
Vol. 45 No. SIG 11(ACS 7) IPSJ Transactions on Advanced Computing Systems Oct. 2004

Regular Paper

Parallel Cloth Simulation with Adaptive Mesh Refinement

and Coarsening Using OpenMP on Fujitsu HPC2500

Alam Mujahid,† Koh Kakusho,†† Michihiko Minoh,††

Yasuhiko Nakashima,††† Shin-ichiro Mori† and Shinji Tomita†

In this paper, we propose a parallel implementation of simulating shape as well as force
acting on cloth using particle based model on Fujitsu HPC2500 machine. Inherent degree
of parallelism, iterative nature of particle based model and high computational cost make
it feasible to employ the parallelization using OpenMP. Since each particle is linked with its
neighbors only, parallel model just needs to resolve some reduction and synchronization issues.
In many cases, some regions of cloth mesh are more responsible for simulation while other
regions have insignificant role. The efficient solution is to adaptively increase or decrease the
mesh resolution in particular regions. Adaptive mesh refinement combined with coarsening
(AMRC) reduces the simulation time of sequential algorithm but faster application demands
its parallel implementation. Mesh density varies during execution due to AMRC and requires
the dynamic redistribution of load. For this purpose, a load balancing scheme based on
‘Active-Lists’ has been developed to simulate the cloth. This scheme is compared with the
dynamic scheduling constructs available in OpenMP. Result describes that we have succeeded
to parallelize the cloth simulation with a satisfactory efficiency.

1. Introduction

In the community of computer graphics, vi-
sual representation of cloth has been imple-
mented by employing the mass-spring model,
finite element model and particle-based model.
It has been studied that shape (position) of
cloth over the time in a model can be deter-
mined by using the force integration 5),6),17),19)

or energy minimization 1),10),16) during anima-
tion. However, only visual information is not
enough for virtual manipulation. User can only
see the generated or animated images but can-
not feel it. Inclusion of haptic feedback (force)
to represent the mechanical behavior enhances
the realism. Both aspects, shape and force, are
required to represent the cloth in a virtual en-
vironment. We have considered, for the first
time, the relation of force with shape deforma-
tion for soft objects like cloth 9),10). It holds the
reality of shape, reality of force and reality of re-
lation between force and shape. It utilizes the
particle-based model, empirical data obtained
from Kawabata Evaluation System (KES) and
minimization algorithm.

Cloth has a variety of visual (drape) effects
and a denser mesh can only represent its re-
alistic model that needs a very high computa-

† Graduate School of Informatics, Kyoto University
†† Academic Center for Computing and Media Studies,

Kyoto University
††† Graduate School of Economics, Kyoto University

tional cost. In a cloth containing wrinkles or
interacting with user, some regions of the mesh
are more responsible for simulation while oth-
ers play insignificant role. The efficient solu-
tion is to adaptively increase or decrease the
mesh resolution in particular regions. This phe-
nomenon introduces the concept of adaptive
meshes in cloth simulation to control the com-
putational time. Previous work 5),6),8),13),19)

has used the adaptive refinement in different
ways and for different applications. Later Vil-
lard 17) has modified the mechanical model that
is more appropriate for adaptive refinement.
However, adaptive coarsening is not consid-
ered. Volkov 18) has introduced the refinement
and simplification for cloth meshes and refine-
ment is done by using the vertex insertion and
edge swap but without adjusting the mechani-
cal model. We have already reported the com-
parison of adaptive coarsening and adaptive re-
fining 11), which reflects that adaptive coarsen-
ing is better than refining. Later, a combina-
tion of adaptive mesh refining with coarsening
(AMRC) is implemented that initiates simu-
lation with finest mesh. Mesh density varies
adaptively by adjusting the mechanical model
accordingly during the course of simulation 12).

Optimization of computational time is a chal-
lenging task in the realistic simulation of de-
forming cloth. A speed up in sequential algo-
rithm is achieved by employing the AMRC but
still simulation time is very large. So, cloth

321

322 IPSJ Transactions on Advanced Computing Systems Oct. 2004

size cannot be increased for more reality and
larger applications. The ultimate choice is a
parallel simulator to further enhance the speed.
OpenMP, a shared memory based model, helps
user in implementing an easy parallel program-
ming 3) for particle based model of cloth. Com-
munication and synchronization overheads of
OpenMP are discussed in Ref. 2), which limit
the performance of a parallel program. A fast
simulation for a flag has been done in Refs. 14),
15) but it is restricted to a small size cloth. R.
Lario, et al. 8) have developed a parallel model
of multi-level cloth using OpenMP in which
coarser mesh is used for overall shape represen-
tation while finer mesh is applied for small-scale
features of cloth to accelerate the convergence
of optimization process. This technique is simi-
lar to multi-grid model proposed in Ref. 13) and
un-necessarily refines or simplifies some regions
of the cloth like Ref. 19), which may reduce the
efficiency for very large mesh density.

