues Di-

amQ and BoundQ for the purpose of improving
the incumbent and upper bounds. In both Di-
amQ and BoundQ, a QOP with a larger upper
bound value is considered better. However from
DiamQ we want to induce feasible solutions so a
possibly easier QOP with a smaller nonconvex
diameter or better feasibility is solved first even
if its upper bound value is small. In contrast,
from BoundQ we want to find out and solve
harder QOPs with larger upper bound values
so that ones with larger nonconvex diameter or
worse feasibility (24) will be solved first.

We have two computation phases where the
focus of computational efforts is different. In
the following algorithms in this section bb up
indicates the upper bound value of the BB
tree and bb opt indicates the incumbent value.
Whenever bb opt or bb up is updated, we as-
sign the changes to bb opt speed or bb up speed,
respectively. They are used in a heuristic algo-
rithm to decide a limit on the number of iter-

190 IPSJ Transactions on Advanced Computing Systems May 2004

ations in Algorithm 4 which reduces the up-
per bound and Algorithm 5 which improves
the incumbent. If bb up decreases faster (re-
spectively slower) than bb opt increases we will
spend more processor time to “decrease bb up”
(respectively “increase bb opt”). The next
heuristic algorithm decide limits S and T used
in Algorithm 4 and Algorithm 5 respectively.

Algorithm 3 The number of iterations
S (T)
(1) If bb opt speed and bb up speed are

both very small, set S ← V (T ← V).
We initialize V ← 10 and increase it lit-
tle by little.

(2) Else if bb opt speed < (>) bb up speed,
increase S (T) to the total number of chil-
dren. This number gradually gets larger.

(3) Otherwise reduce S ← S/2 (T ← T/2).
4.3 Reducing the Upper Bound Value
Here we focus on refining the upper bound of

all nodes in the BB tree. When solving concur-
rently several QOPs, we do not update bb up
but use the upper bound of the top node to
guess it.

We define bb gap and r.bb gap:
bb gap = bb up− bb opt, (14)

r.bb gap =
bb gap

max{1, ‖bb up‖} . (15)

The algorithms will make r.bb gap ≤ bb acc –
a required accuracy.

Algorithm 4 To reduce the upper bound:
First we pick from DiamQ all nodes with local
upper bounds larger than the (global) incum-
bent of the BB tree and move them to BoundQ.
Set s ← 0, G ← (bb up - bb opt) × (1 −
bb acc) then repeat the following:
(1) Set s ← s + 1. Get a top node p out of

BoundQ.
(2) Terminate the algorithm if:

(a) either BoundQ is empty,
(b) or G > p.up − bb opt,
(c) or s > S.

(3) Execute SCR iterations on p and con-
sider the solutions of p to update bb opt
or branch p if necessary.

Actually this algorithm is a kind of BeFS (best
first search strategy). In theory we can run it
to process only critical QOPs until an optimal
solution has been found and then no superflu-
ous bound calculations take place. However
memory problems arise if the number of crit-
ical QOPs becomes too large. That is why we
need heuristic Algorithm 3 to get a limit for the

number of iterations.
4.4 Improving the Incumbent
Here we concentrate on nodes which have

small diameters and the feasibility of solutions
of whose fathers is small.

Algorithm 5 To improve the incumbent:
At first DiamQ is empty.
(1) Let p be the top node of BoundQ, we

update bb up here:
bb up← p.up. (16)

If bb up > bb opt, push p into DiamQ,
otherwise we stop the program. Set G←
(bb up − bb opt) × (1 − bb acc) and
initialize t ← 0 then repeat the following
steps:

(2) Set t← t + 1. Get the top node p of Di-
amQ. If p.up > bb opt, execute SCR it-
erations on p then consider the solutions
of p to update bb opt or branch p if nec-
essary.

(3) Terminate the algorithm if:
(a) either G > bb up − bb opt,
(b) or t > T .

(4) If G < bb up − bb opt but DiamQ is
empty and BoundQ is not empty then
go to (1) to take a new node p from
BoundQ.