Parallel programming for uniform density of
a mesh is very easy and distribution of work
among processors can be decided in advance.
On the other hand, non-uniform mesh gener-
ated by AMRC adds complexity to parallel im-
plementation. Therefore, extra efforts are re-
quired to divide the mesh such that each proces-
sor has approximately the same amount of work
with minimum overheads. For this purpose,
we propose a dynamic load balancing scheme
based on ‘Active-Lists’. When mesh density is
changed by AMRC, lists of elements are created
according to the new density of particle model
and load is equally distributed among proces-
sors on the basis of these lists. The implementa-
tion of parallel algorithm with our load balanc-
ing scheme has successfully achieved the good
performance.

2. Model Description

Kawabata Evaluation System (KES) 7), a
fabric-testing device, has been globally used.
KES data has been utilized in Refs. 1), 16) with-
out considering the all conditions applicable
during the KES measurement process. Cloth
is a deformable object by stretching, bending
and shearing to describe the basic properties of
a cloth. KES characteristics describe the rela-
tion between force and shape of cloth, which
are unidirectional (force to shape or vice versa)
and hysteretic.

Cloth model is comprised of I × J mesh of
particles that uses the KES data as reference

Fig. 1 Cloth model.

and energy minimization scheme is employed
for simulation in this model. The crossing
of warp and weft thread represents a particle.
We have developed cloth model by considering
three main assumptions. (1) Initial state at
each simulation step works as internal variable
that keeps the track of previous history. (2)
KES curve works as boundary value. (3) All
other hysteretic cycles lie within this boundary.

Two adjacent particles make an edge that re-
flects the stretching property. Similarly three
adjacent particles make a triple, which is used
to calculate the bending as shown in Fig. 1. Xij

is the position of a particle, fs is the internal
stretching force of an edge and f b is the bending
force for a triple. All other variables are func-
tion of above variables. There are three types of
elements; particles, edges and triples defined in
mathematical model. We are using the term el-
ement for a particle or an edge or a triple in this
paper. Further detail of mathematical model is
available in the work 9),10).

Each element is characterized by energy/
cost functions. We consider three factors, Mo-
tion and Gravitation (En), Stretching (Es) and
Bending (Eb), which are affecting the cloth.
Since KES stretch curve is a relation from force
to shape while KES bend curve describes the
relation from shape to force, so stretching and
bending properties are incorporated to have the
relations in both directions. On the other hand
Newton’s law describes the bilateral relation be-
tween force and shape. Therefore, we are able
to involve the force as well as shape at the same
time. Other properties, for example shearing,
are the same as stretch or bend and can be
added in the model in the similar way. Each
cost function is defined based on the KES data
and represents the amount of violation from
KES data. The cost is zero when the calcu-
lated data lies within or on the KES curve and

Vol. 45 No. SIG 11(ACS 7) Parallel Cloth Simulation with AMRC Using OpenMP 323

cost is increasing outside the KES curve. The
total cost function is the sum of individual cost
functions.

E = CnEn + CsE
s + CbE

b

Sequential flow of simulation is described as
the pseudo code in Algorithm-I. The current
variables are saved and gradient is computed
numerically. The equilibrium state of the cloth
is realized by employing the conjugate gradient
minimization algorithm, which gives the new
set of variables. Then cost is computed after
updating the variables. This process continues
until either the cost reaches the tolerable value
or specified number of iterations are performed.

Algorithm-I : Simulation
for(Simulation Loop) {

do{ Itr ++; /* Minimization Loop */

SaveVariables(position, force);

ComputeGradient(clothMesh);

ComputeMinima(clothMesh, gradient);

UpdateVariables(position, force);

ComputeCost(clothMesh);

} while(Cost> Tolerance && Itr< MaxItr);

DisplayCloth();

} * End Simulation */

3. Adaptive Meshes

The tradeoff between speed and realism for
cloth simulation can be achieved by using the
adaptive mesh size. Adaptive meshes repre-
sent the cloth region with minimum deforma-
tion (flat region) by coarser mesh and deformed
region by denser mesh. Its implementation
can be categorized as adaptive refinement or
adaptive coarsening or combination of refine-
ment and coarsening. We are implementing
the adaptive refinement together with coarsen-
ing to make the cloth model more flexible and
efficient. Its implementation requires to con-
sider the mass conservation, force distribution
and adjustment of the mechanical model.

Visualization of bending is more prominent
than stretching in the cloth shape because
stretching deforms the cloth along the line.
Bending angle or curvature has been used for
the mesh refinement in Refs. 6), 17) and we are
also using the bending cost function as criterion
in this regard. When bending cost function in-
creases from a threshold value then mesh is re-
fined. Similarly when bending cost function is
smaller, coarsening takes place.

In cloth simulation with adaptive mesh re-
finement, initial mesh density is minimum and

Fig. 2 Mesh refinement.

Fig. 3 Mesh coarsening.

Fig. 4 Force adjustment for removing a particle.

new particles are added in some regions of cloth
on demand. Refinement of a particle, adds eight
new active particles and eight new ghost parti-
cles as shown in the Fig. 2. Ghost particles do
not take part in simulation and are just used
to maintain the topology of mesh. The length
of a new edge becomes half and a new particle
represents the 1/4 of the area as compared to
coarser particle in the above level of refinement.

Coarsening is the reverse operation of the re-
finement and initial mesh for simulating cloth
with adaptive coarsening has the maximum
number of particles. It omits particles that have
very small bending cost function. There are
four edges and six triples linked with a particle,
which are removed with a particle in coarsening
process as shown in Fig. 3.

3.1 Adjusting Mechanical Model
KES characteristics, for both bend and

stretch, are available for a specific size of cloth.
These characteristics need normalization with
respect to density of mesh and our model in-
terpolates the KES curves accordingly. There-
fore, it is feasible to use KES data for adaptive
meshes.

In contrast to mass-spring model, calculation
of bending angle in our model involves all three
particles of a triple and permits to add or omit
a particle from mesh. Elimination of a particle
merges a triple and an edge in weft (or warp)

324 IPSJ Transactions on Advanced Computing Systems Oct. 2004

direction, for example see Fig. 4. Triple T2 is
merged into the triples T1 and T3 and force cor-
responding to T2 is divided equally between T1

and T3. Similarly merging of edges E2 and E3,
adds forces to resultant edge.

Refinement divides an edge into two edges
with half length and space having four edges
is represented by sixteen edges after refinement
as shown in Fig. 2. Therefore, uniform force dis-
tribution over the area assigns fs/4 to the finer
edges. The bending parameters for refining can
be adjusted in the similar manner as explained
in above paragraph for coarsening but in oppo-
site way.

Refinement reduces the area represented by
a particle to 1/4, so mass should be reduced
to 1/4 for finer particle to preserve the total
mass. However, different masses show differ-
ent response that should be tackled carefully.
One way to get the same response, is to use the
heavier mass as for coarser mesh and adjust it
when calculating the stretching and bending.
The other way is to take the lighter masses
(like concept of mass density) as for finest mesh
by considering that whole mesh is refined and
coarser area contains more non-active particles.
We are using the latter concept since it remains
valid for adaptive coarsening.

3.2 Adaptive Mesh Refinement and
Coarsening (AMRC)

We 11),12) have already adopted the adaptive
refining and coarsening separately and together
to cloth simulation. Both adaptive refining and
adaptive coarsening change the mesh density
in one direction that may cause the inaccu-
rate representation for the complex shape of
cloth. Implementing adaptive refinement to-
gether with coarsening not only gives the opti-
mum density of mesh but also makes the model
more flexible and efficient. The initial cloth
with flat shape is configured as maximum res-
olution for simulation. When it drapes over
an object, deformation takes place around the
boundary of object. Therefore, mesh needs
coarsening to lower the density in the region
away from the boundary of object.

In our simulation algorithm, omitted ele-
ments during coarsening are not completely
deleted from data structure but those are just
made inactive. This information is later used
when refinement is required. Therefore, in case
of refining, previously inactivated elements are
made active in data structure. As we are nei-
ther deleting nor adding an element during the

Fig. 5 Adaptive mesh refinement and coarsening.

Fig. 6 Simulated image with (a) coarser mesh, (b)
finer mesh, and (c) AMRC.

process of AMRC, the memory location remains
unchanged. Mesh refinement and coarsening
are employed accordingly if criteria for refin-
ing/coarsening are satisfied. This process con-
tinues throughout the simulation. Few possible
mesh transitions as an example are shown in
Fig. 5.

A sequential algorithm for cloth simulation is
executed on a personal computer to observe the
benefits of AMRC. First, a rectangular cloth
draping over a box is simulated without uti-
lizing the adaptive meshes. The cloth size of
77 × 77 particles is taken as maximum mesh
density and 20 × 20 particles as minimum den-
sity. The simulated images with coarser and
finer mesh are shown in Fig. 6-(a & b). Sim-
ulation with coarser mesh is faster but cloth is
penetrating in the box and requires denser mesh
for realistic simulation. On the other hand, sim-
ulation with finer mesh gives the best quality
but needs maximum time.

Simulation with AMRC starts with maxi-
mum density and simulated image is shown in
Fig. 6-(c). A test, whether to perform AMRC or
not, and implementing AMRC need some com-
putational cost. Therefore, test for AMRC is
performed after three iterations by considering

Vol. 45 No. SIG 11(ACS 7) Parallel Cloth Simulation with AMRC Using OpenMP 325

Table 1 Comparison for different meshes.

Mesh Time No.of Average Min-
[sec] Particles imized Cost

Finer 2,940 5939 0.128716
AMRC 829 5939–1787 0.17316
Coarser 176 400 0.259187

that there is no abrupt change in the model
in few iterations. In the beginning coarsening
is dominant because most of the cloth is flat.
Later high deformation occurs near the edges
of the box that needs refinement. Simulation
is slower at early iterations because of higher
mesh density. However, a good speed up is
achieved with acceptable quality.