This algorithm is a kind of DFS (depth first
search strategy). Here an active QOP with
smallest nonconvex diameter and most prob-
ably standing at one of deepest levels in the
search tree is chosen for exploration. Hence the
number of QOPs grows slowly and the memory
requirement is usually a manageable number.
As the smallest nonconvex diameter gets small
enough, a feasible solution is found and the in-
cumbent bb opt may be updated. The new in-
cumbent is used to delete unnecessary QOPs in
the BB tree. So our BB algorithm is a hybrid
one combining BeFS and DFS strategies.

5. Parallel Algorithms

Figure 1 illustrates the 2 levels of paralleliza-
tion. We choose Pthread for concurrent com-
puting on a (possibly multi-processors) master
computer and MPI for parallel computing on
a cluster which consists of up to hundreds of
processors. We are going to solve some QOPs
concurrently on an upper parallel level and a lot
of SDPs involved from them on a lower parallel
level to improve the speedup and the parallel
efficiency.

We assign the same number of SDPs to each

Vol. 45 No. SIG 6(ACS 6) A Multilevel Parallelized Branch and Bound Algorithm 191

Fig. 1 Two parallel levels.

processor in the cluster in order to improve load
balance among the processors and reduce their
idle time, assuming that the cluster is homoge-
neous and that:

Claim 1 Computational time for solving
every SDP is almost the same.

Let the number of available worker processors
be ncpu ≥ 1 and the number of SDPs involved
in each SCR iteration to a QOP be nsdp � 1.
Let the number of QOPs being solved concur-
rently on the master be nqop ≥ 1, and the num-
ber of SDPs solved by the workers nsolved ≥ 0.
We solve nqop×nsdp−nsolved SDPs in parallel,
hence processors get idling one by one when

nqop × nsdp − nsolved < ncpu, (17)

so that we start solving the next QOP in the
BB tree.

5.1 Identifying the SDPs
To make the parallel algorithm work cor-

rectly, the master and the workers have to keep
common information about which SDPs each
worker solves; the SDPs were born in which
SCR iteration of which QOPs. Also, the to-
tal number of SDPs is very large so that an
automatic way of keeping the above informa-
tion without transferring identities of the SDPs
between the master and the workers is desired.

We identify the SDPs involved in the BB al-
gorithm in the following way: Let each SCR
iteration on the master get a unique id q =
0, 1, 2, . . . and each SDP involved in some SCR
iteration get an id s = 0, 1, 2, . . . , nsdp−1. Then
the unique id for an SDP in the BB algorithm
is:

t = s + q × nsdp. (18)
　
5.2 Assigning SDPs to processors
Now on a processor c = 0, 1, 2, . . . , ncpu − 1,

we compute a pair q, s to identify an SDP to be

solved using a simple rule:


t = kc × ncpu + c,
q = t/nsdp,
s = t%nsdp,

(19)

where kc = 0, 1, 2, . . . indicates the number of
SDPs solved on c. It is clear that:

kc = t/ncpu, (20)
and that the workers who take part in the com-
puting of the SCR iteration q are:

c = t%ncpu, (t∈ [t0, t0 +nsdp−1]), (21)
where t0 = q × nsdp. The master will
broadcast the boundary data of the SCR it-
eration q to a communication group of these
workers [Eq. (21)] using a tree-based algo-
rithm MPI Bcast with a communication cost
O(log n cpu) where n cpu is the number of the
group workers.

The master keeps the information indicating
corresponding SCR iterations q, SDPs s and
workers c, so it is able to correctly handle the
SDP results returned from the workers. On the
other hand every worker c updates its private
t, q, s in order to know when it should receive
the boundary data of a new SCR iteration q
and to know which SDPs it is assigned to solve.

5.3 Algorithms
This subsession shows some concrete algo-

rithms based on the concepts above.
Algorithm 6 A thread on the master mak-

ing new threads of execution of solving QOPs:
First initialize
k0, k1, k2, . . . , kncpu−1, nqop, nsolved all by 0.
While the BB tree is not empty repeat the
following:
(1) Select a QOP, wait until the condition

[Eq. (17)] becomes true then let nqop ←
nqop + 1.

(2) Start a new thread of execution
(a) Perform SCR iterations (Algo-

rithm7)) on the QOP.
(b) Evaluate the solution of the QOP,

delete or branch it to make new
QOPs.

The “while” loop does not wait for (2) but
immediately goes to (1).