The cost function is defined as the violation
of cloth parameters from experimental (KES)
data. The simulated cloth is seemed to be as
the real one when cost function is zero. Thus,
minimized value of cost function indicates the
quality of simulation by considering that KES
data corresponds to the best quality. There-
fore, we can say that minimized cost value rep-
resents the quality. So, we compromise that
the simulated cloth is tolerable in quality if the
simulation prohibits objects to penetrate in the
cloth. The processing time and average mini-
mized cost for 200 iterations are given in Ta-
ble 1 for three types of simulation.

It is difficult to exactly define the tolerance
of quality. The tolerance of quality depends on
the demand of application or user. In Table 1,
data is given for a fixed number of iterations to
compare the time and minimized cost. It may
not be so important for another user in a differ-
ent application. For example, consider the case
of animation where time is the key parameter.
It is required to finish the simulation within a
defined span of time even the minimized cost
has larger value. We have also performed the
simulation using AMRC, in which minimization
terminates when time reaches the 500 seconds.
It takes 165 iterations and average value of min-
imized cost is 0.227164, which are different from
the data given in Table 1.

Visual observation in Fig. 6. shows that the
object is penetrating in the cloth for simulation
with coarser mesh, which is not acceptable. On
the other hand, the object is not visible from
the surface of cloth when finer mesh and AMRC
is employed. Table 1 shows that finer mesh has
the smallest value of average minimized cost
that is closer to KES data and reflects the rela-
tively best quality. In case of AMRC, there is no

Fig. 7 Memory allocation in cyclic blocks.

object penetration and average cost value lies
between the values for finer and coarser mesh.
The minimized cost of AMRC can further be re-
duced by increasing the number of iteration but
at the cost of computational time. Comparison
among different simulations proves that AMRC
gives a better combination of speed and quality.

4. Parallel Implementation

Minimizing the computational cost is the aim
of parallel computing to achieve the more realis-
tic simulation in different environments. Paral-
lel implementation of cloth model is performed
by using the shared memory model of OpenMP.
When a parallel region is called in OpenMP, a
master thread creates slave threads, iterations
have to divide among processors and threads
must synchronize at the end of parallel re-
gion. These additional costs are called Par-
allel Overhead and it increases with number
of threads 2). There is no guarantee even a code
has been parallelized that its performance will
be improved. Parallelization in wrong way may
slow the program down. Some performance
tuning is necessary to run the program accept-
ably fast. The over-all performance of OpenMP
depends on the percentage of code that can be
made parallel, granularity, load balancing, lo-
cality and synchronization among processors.

4.1 Synchronization
The cloth mesh is divided into blocks of

50 × 50 particles and memory is allocated in
cyclic blocks as shown in Fig. 7. The block
size is chosen without any specific reason but
it should not be very small. This size may be
increased or decreased depending on the appli-
cation. Memory is allocated to particles, edges
and triples in each block respectively. Each par-
ticle is connected to its neighbors through edges
and triples, which reflects the sharing of data
among neighbors.

In our model, there are three cost functions
relating a particle to its eight neighbors along
horizontal and vertical directions in cloth struc-

326 IPSJ Transactions on Advanced Computing Systems Oct. 2004

Fig. 8 Parallelization of ComputeGradient().

Fig. 9 Scheduling in OpenMP.

ture. These tasks may use the same data and
cannot be computed simultaneously. This shar-
ing must be resolved by employing the specific
synchronization among processors that should
keep the parallel overhead minimum. There-
fore, we utilize the work-sharing directive of
OpenMP to keep all tasks in one parallel region
separated by event synchronization and paral-
lelism is exploited within a task. Compute-
Gradient() is the most expensive function of
our algorithm and its parallelization is shown
in Fig. 8. Similar approach is applied to paral-
lelize the rest of the functions.

4.2 Load Balancing in OpenMP
Adaptive mesh refinement and coarsening

change the number of elements in the mesh.
Variation in mesh density during execution,
raises the necessity of dynamic load balancing.
The schedule clause of OpenMP gives variety
of options to specify the distribution of load
among processors. An example of distribut-
ing 38 iterations among 4 processors by using
static, dynamic and guided scheduling is shown
in Fig. 9.

Static option of schedule clause simply di-
vides the work into equal parts for all proces-
sors. As the distribution is decided at the start,
it has the minimum overhead. Due to AMRC,
some parts of the cloth have more elements
while others have less elements for computa-
tion. As a result, faster processor has to wait
for slower one, which degrades the performance.

In dynamic scheduling, a fixed amount of
job is allocated to a processor on first come
first served basis. When a thread finishes its
work, it goes to the system runtime manager of

Fig. 10 Active list creation.

OpenMP and asks for a next job. The fastest
thread never has to wait for the slowest thread
to compute more than fixed amount of job. In
this scheme, job distribution is not known in
advance. Job is allocated to a processor at run-
time, which incurs more overhead as compared
to static scheduling.

Guided schedule starts with larger job size
and job size decreases exponentially until it
reaches the minimum size (given by user). It is
similar to dynamic scheduling except that next
job size is not fixed. This scheme not only de-
cides the job allocation to a processor at run
time but also calculates the size of next job,
which is equal to the remaining work divided by
the number of processors. Due to this reason,
it is more costly scheme than dynamic schedul-
ing. Its efficiency depends on the combination
of job size and number of processors.