Algorithm 7 Execution of an SCR itera-
tion on the master:
(1) Get a new unique SCR id q ← q + 1.
(2) Broadcast the current boundary data of

the corresponding QOP to the corre-
sponding group of workers [Eq. (21)].

(3) Wait until all needed SDPs’ results have

192 IPSJ Transactions on Advanced Computing Systems May 2004

Table 1 Test problems.

No Problem n m QC Local SDP
1 BLevel3 6Lb 19 25 10 4 129
2 BLevel8 3Lb 21 22 10 4 137
3 LC30 162 31 46 1 162 143
4 LC30 36 31 46 1 36 143
5 LC40 6 41 61 1 6 199
6 LC40 72 41 61 1 72 199
7 LC60 72 61 91 1 72 299

been collected via Algorithm 8.
(4) After finishing an SCR iteration and de-

ciding to execute the next SCR iteration
we modify the number of QOPs solved:

nsolved ← nsolved − nsdp. (22)

Algorithm 8 A thread on the master to re-
ceive SDP results from the workers:
Repeat:
(1) Receive an SDP’s result (a floating num-

ber) α from a worker c. Set
nsolved ← nsolved + 1. (23)

(2) Derive t, q, s from (19) to know which
SDP is corresponding to this α. After
saving α let kc ← kc + 1.

(3) Notify (3) in the thread executing an
SCR iteration q in Algorithm 7 when the
number of SDPs’ results for q is sufficient.

(4) Notify (1) in Algorithm 6 about checking
condition [Eq. (17)] if necessary.

Algorithm 9 A loop on the worker c solv-
ing SDPs:
Set kc ← 0, q ← −1 then repeat:
(1) Derive t, q, s from Eq. (19).
(2) If q �= q:

(a) If q ≥ 0 send SDPs’ results to the
master.

(b) Receive the boundary data of the
SCR iteration q from the master
and let q ← q.

(3) After solving SDP s let kc ← kc + 1.

6. Computational Experiments

The notations 1L and 2L in this section in-
dicate 1 level parallelization and 2 levels paral-
lelization, respectively.

6.1 Test Problems
We use some linearly constrained QOPs and

bilevel QOPs 2),3) (LC and BLevel problems in
Table 1, respectively) to test the algorithm.
The columns “n” and “m” respectively denote
the number of variables and the number of
constraints (not including box constraints) of
the transformed problem. The column “QC”

denotes the number of quadratic constraints
among m constraints. The column “Local”
gives the number of local optima. The column
“SDP” gives the number of SDPs involved in an
SCR iteration on a sub-QOP. The optimal val-
ues of all test problems are known in advance.

We use a cluster consisting of 256 dual Athlon
nodes (Cluster A):
CPU Athlon MP 1900+ (1,600MHz) × 2
Mem 768 MB
NIC Myricom Myrinet 2000
Software Linux 2.4.19, glibc-2.2.5-11.5,

gcc-3.3.1, LAM/MPI-7.0.3, boost-1.30.2,
SDPA-6.0

Only 214 processors are available in our numer-
ical experiments. From now on, nC indicates
that the number of processors is n.

6.2 Algorithmic Options
We describe some major parameters of the

BB algorithm.
Feasibility
The feasibility of a solution x is:

max
qf∈P

max{0, qf (x; γ, q, Q)}
max{1, ‖q‖, ‖Q‖} ; (24)

x is considered feasible if its feasibility is
smaller than a given positive parameter.

Optimality
The BB algorithm will be terminated when

r.bb gap [Eq. (15)] is smaller than a given tol-
erance bb acc.

Changing θk

There is a parameter to control how many
time we change θk on each node. However, ex-
periments show that fixing the value of this pa-
rameter to 1 usually gives good results.

6.3 Numerical results
We analyse numerical results of 1L in which

multiple SDPs induced from a QOP are simul-
taneously solved in the lower level but only
one QOP is processed at a time in the upper
level, to examine characteristics of BB algo-
rithms. Numerical results of 2L in which several
QOPs are processed concurrently are given in
Section 6.4 to show its advantages over 1L. The
program was implemented using C++ with gcc,
SDPA 4), LAM/MPI 1) and Boost.Threads.