4.3 Load Balancing Using Active Lists
We propose the distribution of data on the

basis of active elements in the mesh. Elements
are stored in data structure for finest mesh and
when coarsening omits an element its status is
set to be non-active. In case of refining, sta-
tus of an element is changed from non-active to
active. The lists (one dimensional arrays) are
created for active elements as shown in Fig. 10.
These lists contain the pointers to active ele-
ments. The non-active elements are removed
from the list after coarsening and active el-
ements are inserted in the list when refining
takes place. There are three types of elements
(particles, edges and triples) that need to make
three active lists. Therefore, three threads are
employed to update three lists and each list in
sequential way. The total number of elements
in each list are distributed among processors
like static scheduling. The above procedure is
elaborated by an example as shown in Fig. 11.
In this example, there are maximum 20 ele-

Vol. 45 No. SIG 11(ACS 7) Parallel Cloth Simulation with AMRC Using OpenMP 327

Fig. 11 Work distribution among processors.

ments initially and only active elements are re-
distributed among four processors at different
iterations.

5. Experimental Results

Parallel algorithm based on OpenMP is de-
signed to simulate the cloth. Cloth draping
over an object is simulated using the Fujitsu
PRIMEPOWER HPC2500 machine. The avail-
able HPC2500 server has 96 processors, which
are distributed over 12 system boards. Each
system board has eight SPARC64 V proces-
sors (1.3 GHz) and 16 GB of memory. All
these boards are connected with each other
through a crossbar network with capacity of
133GB/s. We are performing all experiments
using batch mode, which ensures that the num-
ber of threads and processors is equal. Source
code is compiled using the C-compiler fcc with
KOMP, Kfast GP2 = 2, V9, Klargepage=2 and
Khardbarrier options.

5.1 Cloth Draping Over Box
We have simulated the flat rectangular cloth

with 1, 000 × 1, 000 particles, staying just over
the surface of a box as initial state. The
variables forces, acceleration, velocity and cost
functions have zero initial values. Simulation
begins by allowing the cloth to drape over a
box under gravity. Cloth deforms as simula-
tion progresses. The AMRC is invoked only
three times and number of particles is reduced
from 1,000,000 to 45,995 during 100 iterations.
The performance evaluation in terms of compu-
tational time and number of processors is ex-
pressed by the graph as shown in Fig. 12. All
the given times are for 100 iterations.

Static scheduling is a simplest scheme with
minimum parallel overhead. It has the poorest
performance due to un-even distribution of load
among processors as shown in Fig. 12.

Guided scheduling is done with minimum size
equal to one block. Job size becomes very small

Fig. 12 Performance evaluation.

at the end, specially for large number of proces-
sors and more synchronization cost is needed.
As a consequence, its performance lies between
static and dynamic scheduling.

We are employing the dynamic scheduling
with minimum job-size equal to one, two and
three blocks to determine the effect of size.
The choice of job size is a compromise between
quality of load balancing and synchronization
costs. The load balancing improves as job-size
decreases because fastest processor has to wait
for less time at the end. On the other hand,
small size of job increases the number of job
allocations at run time. Synchronization cost
increases because one synchronization per job
allocation is required. Results in Fig. 12 show
that the simulation with smaller job size is bet-
ter for large number of processors and the sim-
ulation with larger job size is better for small
number of processors. However, difference in
performance corresponding to the number of
blocks is not too big in our simulation.

Using Active-Lists scheme, all processors re-
quire to compute the equal number of active el-
ements. As a result, its performance is the best
one as compared to static, guided and dynamic
scheduling schemes.

The computational time for cloth simulation
by Active-Lists scheme is elaborated in Table 2
corresponding to different number of processors
for further analysis. It is observed that speed up
first increases and then decreases. It gives the
best performance for 8, 16 and 32 processors.
In case of up to 32 processors, parallel over-
head is very small as compared to total elapsed
time. Furthermore, each processor has large
enough percentage of total work to compute,
which matches with the size of cache memory.
On the other hand, performance slows down
with larger number of processors. Therefore,
it is required to investigate that why perfor-

328 IPSJ Transactions on Advanced Computing Systems Oct. 2004

Table 2 Timing analysis.

No. of Seq. Para. Time Speed
proce- overhead overhead [sec] Up
ssors [sec] [sec]

1 11.5 0.000 10,459.70 1.00
2 11.5 0.024 5,039.45 2.07
4 11.5 0.050 2,498.97 4.18
8 11.5 0.080 1,167.61 8.96
16 11.5 0.131 583.80 17.91
32 11.5 0.205 316.86 33.01
48 11.5 0.382 220.16 47.50
64 11.5 0.457 168.06 62.24
80 11.5 0.588 145.58 71.85

mance limitation occurs. The main reasons are
sequential and parallel overheads. These over-
heads become gradually obvious as the number
of processors increases over 48.

Sequential overhead in Table 2 is the time
required to compute the sequential part of the
code that is approximately 10 seconds and time
needed to create the active lists, which is equal
to 1.5 seconds. As there are three active lists
for particles, edges and triples, always three
threads are used to update these lists.

Parallel overhead can be factorized into
thread creation, synchronization among proces-
sors and event synchronization costs. These
costs increase with the number of processors
(see Table 2).

If the cost of sequential and parallel over-
heads is deducted from the total elapsed time
then result shows the linear speed up. For ex-
ample, consider the case of 80 processors used
in simulation. The net time spent by 80 pro-
cessors in parallel computation is (145.58 −
11.5 − 0.588) = 133.4 seconds. In case of using
one processor, parallel execution part spending
(10459.7−11.5) = 10448.2 seconds might be ex-
ecuted in parallel. So, ideally this time would
be reduced to (10448.2/80) = 130.6 seconds if
we employ the 80 processors. These two val-
ues (i.e., 133.4 and 130.6 seconds) are approxi-
mately same. This fact means that Active-List
scheme works well to achieve the best load bal-
ancing and the crossbar network of HPC2500
has not yet become a bottleneck.

5.2 Cloth Draping Over Spheres
A cloth draping over a sphere is simulated

with the same initial shape and conditions as
used above for a box. Result in Table 3 de-
scribes the linear speed up, which indicates that
we are able to use objects different from a box
in cloth simulation. In both cases, for a box and
a sphere, deformation occurs only in specified
region of cloth. Therefore, another experiment

Table 3 Timing for cloth draping over spheres.

No. of Time [sec] Time [sec]
processors 1 sphere 3 spheres

2 3,664.59 3,865.34
4 1,864.35 2,004.75
8 939.43 1,010.12
16 478.73 515.42
32 233:87 249.21
64 123.68 128.23
80 100.77 104.72

Fig. 13 Invocations of AMRC.

is performed for the case of a cloth draping over
three small spheres. These spheres are placed
under the cloth near top-left, top-right and mid-
bottom of cloth respectively. As a result, the
cloth deforms in various regions. Table 3 also
shows the liner efficiency in computational time
for the case of three spheres. The AMRC is in-
voked seven times during the course of 100 it-
erations. These invocations occur at different
iteration numbers and produce different den-
sity for one and three spheres. The numbers of
particles reduce from 1,000,000 to 30,592 and
32,832 for one and three spheres respectively
(See Fig. 13). As AMRC is not invoked fre-
quently, its cost is smaller as compared to the
total simulation cost.

6. Discussion

6.1 Regular Versus Adaptive Meshes
Both regular and adaptive meshes have their

own merits and demerits depending on the ap-
plication. No doubt, implementation of regu-
lar meshes is easier. It does not require load
balancing but there is a possibility that some
regions are un-necessarily refined or coarsened.
The overall efficiency depends on the chosen
density of mesh. Choosing one level coarser
mesh can boost the time efficiency at the cost of
quality. Regular meshes are better than adap-
tive meshes when AMRC occurs frequently and

Vol. 45 No. SIG 11(ACS 7) Parallel Cloth Simulation with AMRC Using OpenMP 329

most area of the mesh needs higher density.
Adaptive meshes are better than regular

meshes when the decrease in total computation
time is larger as compared to the time needed
for AMRC and load balancing. Moreover, its
efficiency can be enhanced by parallel imple-
mentation of AMRC. Infact, in our examples
of cloth draping over a box, a sphere and three
spheres, AMRC is invoked only three or seven
times per 100 iterations and very vast area of
mesh uses coarser density.

6.2 Scalability
Scalability should be considered in terms of

problem size and multiprocessor organization.
Cloth with 1, 000×1, 000 particles needs around
1.4GB of memory, which is so smaller than to-
tal memory 12 × 16 GB of HPC2500 with 96
processors. Therefore, problem size can be en-
larged and algorithm will perform well for any
OpenMP platform due to coarser granularity.
Total processing time is of course proportional
to the problem size and efficiency of the ma-
chine other than HPC2500.

In general for all parallel codes, increasing
the number of processors has to face two prob-
lems: decrease in granularity and increase in
parallel overhead. The performance of our al-
gorithm will go down for a very large scale sys-
tem because of sequential implementation of
AMRC and updating Active-Lists. As can be
seen in Table 2, the sequential time is 11.5 sec-
onds. Even if AMRC and HPC2500 intercon-
nection network work well in case of 1,000 pro-
cessors, the computational time would remain
at 11.5 + (10459.7 − 11.5)/1, 000 = 21.95, thus
the speed up is 476.5. It reflects that sequential
cost has dominated the parallel cost for more
than 1,000 processors.

Parallel programming is relatively easier for
shared memory computers but these do not
scale well to hundreds of processors (1,000 pro-
cessors are unrealistic), while distributed sys-
tems are scaled to thousands of computers. Em-
ploying a very large set of CPUs to get the
real time simulation, requires switching from
shared memory systems to cluster-based sys-
tems. Such distributed systems need mesh
repartitioning and boundary exchange.