We set the parameters: feasibility [Eq. (24)]
≤ 0.01 and gap [Eq. (15)]≤ 0.01. The execution
time (real time) is measured by a wall clock on
the master processor side.

Table 2 shows the successful results when we
give the same priority to both DFS and BeFS.

Vol. 45 No. SIG 6(ACS 6) A Multilevel Parallelized Branch and Bound Algorithm 193

Table 2 Hybrid, Cluster A/1L.

No born solved SCR
1 647 352 354
2 18417 9688 9690
3 18953 13708 13723
4 287 229 234
5 269 156 161
6 1893 1361 1366
7 871 708 713

Table 3 Execution time (seconds), Cluster A/1L.

No Hybrid DFS BeFS
1 85 91 86
2 2699 5382 2592
3 9256 12558 9960
4 147 432 243
5 300 266 638
6 2584 7612 3764
7 8736 12062 17049

Fig. 2 bb up / bb opt (LC30 162).

The column “No” shows the id of the problems
as in Table 1. The columns “born” and “solved”
indicate the number of QOPs born and solved
in the BB tree respectively. The column “SCR”
gives the number of SCR iterations completed.
The last column gives the wall time that passed
on the master processor.

Table 3 shows good performance of the hy-
brid algorithm in comparing with DFS and
BeFS. Superiority of the hybrid algorithm over
DFS suggests that good incumbents are rela-
tively easier to be attained while upper bounds
demand more time to be reduced. This fact
is also illustrated in Fig. 2 where the upper
bound makes larger changes than the incum-
bent. Note that the figures in this section plot
points where the upper bound and the incum-
bent of the BB tree are changed. Superiority
of the hybrid algorithm over BeFS lies in bet-
ter incumbents which can discard QOPs with
worse upper bounds.

We observe from the details of numerical re-

Fig. 3 Objective value / #solved (LC30 162).

Table 4 Variations in CPU time (%), Cluster A/1L.

No naive Hybrid DFS BeFS
1 10.37 1.05 0.94 1.12
2 22.48 0.39 0.45 0.43
3 22.70 0.38 0.37 0.37
4 27.18 0.59 0.53 0.45
5 29.53 3.10 2.82 2.43
6 29.20 2.79 1.81 1.81
7 17.27 0.87 0.91 0.88

sults that as a consequence of DFS, the num-
ber of active QOPs increases in an almost lin-
ear way depending on the number of QOPs
solved. This fact appears in the relation be-
tween the number of nodes born and the num-
ber of nodes solved in Table 2. Finally, Fig. 3
shows that bb gap decreases steadily when the
number QOPs increases.

6.4 Parallel efficiency
This subsection shows that load balance is

very good even when using just 1L. However,
in terms of speedup and idle time, we see that
2L is apparently better than 1L.

Load balance
Table 4 shows the coefficient of variation

of the CPU time used for solving SDPs on
the worker processors, using 1L. The column
“naive” shows results of a naive parallel algo-
rithm (ran on 130C) in which the master com-
municates directly to every worker without us-
ing algorithms described in Section 5; therefore
the coefficient of variation of the CPU time
get considerably large. The columns “Hybrid”,
“DFS” and “BeFS” show results of our lat-
est implementation of the algorithms proposed
(ran on 214C), in particular the rule discribed
in Section 5.2 to assign SDPs to processors and
to broadcast the boundary data; not surpris-
ingly this implementation largely improves the
load balance. These results support Claim 1.
We have verified that 2L shows slightly better

194 IPSJ Transactions on Advanced Computing Systems May 2004

Table 5 Relative speedup, Cluster A/1L.

CPU ser 2C 4C 8C 16C
seconds 5445 5480 1855 831 410
speedup 0.99 1 2.9 6.5 13.3

CPU 32C 64C 128C 130C 214C
seconds 232 146 120 84 85
speedup 23.6 37.5 45.6 65.2 64.4

load balance .
Speedup
Relative speedup when solving BLevel3 6Lb

on Cluster A is shown in Table 5. The col-
umn “ser” shows the result of a serial imple-
mentation. Note that 1 processor is used for the
master. The speedup depends linearly on the
number of processors when it increases from 2
to 128. However, with 130 processors available,
129 processors are used as workers and 129 is
exactly the number of SDPs in each SCR iter-
ation (see BLevel3 6Lb in Table 1), explaining
the big gap between the speedup of 128 and 130
processors. The algorithms in Section 5 were
proposed to reduce this “big gap” as well as to
make more improvement in the speedup when
the number of available processors gets larger
than the number of SDPs involved in each SCR
iteration (compare the speedup of 130 and 214
processors in Table 5).

Our current implementation of 2L does not
run on Cluster A properly, due to some com-
patiblity problems of glibc, gcc, LAM/MPI and
Boost.Threads. However, it runs perfectly on
another cluster consisting of 40 dual Athlon
nodes (Cluster B):
CPU Athlon MP 2400+ (2GHz) × 2
Mem 1 GB–2GB
NIC 1000BASE-T × 2
Software Linux 2.4.22, glibc-2.2.5-34,

gcc-3.3.2, LAM/MPI-7.0.0, boost-1.30.2,
SDPA-6.0

Table 6 shows that 2L is better than 1L in
terms of the execution (real) time, the speedup
and the idle time of the master. Let the ex-
ecution time be M and the mean of workers
CPU time W , we compute the idle time as
(M − W)/M . We observe that the execution
time and the speedup of 1L in the 2nd and 4th
columns do not improve smoothly, while those
of 2L in the 3rd and 5th columns do. The sim-
ple reason is, considering the cases of using 42,
43, 44, 45 processors, we see that only when
using 44 processors, the number of SDPs in an
SCR iteration (= 129, see BLevel3 6Lb in Ta-
ble 1) is a multiple of the number of workers

Table 6 Cluster B, 2L vs 1L.

Real Speedup Idle (%)
CPU 1L 2L 1L 2L 1L 2L

ser 4740 0.98 0.98
2C 4850 4825 1 1 0.0 0.0
4C 1641 1636 3.0 2.9 1.2 1.2
8C 733 666 6.6 7.2 5.2 5.1

16C 357 352 13.6 13.7 9.4 9.2
32C 202 178 24.0 27.1 21.7 12.7
42C 165 137 29.4 35.2 27.7 13.5
43C 163 130 29.8 37.1 28.5 11.1
44C 133 124 36.5 38.9 14.1 8.7
45C 133 121 36.5 39.9 16.4 9.1
64C 124 87 39.1 55.5 37.1 11.2
80C 93 78 52.2 61.9 32.9 21.1

Fig. 4 Scability of 2L vs 1L.

(= 43), and the same number of SDPs are as-
signed to each worker, hence a worker is not
forced to wait other workers so long after fin-
ishing its own computing.

We conclude that in general cases, 2L has
exhausted every single processor of the clus-
ter while 1L has not. Figure 4 illustrates the
speedup of 2L more linearly and nearer to the
ideal speedup, compared to 1L.

The idle time of the master tends to become
larger as we use more worker processors, be-
cause there is some delay before a worker can
make peer-to-peer connections to the master
in order to send SDPs’ results, and because a
worker can begin processing new SDPs only af-
ter completing of sending the results to the mas-
ter. This bottleneck may improve by gathering
SDPs’ results before sending; and/or preparing
two threads on each worker, one for receiving
boundary data and computing SDPs, and the
other for sending SDPs’ results.

7. Concluding Remarks

Our parallel BB algorithm successfully solves
some highly nonconvex QOPs taking account of
memory management and load balancing prob-

Vol. 45 No. SIG 6(ACS 6) A Multilevel Parallelized Branch and Bound Algorithm 195

lems. We define a measure for the nonconvex-
ity of the QOP, show how to estimate it on the
sub-QOPs and apply it fruitfully to the split-
ting operation. Our algorithm combining BeFS
and DFS improves lower and upper bound si-
multaneously, and a heuristic algorithm is used
to avoid superfluous computation in efforts to
refine one bound.

We propose and implement 2 levels paral-
lelization to handle several sub-QOPs concur-
rently on the master processor and solve a
significant number of corresponding SDPs on
the worker processors in order to achieve high
speedup and parallel efficiency.

Solving more complicated highly nonconvex
QOPs requires more processor power. Tech-
niques to connect and utilize powerful comput-
ing facilities like a mixture of grid computing
and cluster computing are required.