The inter-cluster communication is usually
expensive, so it is required to reduce the
amount of data movement. For this purpose,
two dimensional block distribution is a promis-
ing candidate for our application since it can
minimize the boundary between clusters. As

for data migration scheme, diffusion algorithm
may be a good choice that moves data only be-
tween neighbors. Indeed, we have already im-
plemented the similar scheme in our paralleliz-
ing compiler 4). It is also possible to perform
mesh generation for AMRC in parallel on a dis-
tributed mesh. By applying these techniques,
we can port our algorithm to a distributed sys-
tem.

7. Conclusion and Future Work

We have successfully implemented the par-
allel algorithm in OpenMP for simulating the
realistic force as well as shape of cloth with
adaptive meshes. AMRC reduces the sequen-
tial time but increases the complexity of par-
allel programming. So, we have realized the
effective load balancing based on the Active-
Lists. Comparison with the scheduling schemes
available in OpenMP reflects the good speedup
achieved by our parallel model.

In this simulation, the crossbar network of
HPC2500 has not yet become a performance
bottleneck because it provides sufficient capa-
bility for the simulation size of 1.4 GB with
1, 000× 1, 000 particles. In case of bigger mesh
size problems, we need the effective memory
allocation by which the data transfer through
crossbar network might be minimized as much
as possible. This memory allocation is related
to the logical-physical memory address trans-
formation done by the HPC2500 operating sys-
tem. This memory allocation scheme may in-
fluence on the Active-Lists scheme for load bal-
ancing.

We have simulated the cloth containing the
1, 000 × 1, 000 particles, draping over a box, a
sphere and three spheres, that is large enough
for real size applications. The computational
cost is still away from real time simulation.
This algorithm can be employed to complex ap-
plications (for example, dress on human body)
after achieving the real time simulation that is
our task for future.

Currently visualization part is a negligible
task in comparison with simulation part be-
cause simulation is computationally expensive
and non-real time simulation has been per-
formed at this stage. On the other hand, we
also have a research project on parallel visual-
ization of simulation results. So, we could uti-
lize the results of this work if we could achieve
the real time simulation of cloth with force feed-
back.

330 IPSJ Transactions on Advanced Computing Systems Oct. 2004

Acknowledgments Part of this work was
supported by the Grant-in-Aid for Scientific Re-
search (S)#16100001 and (B)#13480083 from
JSPS.

References

1) Breen, D.E., et al.: Predicting the drape of wo-
ven cloth using interacting particles, Computer
Graphics (SIGGRAPH Proceedings), pp.365–
372 (1994).

2) Bull, J.M.: Measuring synchronization and
scheduling overheads in OpenMP, 1st European
Workshop on OpenMP, Lund, Sweden (1999).

3) Chandra, R., et al.: Parallel programming
in OpenMP, Morgan Kaufmann Publishers
(2001).

4) Goto, S., et al.: Optimized code generation
for heterogeneous computing environment us-
ing parallelizing compiler TINPAR, Proc. Int’l
Conf.on Parallel Architecture and Compilation
Techniques, pp.426–433 (1998).

5) Howlett, P. and Hewitt, W.T.: Mass-spring
simulation using adaptive non-active points,
Computer Graphics Forum, Vol.17, No.3
(1998).

6) Hutchinson, D., Preston, M. and Hewitt,
W.T.: Adaptive refinement for mass/spring
simulations, 7th Eurographics Workshop on
Animation and Simulation, pp.31–45 (1996).

7) Kawabata, S.: The standardization and anal-
ysis of hand evaluation, The Textile Machinery
Society of Japan (1980).

8) Lario, R., et al.: Rapid parallelization of a
multilevel cloth simulator using OpenMP, 3rd
European Workshop on OpenMP, Spain (2001).

9) Mujahid, A., et al.: A new approach towards
modeling the virtual cloth based on realistic
force and shape, 8th Int’l Conference on Vir-
tual Systems and MultiMedia, Gyeongju, Ko-
rea, pp.399–408 (2002).

10) Mujahid, A., et al.: Modeling virtual cloth
to display realistic shape and force based on
physical data, Journal of System, Control and
Information, Japan, Vol.47, No.4, pp.183–191
(2003).

11) Mujahid, A., et al.: Comparison between
adaptive refinement and adaptive coarsening
for simulating realistic force and shape of
virtual cloth, MMU Int’l Symposium on In-
formation and Communications Technologies,
Malaysia, pp.147–150 (2003).

12) Mujahid, A., et al.: Simulating realistic force
and shape of virtual cloth with adaptive meshes
and its parallel implementation in OpenMP,
IASTED Int’l Conf.on Parallel and Distributed
Computing and Networks (PDCN 2004), Aus-
tria (2004).

13) Ng, H.N., Grimsdale, R.I. and Allen, W.G.:
A system for modeling and visualization of
cloth material, Computer and Graphics, Vol.19,
No.3, pp.423–430 (1995).

14) Romero, S., Romero, L.F. and Zapta, E.L.:
Fast cloth simulation with parallel comput-
ers, 6th Int’l Euro-Par Conference (Euro-
Par2000), Munich, Germany, pp.491–499
(2000).

15) Romero, S., Romero, L.F. and Zapta, E.L.:
Approaching real time cloth simulation using
parallelism, 16th IMACS World Congress on
Scientific Computation, Applied Mathematics
and Simulation, Lausanne, Switzerland (2000).

16) Sakaguchi, Y., et al.: Party: A numerical cal-
culation method for a dynamically deformable
cloth model, System and Computers in Japan,
Vol.26, No.8, pp.75–87 (1995).

17) Villard, J. and Borouchaki, H.: Adaptive
meshing for cloth animation, 11th Int’l Mesh-
ing Roundtable, pp.243–252 (2002).

18) Volkov, V. and Ling, L.: Adaptive local re-
finement and simplification of cloth meshes,
1st Int’l Conference on Information Technol-
ogy and Application, Australia (2002).

19) Zhang, D. and Yuen, M.M.F.: Cloth simu-
lation using multilevel meshes, Computer and
Graphics, Vol.25, No.3, pp.383–389 (2001).

(Received January 31, 2004)
(Accepted May 29, 2004)

Alam Mujahid received his
M.Sc. and M.Phil. degrees in
Electronics from Quaid-e-Azam
University, Islamabad, Pakistan
in 1991 and 1994 respectively.
He was affiliated with Informat-
ics Complex, Islamabd as Scien-

tific Officer and Senior Scientific Officer from
1993 to 1998. He is currently post-graduate
student in the Graduate School of Informatics,
Kyoto University. His interested research fields
are computer graphics and parallel processing.

Vol. 45 No. SIG 11(ACS 7) Parallel Cloth Simulation with AMRC Using OpenMP 331

Koh Kakusho received his
B.E. degree in electrical engi-
neering from Nagoya University
in 1988, and his M.E. and Ph.D.
degrees in communication engi-
neering from Osaka University
in 1990 and 1993 respectively.

From 1992 to 1994, he was a Fellow of JSPS,
and spent a year from 1993 at the Robotics
Laboratory, Stanford University as a Visiting
Scholar. From 1994 to 1997, he was a Research
Associate at the Institute of Scientific and In-
dustrial Research, Osaka University. He is cur-
rently an Associate Professor at the Academic
Center for Computing and Media Studies,
Kyoto University. His primary research inter-
est is information media technology especially
for human-computer communication using vi-
sual media. He is a member of IEEE, ACM,
IEICE, IPSJ and JSAI.

Michihiko Minoh is a pro-
fessor at Academic Center for
Computing and Media Studies,
Kyoto University, Japan. He re-
ceived the B.Eng., M.Eng. and
D.Eng. degrees in Information
Science from Kyoto University,

in 1978, 1980 and 1983 respectively. His re-
search interest includes image processing, arti-
ficial intelligence and multimedia applications.
He is currently a leader of Trans-pacific Inter-
active Distance Education (TIDE) project. He
is a member of IPSJ, IEICEJ, IEEE, and ACM.

Yasuhiko Nakashima was
born in 1963. He received the
B.E., M.E. and Ph.D. degree in
Computer Engineering from Ky-
oto University, Japan in 1986,
1988 and 1998 respectively. He
was a computer architect at

Computer and System Architecture Depart-
ment, FUJITSU Limited in 1988–1999. Since
1999, he is an Associate Professor in Graduate
School of Economics, Kyoto University. His re-
search interests include processor architecture,
emulation, CMOS circuit design, and evolution-
ary computation. He is a member of IEEE CS,
ACM and IPSJ.

Shin-ichiro Mori was born
in 1963. He received his B.E.
in electronics from Kumamoto
Univ. in 1987 and M.E. and
Ph.D. in computer science from
Kyushu Univ. in 1989 and 1995
respectively. From 1992 to 1995,

he was a research associate in the Faculty of
Engineering, Kyoto University. Since 1995, he
has been an associate professor in the Depart-
ment of Computer Science, Kyoto University.
His research interests include computer archi-
tecture, parallel processing and visualization.
He is a member of IEEE CS, ACM, EURO-
GRAPHICS, IEICE and IPSJ.

Shinji Tomita was born in
1945. He received his B.E., M.E.
and Ph.D. degrees in Electronics
from Kyoto University in 1968,
1970, and 1973 respectively. He
was a research associate from
1973 to 1978 and an associate

professor from 1978 to 1986 in the Department
of Computer Science, Kyoto University. From
1986 to 1991, he was a professor in the Depart-
ment of Information Systems, Kyushu Univer-
sity. From 1991 to 1998, he was a professor in
the Faculty of Engineering, Kyoto University.
Since 1998, he has been a professor in the Grad-
uate School of Informatics, Kyoto University.
His current interests include computer architec-
ture and parallel processing. He is a member of
IEEE, ACM, IEICE and IPSJ. He was a board
member of IPSJ directors in 1995, 1996, 1998
and 1999. He is a fellow of IEICE and IPSJ.