Acknowledgments The authors would
like to thank Professor Satoshi Matsuoka of
Tokyo Institute of Technology and Professor
Katsuki Fujisawa of Tokyo Denki University for
letting us use their laboratories advanced PC
clusters. We are grateful to anonymous referees
for many suggestions to improve the presenta-
tion of the paper.

References

1) Burns, G., Daoud, R. and Vaigl, J.: LAM: An
Open Cluster Environment for MPI, Proc. Su-
percomputing Symposium, pp.379–386 (1994).

2) Calamai, P.H. and Vicente, L.N.: Generat-
ing Quadratic Bilevel Programming Problems,
ACM Trans. Math. Softw., Vol.20, pp.102–122
(1994).

3) Calamai, P.H., Vicente, L.N. and Judice, J.J.:
A New Technique for Generating Quadratic
Programming Test Problems, Math. Program.,
Vol.61, pp.215–231 (1993).

4) Fujisawa, K., Kojima, M., Nakata, K. and
Yamashita, M.: SDPA (SemiDefinite Program-
ming Algorithm) User’s Manual – Version 6.00
(2002).

5) Kojima, M. and Takeda, A.: Complexity Anal-
ysis of Conceptual Successive Convex Relax-
ation Methods for Nonconvex Sets, Mathe-
matics of Operations Research, Vol.26, No.3,
pp.519–542 (2001).

6) Kojima, M. and Tunçel, L.: Cones of matrices
and successive convex relaxations of nonconvex
sets, SIAM Journal on Optimization, Vol.10,
No.3, pp.750–778 (2000).

7) Kojima, M. and Tunçel, L.: Discretization and
Localization in Successive Convex Relaxation

Methods for Nonconvex Quadratic Optimiza-
tion Problems, Math. Program., Vol.89, No.1,
pp.79–111 (2000).

8) Sato, M., Nakada, H., Sekiguchi, S.,
Matsuoka, S., Nagashima, U. and Takagi, H.:
Ninf: A Network Based Information Library for
Global World-Wide Computing Infrastructure,
HPCN Europe, pp.491–502 (1997).

9) Takeda, A., Dai, Y., Fukuda, M. and
Kojima, M.: Towards the Implemenation of
Successive Convex Relaxation Methods for
Nonconvex Quadratic Optimization Problems,
Approximation and Complexity in Numerical
Optimization: Continuous and Discrete Prob-
lems, Pardalos, P.M.(ed.), pp.489–510, Kluwer
Academic Publisher (2000).

10) Takeda, A., Fujisawa, K., Fukaya, Y. and
Kojima, M.: Parallel Implementation of Succes-
sive Convex Relaxation Methods for Quadratic
Optimization Problems, Journal of Global Op-
timization, Vol.24, No.2, pp.237–260 (2002).

(Received October 10, 2003)
(Accepted January 29, 2004)

Cong Vo was born in 1974.
He received his M. Sci. from
Tokyo Institute of Technology in
2003. He has been a Ph.D. stu-
dent of the same institute since
2003. His major research sub-
ject is mathematical program-

ming including global and combinatorial opti-
mization. He is a member of ORSJ.

Akiko Takeda was born in
1973. She received her M. Eng.
from Keio University in 1998
and Dr. Sci. from Tokyo Insti-
tute of Technology in 2001. She
had worked in Toshiba Corpora-
tion since 2001 and had engaged

in mathematical modeling. Since 2003 she has
been in Tokyo Institute of Technology as a re-
search assistant. Her current research interest
is parallel computing on optimization problems
and systems of polynomial equations. She is a
member of ORSJ.

196 IPSJ Transactions on Advanced Computing Systems May 2004

Masakazu Kojima was born
in 1947. He received his M. Eng.
and Dr. Eng. from Keio Univer-
sity in 1971 and 1974, respec-
tively. He has been working in
Tokyo Institute of Technology
since 1975 as an assistant profes-

sor (1975–1979), an associate professor (1979–
1989) and a professor (1989–). His major re-
search subject is mathematical programming
including linear, nonlinear and combinatorial
optimization. He received INFORMS Comput-
ing Society Prize and Frederick W. Lanchester
Prize in 1992. He was selected as a highly cited
researcher in mathematics by Institute for Sci-
entific Information in 2003. He is a member of
MPS, SIAM, ORSJ and JSIAM.

